
MAT351 Partial Differential Equations
Lecture 16

November 18, 2020

MAT351 Partial Differential Equations Lecture 16 November 18, 2020 1 / 16



Last Lecture
The wave equation on [0, l ]

ut,t = c2ux,x on (0, l)× R
u(x , 0) = φ(x) on [0, l ]

ut (x , 0) = ψ(x) on [0, l ]

(1)

and with Dirichlet boundary conditions (DC)

u(0, t) = u(l , t) = 0 ∀t ∈ R

or with Neumann boundary conditions (NC)

ux (0, t) = ux (l , t) = 0 ∀t ∈ R.

Via separation of variable we found a family of special solutions.

For (1) with DC we found special solutions of the form un(x , t) = Tn(t)Xn(t), n ∈ N, where

Tn(t) = An cos
(nπ

l
ct
)

+ Bn sin
(nπ

l
ct
)

and the functions Xn(x) := sin
(

nπ
l

x
)

solve the following ODE boundary problem

X ′′n +
(nπ

l

)2
Xn = 0 with Xn(0) = Xn(l) = 0, n ∈ N.
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Superposition principle
Any finite linear combination of un is also a solution of (1) with DC:

u(x , t) :=
k∑

i=1

(
Ani cos

(niπ

l
ct
)

+ Bni sin
(niπ

l
ct
))

sin
(niπ

l
x
)

where n1, . . . , nk ∈ N.

u has initial conditions

φ(x) = u(x , 0) =
k∑

i=1

Ani sin
(niπ

l
x
)
, ψ(x) = ut (x , 0) =

k∑
i=1

nπc

l
Bni sin

(niπ

l
x
)

.

For (1) with NC we found that

ũn(x , t) = Tn(t)X̃n(x) ∀n ∈ N ∪ {0}.

is a solution.

The functions X̃n(x) := cos
(

nπ
l

x
)
, n ∈ N, solve the following ODE boundary problem

X ′′n +
(nπ

l

)2
Xn = 0 with (Xn)x (0) = (Xn)x (l) = 0, n ∈ N ∪ {0}.

where we set X0(x) = 1.

Again we have that Tn(t) solves T ′′ +
(

nπ
l

)2
cT = 0. Therefore

Tn(t) = An cos
(nπ

l
ct
)

+ Bn sin
(nπ

l
ct
)

for n ∈ N and for An, Bn ∈ R.

But also T0(t) = 1
2

A0 + 1
2

B0t for A0,B0 ∈ R.
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Eigenvalues and Eigenfunction
The constants λn =

(
nπ
l

)2
are called eigenvalues.

The functions Xn(x) are called eigenfunctions of the the differential operator

L : V → C 0([0, l ]), Lφ = −
∂2

∂x2
φ for V =

{
φ ∈ C 2([0, l ]) : φ(0) = φ(l) = 0

}
.

The differential equality that determines Xn has the form of an eigenvalue equation

LXn = λnXn.

Similar, the functions X̃n(x) are called eigenfunctions for the differential operator

L̃ : Ṽ → C 0([0, l ]), L̃φ = −
∂2

∂x2
φ for Ṽ =

{
φ ∈ C 2([0, l ]) : φx (0) = φx (l) = 0

}
.

The terminology is motivated from Linear Algebra:
Consider a matrix A ∈ Rn×n we say λ ∈ R is an eigenvalue of A if there exists v 6= 0 such that

Av = λv

Given an eigenvalue λ for A the set of eigenvectors Eλ is a vector space.
If we can find n different eigenvalue λ1, . . . , λn then

Eλ1
⊕ · · · ⊕ Eλn = Rn

Hence, for every vector w there are unique eigenvectors vi ∈ Eλi
such that

W = v1 + · · ·+ vn.
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Let us go back to (1) with a DC. Consider an infinite serie of the form

u(x , t) := lim
N→∞

N∑
n=1

un(x , t) =
∞∑

n=1

(An cos (λnct) + Bn sin (λnct)) sin (λnx) . (2)

When does such a serie converges uniformily?

Since ∣∣∣∣∣
N∑

n=1

un(x , t)

∣∣∣∣∣ ≤
N∑

n=1

(|An|+ |Bn|) ≤
∞∑

n=1

|An|+
∞∑

n=1

|Bn|

the series (2) converges uniformily provided
∑∞

n=1 |An|,
∑∞

n=1 |Bn| <∞. Indeed

max
x∈[0,l ]

∣∣∣∣∣
M∑

n=1

un(x , t)−
N∑

n=1

un(x , t)

∣∣∣∣∣ = max
x∈[0,l ]

∣∣∣∣∣∣
M∑

n=N+1

un(x , t)

∣∣∣∣∣∣ ≤
M∑

n=N+1

(|An|+ |Bn|)→ 0

if N < M →∞. Now also recall the following theorem about differentiation of series

Theorem

Let fn(x) a sequence of functions on [0, l ] that are differentiable. Assume
∑∞

n=1 fn(x) is
converging uniformily.

If
∑∞

n=1 f ′n (x) is uniformily convergent then it follows that f is differentiable on [0, l ] and

f ′(x) =
∞∑

n=1

f ′(x).
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Hence, the partial derivatives ux and ut exist and satisfy

ux (x , t) =
∞∑

n=1

λn (An cos (λnct) + Bn sin (λnct)) cos (λnx)

ut (x , t) =
∞∑

n=1

λnc (−An sin (λnct) + Bn cos (λnct)) sin (λnx)

provided
∑∞

n=1 λn|An|,
∑∞

n=1 λn|Bn| <∞.

Similar, the second partial derivatives ux,x and ut,t exist and satisfy

ux,x (x , t) =
∞∑

n=1

λ2
n (An cos (λnct) + Bn sin (λnct)) cos (λnx)

ut,t (x , t) =
∞∑

n=1

λ2
nc2 (−An sin (λnct) + Bn cos (λnct)) sin (λnx)

provided
∑∞

n=1 λ
2
n|An|,

∑∞
n=1 λ

2
n|Bn| <∞.

Consequently, since each function

un = (An cos(λnct) + Bn sin(λnct)) sin(λnx)

satisfies the PDE (un)t,t = c2(un)x,x with DC the series u satisfies the same PDE also with
Dirichlet boundary condition u(0, t) = u(l , t) = 0.

In the same way we can construct solutions to the PDE with NC. We only have to replace

Xn, n ∈ N with X̃n, n ∈ N ∪ {0}.
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Moreover u satisfies the following initial condition

u(x , 0) = lim
N→∞

N∑
n=1

An sin
(nπ

l
x
)

=
∞∑

n=1

An sin
(nπ

l
x
)

=: φ(x) (3)

and

ut (x , 0) =
∞∑

n=1

nπc

l
Bn sin

(nπ

l
x
)

=: ψ(x) (4)

Note that these series are converge uniformily and hence are well-defined because we assumed

∞∑
n=1

|An|,
∞∑

n=1

|Bn|,
∞∑

n=1

λn|An|,
∞∑

n=1

λn|Bn|,
∞∑

n=1

λ2
n|An|,

∞∑
n=1

λ2
n|Bn| <∞.

Question

What kind of data pairs φ, ψ can be expanded as series for coefficients An and Bn as above?

In the same way we can find solutions for the PDE with NC:

u(x , t) =
1

2
(A0 + B0t) +

∞∑
n=1

(An cos(λnct) + Bn sin(λnct)) cos(λnx).

The initial conditions are 1
2

A0 +
∑∞

n=1 An cos(λnx) and 1
2

B0 +
∑∞

n=1 Bnλnc cos(λnx).
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Let us consider the analogous problem for diffusion on [0, l ]:

ut = kux,x on (0, l)× (0,∞)
u(x , 0) = φ(x) on (0, l)

with Dirichlet boundary conditions

u(0, t) = u(l , t) = 0 ∀t ∈ R

or with Neumann boundary conditions

ux (0, t) = ux (l , t) = 0 ∀t ∈ R.

We can again apply the methode of Separation-of-Variables: We consider a solution of the form

u(x , t) = T (t)X (x).

This leads to

−
T ′

kT
= −

X ′′

X
= λ.

Again we see easily that λ must be constant and T and X solve

T ′ + λkT = 0 & X ′′ + λX = 0.

The general solution for X is the same as before. In particular, we can have λn =
(

nπ
l

)2
and the

set of solutions Xn(x) = sin
(

nπ
l

x
)
. The general solution for T in this case is

T (t) = Ae−( nπ
l )2kt for A ∈ R.
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Hence, as before a family of special solutions of the diffuison equation with DC is given by

un(x , t) = Ane−( nπ
l )2kt sin

(nπ

l
x
)

︸ ︷︷ ︸
=:Xn(x)

, n ∈ N and An ∈ R.

where Xn are as before. Then

u(x , t) =
∞∑

n=1

Ane−λ
2
nkt sin(λnx)

solves the diffusion equation with DC and inital data u(x , 0) =
∑∞

n=1 An sin(λnx) provided

∞∑
n=1

|An|,
∞∑

n=1

λn|An|,
∞∑

n=1

λ2
n|An| <∞.
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For NC we consider λn =
(

nπ
l

)2
with n ∈ N ∪ {0} and the corresponding solutions X̃n of

X̃ ′′n + λXn = 0. Precisely, we set X̃n(x) = cos(λnx) and X0(x) = 1.

Again we also have to consider λ0 = 0. In particular, for T we also consider the solutions of

T ′ = 0 ⇔ T0(0) =
1

2
A0 ∈ R

Then, a family of special solutions of the diffusion equation with NC is given by

un(x , t) = Ane−( nπ
l )2kt cos

(nπ

l
x
)

︸ ︷︷ ︸
=:X̃n(x)

, n ∈ N and An ∈ R.

andn u0(x , t) = 1
2

A0.Again

u(x , t) =
1

2
A0 +

∞∑
n=1

Ane−λ
2
nkt cos(λnx)

is a solution to the diffusion equation with NC for the initial data

u(x , 0) =
1

2
A0 +

∞∑
n=1

An cos(λx).

provided

∞∑
n=1

|An|,
∞∑

n=1

λn|An|,
∞∑

n=1

λ2
n|An| <∞.
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Fourier Series

We encouter the following question

Question

Given a function φ on [0, l ] can we find a sequence (An)n∈N such that

φ(x) = lim
N→∞

N∑
n=1

An sin (λnx) =
∞∑

n=1

An sin(λnx), x ∈ [0, l ] ?

(where λn =
(

nπ
l

)2
). We call the series on the right hand side the Fourier sine series.

Or can we find a sequence (Bn)n∈N such that

φ(x) =
1

2
A0 + lim

N→∞

N∑
n=1

An cos (λnx) =
1

2
A0 +

∞∑
n=1

An cos(λnx), x ∈ [0, l ] ?

We call the series on the right hand side the Fourier cosine series.
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How can we determine the coefficients An?
We perform the following forma calculations:∫ l

0
φ(x) sin(λmx)dx =

∫ l

0

∞∑
n=1

An sin(λnx) sin(λmx)dx =
∞∑

n=1

∫ l

0
An sin(λnx) sin(λmx)dx

Let consider a single term in the sum on the right hand side:

An

∫ l

0
sin(λnx) sin(λmx)dx= An

∫ l

0

1

2
(cos((λn − λm)x)− cos((λn + λm)x)) dx

Here we used the first of the following identities

cos(x + y) = cos(x) cos(y)− sin(x) sin(y), sin(x + y) = cos(x) sin(y) + sin(x) cos(y).

The first identity gives

cos(x + y)− cos(x − y) = cos(x) cos(y)− sin(x) sin(y)− cos(x) cos(−y) + sin(x) sin(−y)

= −2 sin(x) sin(y)

Then, if n 6= m, we compute

An

∫ l

0
sin(λnx) sin(λmx)dx = Am

l

2π

∫ l

0

π

l
cos

(
(n −m)π

l
x

)
− cos

(
(n + m)π

l

)
dx

=
l

2π
An

∫ π

0
(cos((n −m)x)− cos((n + m)x)) dx

=
l

2π
An

[
1

n −m
sin((n −m)x)−

1

n + m
sin((n + m)

]π
0

= 0
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If n = m, then

Am

∫ l

0
sin(λmx)2dx = Am

l

2π

∫ π

0
[1− cos(2mx)] dx = Am

l

2
− Am

l

2π

[
1

2m
sin(2mx)

]π
0

=
l

2
An

Hence ∫ l

0
φ(x) sin(λmx)dx =

∫ l

0

∞∑
n=1

An sin(λnx) sin(λmx)dx

=
∞∑

n=1

An

∫ l

0
sin(λnx) sin(λmx)dx =

l

2
Am.

Am =
2

l

∫ l

0
φ(x) sin(λmx)dx =

2

l

∫ l

0
φ(x) sin

(mπ

l
x
)

dx .

This is the Fourier sine coefficient for φ.
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By the same formal calculation we also compute the Fourier cosine coefficient for φ.

Precisely: ∫ l

0
φ(x) cos(λmx)dx =

∫ l

0

∞∑
n=1

Ãn cos(λnx) cos(λmx)dx

=
∞∑

n=1

Ãn

∫ l

0
cos(λnx) cos(λmx)dx

Let us again consider a single term in the sum on the right hand side with n,m ≥ 1:

Ãn

∫ l

0
cos(λnx) cos(λmx)dx = Ãn

1

2

∫ l

0
cos

(
(n + m)π

l
x

)
+ cos

(
(n −m)π

l
x

)
dx

= Ãn
l

2π

∫ π

0
cos((n + m)x) + cos((n −m)x)dx

For n 6= m the right hand side in the last term is

= Ãn
l

2π

[
1

n + m
sin((n + m)x) +

1

n −m
sin((n −m)x)

]π
0

= 0.

For n = m we obtain

=
l

π2

∫ π

0
[cos(2mx) + 1] dx =

l

2π
Ãm

[
1

2n
sin(2mx)

]π
0

+
l

2
Ãm =

l

2
Ãm.
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A computation yields the same conclusion even when n = 0 or m = 0.

We obtain that

Ã0 =
2

l

∫ l

0
φ(x)dx , Ãm =

2

l

∫ l

0
φ(x) cos(λmx)dx =

2

l

∫ l

0
φ(x) cos

(mπ

l
x
)

dx .

Definition

The Fourier sine series of φ is defined

∞∑
n=1

[
2

l

∫ l

0
φ(x) sin

(nπ

l
x
)

dx

]
sin
(nπ

l
x
)

=: S(φ)

Similar the Fourier cosine series of φ is defined

∞∑
n=1

[
2

l

∫ l

0
φ(x) cos

(nπ

l
x
)

dx

]
cos
(nπ

l
x
)

=: C(φ)
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Finally the full Fourier coefficients are (we abuse notation at this point)

Bm =
1

l

∫ l

−l
φ(x) cos

(mπ

l
x
)

dx .

A0 =
1

l

∫ l

−l
φ(x)dx , Am =

1

l

∫ l

−l
φ(x) cos

(mπ

l
x
)

dx .

Definition

The Fourier series of φ is

1

2
A0 +

∞∑
n=1

[
An sin(

nπ

l
x)dx + Bn cos(

nπ

l
x)
]

= F(φ)
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