MAT351 Partial Differential Equations Lecture 16

November 18, 2020

Last Lecture

The wave equation on $[0, I]$

$$
\begin{align*}
u_{t, t} & =c^{2} u_{x, x} & & \text { on }(0, I) \times \mathbb{R} \\
u(x, 0) & =\phi(x) & & \text { on }[0, l] \tag{1}\\
u_{t}(x, 0) & =\psi(x) & & \text { on }[0, l]
\end{align*}
$$

and with Dirichlet boundary conditions (DC)

$$
u(0, t)=u(I, t)=0 \quad \forall t \in \mathbb{R}
$$

or with Neumann boundary conditions (NC)

$$
u_{x}(0, t)=u_{x}(I, t)=0 \quad \forall t \in \mathbb{R}
$$

Via separation of variable we found a family of special solutions.
For (1) with DC we found special solutions of the form $u_{n}(x, t)=T_{n}(t) X_{n}(t), n \in \mathbb{N}$, where

$$
T_{n}(t)=A_{n} \cos \left(\frac{n \pi}{l} c t\right)+B_{n} \sin \left(\frac{n \pi}{l} c t\right)
$$

and the functions $X_{n}(x):=\sin \left(\frac{n \pi}{l} x\right)$ solve the following ODE boundary problem

$$
X_{n}^{\prime \prime}+\left(\frac{n \pi}{I}\right)^{2} X_{n}=0 \quad \text { with } X_{n}(0)=X_{n}(I)=0, \quad n \in \mathbb{N}
$$

Superposition principle

Any finite linear combination of u_{n} is also a solution of (1) with DC:

$$
u(x, t):=\sum_{i=1}^{k}\left(A_{n_{i}} \cos \left(\frac{n_{i} \pi}{l} c t\right)+B_{n_{i}} \sin \left(\frac{n_{i} \pi}{l} c t\right)\right) \sin \left(\frac{n_{i} \pi}{l} x\right) \quad \text { where } n_{1}, \ldots, n_{k} \in \mathbb{N} .
$$

u has initial conditions

$$
\phi(x)=u(x, 0)=\sum_{i=1}^{k} A_{n_{i}} \sin \left(\frac{n_{i} \pi}{l} x\right), \quad \psi(x)=u_{t}(x, 0)=\sum_{i=1}^{k} \frac{n \pi c}{l} B_{n_{i}} \sin \left(\frac{n_{i} \pi}{l} x\right)
$$

For (1) with NC we found that

$$
\tilde{u}_{n}(x, t)=T_{n}(t) \tilde{X}_{n}(x) \forall n \in \mathbb{N} \cup\{0\} .
$$

is a solution.
The functions $\tilde{X}_{n}(x):=\cos \left(\frac{n \pi}{l} x\right), n \in \mathbb{N}$, solve the following ODE boundary problem

$$
X_{n}^{\prime \prime}+\left(\frac{n \pi}{l}\right)^{2} X_{n}=0 \quad \text { with }\left(X_{n}\right)_{\times}(0)=\left(X_{n}\right)_{\times}(I)=0, \quad n \in \mathbb{N} \cup\{0\}
$$

where we set $X_{0}(x)=1$.
Again we have that $T_{n}(t)$ solves $T^{\prime \prime}+\left(\frac{n \pi}{l}\right)^{2} c T=0$. Therefore

$$
T_{n}(t)=A_{n} \cos \left(\frac{n \pi}{l} c t\right)+B_{n} \sin \left(\frac{n \pi}{l} c t\right) \text { for } n \in \mathbb{N} \text { and for } A_{n}, B_{n} \in \mathbb{R}
$$

But also $T_{0}(t)=\frac{1}{2} A_{0}+\frac{1}{2} B_{0} t$ for $A_{0}, B_{0} \in \mathbb{R}$.

Eigenvalues and Eigenfunction

The constants $\lambda_{n}=\left(\frac{n \pi}{l}\right)^{2}$ are called eigenvalues.
The functions $X_{n}(x)$ are called eigenfunctions of the the differential operator

$$
L: V \rightarrow C^{0}([0, I]), \quad L \phi=-\frac{\partial^{2}}{\partial x^{2}} \phi \quad \text { for } V=\left\{\phi \in C^{2}([0, I]): \phi(0)=\phi(I)=0\right\}
$$

The differential equality that determines X_{n} has the form of an eigenvalue equation

$$
L X_{n}=\lambda_{n} X_{n} .
$$

Similar, the functions $\tilde{X}_{n}(x)$ are called eigenfunctions for the differential operator

$$
\tilde{L}: \tilde{V} \rightarrow C^{0}([0, I]), \quad \tilde{L} \phi=-\frac{\partial^{2}}{\partial x^{2}} \phi \quad \text { for } \tilde{V}=\left\{\phi \in C^{2}([0, I]): \phi_{x}(0)=\phi_{x}(I)=0\right\}
$$

The terminology is motivated from Linear Algebra:
Consider a matrix $A \in \mathbb{R}^{n \times n}$ we say $\lambda \in \mathbb{R}$ is an eigenvalue of A if there exists $v \neq 0$ such that

$$
A v=\lambda v
$$

Given an eigenvalue λ for A the set of eigenvectors E_{λ} is a vector space. If we can find n different eigenvalue $\lambda_{1}, \ldots, \lambda_{n}$ then

$$
E_{\lambda_{1}} \oplus \cdots \oplus E_{\lambda_{n}}=\mathbb{R}^{n}
$$

Hence, for every vector w there are unique eigenvectors $v_{i} \in E_{\lambda_{i}}$ such that

$$
W=v_{1}+\cdots+v_{n}
$$

Let us go back to (1) with a DC. Consider an infinite serie of the form

$$
\begin{equation*}
u(x, t):=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} u_{n}(x, t)=\sum_{n=1}^{\infty}\left(A_{n} \cos \left(\lambda_{n} c t\right)+B_{n} \sin \left(\lambda_{n} c t\right)\right) \sin \left(\lambda_{n} x\right) . \tag{2}
\end{equation*}
$$

When does such a serie converges uniformily?
Since

$$
\left|\sum_{n=1}^{N} u_{n}(x, t)\right| \leq \sum_{n=1}^{N}\left(\left|A_{n}\right|+\left|B_{n}\right|\right) \leq \sum_{n=1}^{\infty}\left|A_{n}\right|+\sum_{n=1}^{\infty}\left|B_{n}\right|
$$

the series (2) converges uniformily provided $\sum_{n=1}^{\infty}\left|A_{n}\right|, \sum_{n=1}^{\infty}\left|B_{n}\right|<\infty$. Indeed

$$
\max _{x \in[0,1]}\left|\sum_{n=1}^{M} u_{n}(x, t)-\sum_{n=1}^{N} u_{n}(x, t)\right|=\max _{x \in[0, l]}\left|\sum_{n=N+1}^{M} u_{n}(x, t)\right| \leq \sum_{n=N+1}^{M}\left(\left|A_{n}\right|+\left|B_{n}\right|\right) \rightarrow 0
$$

if $N<M \rightarrow \infty$. Now also recall the following theorem about differentiation of series

Theorem

Let $f_{n}(x)$ a sequence of functions on $[0, I]$ that are differentiable. Assume $\sum_{n=1}^{\infty} f_{n}(x)$ is converging uniformily.
If $\sum_{n=1}^{\infty} f_{n}^{\prime}(x)$ is uniformily convergent then it follows that f is differentiable on $[0, I]$ and

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} f^{\prime}(x)
$$

Hence, the partial derivatives u_{x} and u_{t} exist and satisfy

$$
\begin{gathered}
u_{x}(x, t)=\sum_{n=1}^{\infty} \lambda_{n}\left(A_{n} \cos \left(\lambda_{n} c t\right)+B_{n} \sin \left(\lambda_{n} c t\right)\right) \cos \left(\lambda_{n} x\right) \\
u_{t}(x, t)=\sum_{n=1}^{\infty} \lambda_{n} c\left(-A_{n} \sin \left(\lambda_{n} c t\right)+B_{n} \cos \left(\lambda_{n} c t\right)\right) \sin \left(\lambda_{n} x\right)
\end{gathered}
$$

provided $\sum_{n=1}^{\infty} \lambda_{n}\left|A_{n}\right|, \sum_{n=1}^{\infty} \lambda_{n}\left|B_{n}\right|<\infty$.
Similar, the second partial derivatives $u_{x, x}$ and $u_{t, t}$ exist and satisfy

$$
\begin{gathered}
u_{x, x}(x, t)=\sum_{n=1}^{\infty} \lambda_{n}^{2}\left(A_{n} \cos \left(\lambda_{n} c t\right)+B_{n} \sin \left(\lambda_{n} c t\right)\right) \cos \left(\lambda_{n} x\right) \\
u_{t, t}(x, t)=\sum_{n=1}^{\infty} \lambda_{n}^{2} c^{2}\left(-A_{n} \sin \left(\lambda_{n} c t\right)+B_{n} \cos \left(\lambda_{n} c t\right)\right) \sin \left(\lambda_{n} x\right)
\end{gathered}
$$

provided $\sum_{n=1}^{\infty} \lambda_{n}^{2}\left|A_{n}\right|, \sum_{n=1}^{\infty} \lambda_{n}^{2}\left|B_{n}\right|<\infty$.
Consequently, since each function

$$
u_{n}=\left(A_{n} \cos \left(\lambda_{n} c t\right)+B_{n} \sin \left(\lambda_{n} c t\right)\right) \sin \left(\lambda_{n} x\right)
$$

satisfies the PDE $\left(u_{n}\right)_{t, t}=c^{2}\left(u_{n}\right)_{x, x}$ with DC the series u satisfies the same PDE also with Dirichlet boundary condition $u(0, t)=u(I, t)=0$.
In the same way we can construct solutions to the PDE with NC. We only have to replace

$$
X_{n}, n \in \mathbb{N} \text { with } \tilde{X}_{n}, n \in \mathbb{N} \cup\{0\}
$$

Moreover u satisfies the following initial condition

$$
\begin{equation*}
u(x, 0)=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} A_{n} \sin \left(\frac{n \pi}{l} x\right)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{l} x\right)=: \phi(x) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{t}(x, 0)=\sum_{n=1}^{\infty} \frac{n \pi c}{l} B_{n} \sin \left(\frac{n \pi}{l} x\right)=: \psi(x) \tag{4}
\end{equation*}
$$

Note that these series are converge uniformily and hence are well-defined because we assumed

$$
\sum_{n=1}^{\infty}\left|A_{n}\right|, \sum_{n=1}^{\infty}\left|B_{n}\right|, \sum_{n=1}^{\infty} \lambda_{n}\left|A_{n}\right|, \sum_{n=1}^{\infty} \lambda_{n}\left|B_{n}\right|, \sum_{n=1}^{\infty} \lambda_{n}^{2}\left|A_{n}\right|, \sum_{n=1}^{\infty} \lambda_{n}^{2}\left|B_{n}\right|<\infty .
$$

Question

What kind of data pairs ϕ, ψ can be expanded as series for coefficients A_{n} and B_{n} as above?
In the same way we can find solutions for the PDE with NC:

$$
u(x, t)=\frac{1}{2}\left(A_{0}+B_{0} t\right)+\sum_{n=1}^{\infty}\left(A_{n} \cos \left(\lambda_{n} c t\right)+B_{n} \sin \left(\lambda_{n} c t\right)\right) \cos \left(\lambda_{n} x\right) .
$$

The initial conditions are $\frac{1}{2} A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\lambda_{n} x\right)$ and $\frac{1}{2} B_{0}+\sum_{n=1}^{\infty} B_{n} \lambda_{n} c \cos \left(\lambda_{n} x\right)$.

Let us consider the analogous problem for diffusion on $[0, l]$:

$$
\begin{array}{ccc}
u_{t} & = & k u_{x, x} \\
u(x, 0) & = & \phi(x) \\
\text { on }(0, I) \times(0, \infty) \\
\text { on }(0, I)
\end{array}
$$

with Dirichlet boundary conditions

$$
u(0, t)=u(I, t)=0 \quad \forall t \in \mathbb{R}
$$

or with Neumann boundary conditions

$$
u_{x}(0, t)=u_{x}(I, t)=0 \quad \forall t \in \mathbb{R}
$$

We can again apply the methode of Separation-of-Variables: We consider a solution of the form

$$
u(x, t)=T(t) X(x)
$$

This leads to

$$
-\frac{T^{\prime}}{k T}=-\frac{X^{\prime \prime}}{X}=\lambda
$$

Again we see easily that λ must be constant and T and X solve

$$
T^{\prime}+\lambda k T=0 \quad \& \quad X^{\prime \prime}+\lambda X=0
$$

The general solution for X is the same as before. In particular, we can have $\lambda_{n}=\left(\frac{n \pi}{l}\right)^{2}$ and the set of solutions $X_{n}(x)=\sin \left(\frac{n \pi}{l} x\right)$. The general solution for T in this case is

$$
T(t)=A e^{-\left(\frac{n \pi}{T}\right)^{2} k t} \text { for } A \in \mathbb{R}
$$

Hence, as before a family of special solutions of the diffuison equation with DC is given by

$$
u_{n}(x, t)=A_{n} e^{-\left(\frac{n \pi}{l}\right)^{2} k t} \underbrace{\sin \left(\frac{n \pi}{l} x\right)}_{=: X_{n}(x)}, n \in \mathbb{N} \text { and } A_{n} \in \mathbb{R}
$$

where X_{n} are as before. Then

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} e^{-\lambda_{n}^{2} k t} \sin \left(\lambda_{n} x\right)
$$

solves the diffusion equation with $D C$ and inital data $u(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin \left(\lambda_{n} x\right)$ provided

$$
\sum_{n=1}^{\infty}\left|A_{n}\right|, \quad \sum_{n=1}^{\infty} \lambda_{n}\left|A_{n}\right|, \quad \sum_{n=1}^{\infty} \lambda_{n}^{2}\left|A_{n}\right|<\infty
$$

$\underset{\sim}{\text { For }} \mathrm{NC}$ we consider $\lambda_{n}=\left(\frac{n \pi}{l}\right)^{2} \underset{\sim}{\text { with }} n \in \mathbb{N} \cup\{0\}$ and the corresponding solutions \tilde{X}_{n} of $\tilde{X}_{n}^{\prime \prime}+\lambda X_{n}=0$. Precisely, we set $\tilde{X}_{n}(x)=\cos \left(\lambda_{n} x\right)$ and $X_{0}(x)=1$.
Again we also have to consider $\lambda_{0}=0$. In particular, for T we also consider the solutions of

$$
T^{\prime}=0 \Leftrightarrow T_{0}(0)=\frac{1}{2} A_{0} \in \mathbb{R}
$$

Then, a family of special solutions of the diffusion equation with NC is given by

$$
u_{n}(x, t)=A_{n} e^{-\left(\frac{n \pi}{1}\right)^{2} k t} \underbrace{\cos \left(\frac{n \pi}{l} x\right)}_{=: \tilde{X}_{n}(x)}, n \in \mathbb{N} \text { and } A_{n} \in \mathbb{R} .
$$

andn $u_{0}(x, t)=\frac{1}{2} A_{0}$.Again

$$
u(x, t)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty} A_{n} e^{-\lambda_{n}^{2} k t} \cos \left(\lambda_{n} x\right)
$$

is a solution to the diffusion equation with $N C$ for the initial data

$$
u(x, 0)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty} A_{n} \cos (\lambda x)
$$

provided

$$
\sum_{n=1}^{\infty}\left|A_{n}\right|, \quad \sum_{n=1}^{\infty} \lambda_{n}\left|A_{n}\right|, \quad \sum_{n=1}^{\infty} \lambda_{n}^{2}\left|A_{n}\right|<\infty
$$

Fourier Series

We encouter the following question

Question

Given a function ϕ on $[0, I]$ can we find a sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ such that

$$
\phi(x)=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} A_{n} \sin \left(\lambda_{n} x\right)=\sum_{n=1}^{\infty} A_{n} \sin \left(\lambda_{n} x\right), x \in[0, I] ?
$$

(where $\lambda_{n}=\left(\frac{n \pi}{l}\right)^{2}$). We call the series on the right hand side the Fourier sine series. Or can we find a sequence $\left(B_{n}\right)_{n \in \mathbb{N}}$ such that

$$
\phi(x)=\frac{1}{2} A_{0}+\lim _{N \rightarrow \infty} \sum_{n=1}^{N} A_{n} \cos \left(\lambda_{n} x\right)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\lambda_{n} x\right), x \in[0, I] ?
$$

We call the series on the right hand side the Fourier cosine series.

How can we determine the coefficients A_{n} ?
We perform the following forma calculations:

$$
\int_{0}^{l} \phi(x) \sin \left(\lambda_{m} x\right) d x=\int_{0}^{l} \sum_{n=1}^{\infty} A_{n} \sin \left(\lambda_{n} x\right) \sin \left(\lambda_{m} x\right) d x=\sum_{n=1}^{\infty} \int_{0}^{l} A_{n} \sin \left(\lambda_{n} x\right) \sin \left(\lambda_{m} x\right) d x
$$

Let consider a single term in the sum on the right hand side:

$$
A_{n} \int_{0}^{l} \sin \left(\lambda_{n} x\right) \sin \left(\lambda_{m} x\right) d x=A_{n} \int_{0}^{l} \frac{1}{2}\left(\cos \left(\left(\lambda_{n}-\lambda_{m}\right) x\right)-\cos \left(\left(\lambda_{n}+\lambda_{m}\right) x\right)\right) d x
$$

Here we used the first of the following identities

$$
\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y), \quad \sin (x+y)=\cos (x) \sin (y)+\sin (x) \cos (y)
$$

The first identity gives

$$
\begin{aligned}
\cos (x+y)-\cos (x-y) & =\cos (x) \cos (y)-\sin (x) \sin (y)-\cos (x) \cos (-y)+\sin (x) \sin (-y) \\
& =-2 \sin (x) \sin (y)
\end{aligned}
$$

Then, if $n \neq m$, we compute

$$
\begin{aligned}
A_{n} \int_{0}^{l} \sin \left(\lambda_{n} x\right) \sin \left(\lambda_{m} x\right) d x & =A_{m} \frac{l}{2 \pi} \int_{0}^{l} \frac{\pi}{l} \cos \left(\frac{(n-m) \pi}{l} x\right)-\cos \left(\frac{(n+m) \pi}{l}\right) d x \\
& =\frac{l}{2 \pi} A_{n} \int_{0}^{\pi}(\cos ((n-m) x)-\cos ((n+m) x)) d x \\
& =\frac{l}{2 \pi} A_{n}\left[\frac{1}{n-m} \sin ((n-m) x)-\frac{1}{n+m} \sin ((n+m)]_{0}^{\pi}=0\right.
\end{aligned}
$$

If $n=m$, then

$$
A_{m} \int_{0}^{l} \sin \left(\lambda_{m} x\right)^{2} d x=A_{m} \frac{l}{2 \pi} \int_{0}^{\pi}[1-\cos (2 m x)] d x=A_{m} \frac{l}{2}-A_{m} \frac{l}{2 \pi}\left[\frac{1}{2 m} \sin (2 m x)\right]_{0}^{\pi}=\frac{l}{2} A_{n}
$$

Hence

$$
\begin{aligned}
\int_{0}^{l} \phi(x) \sin \left(\lambda_{m} x\right) d x & =\int_{0}^{l} \sum_{n=1}^{\infty} A_{n} \sin \left(\lambda_{n} x\right) \sin \left(\lambda_{m} x\right) d x \\
& =\sum_{n=1}^{\infty} A_{n} \int_{0}^{l} \sin \left(\lambda_{n} x\right) \sin \left(\lambda_{m} x\right) d x=\frac{l}{2} A_{m}
\end{aligned}
$$

$$
A_{m}=\frac{2}{l} \int_{0}^{l} \phi(x) \sin \left(\lambda_{m} x\right) d x=\frac{2}{l} \int_{0}^{l} \phi(x) \sin \left(\frac{m \pi}{l} x\right) d x
$$

This is the Fourier sine coefficient for ϕ.

By the same formal calculation we also compute the Fourier cosine coefficient for ϕ.

Precisely:

$$
\begin{aligned}
\int_{0}^{l} \phi(x) \cos \left(\lambda_{m} x\right) d x & =\int_{0}^{l} \sum_{n=1}^{\infty} \tilde{A}_{n} \cos \left(\lambda_{n} x\right) \cos \left(\lambda_{m} x\right) d x \\
& =\sum_{n=1}^{\infty} \tilde{A}_{n} \int_{0}^{l} \cos \left(\lambda_{n} x\right) \cos \left(\lambda_{m} x\right) d x
\end{aligned}
$$

Let us again consider a single term in the sum on the right hand side with $n, m \geq 1$:

$$
\begin{aligned}
\tilde{A}_{n} \int_{0}^{1} \cos \left(\lambda_{n} x\right) \cos \left(\lambda_{m} x\right) d x & =\tilde{A}_{n} \frac{1}{2} \int_{0}^{1} \cos \left(\frac{(n+m) \pi}{l} x\right)+\cos \left(\frac{(n-m) \pi}{l} x\right) d x \\
& =\tilde{A}_{n} \frac{l}{2 \pi} \int_{0}^{\pi} \cos ((n+m) x)+\cos ((n-m) x) d x
\end{aligned}
$$

For $n \neq m$ the right hand side in the last term is

$$
=\tilde{A}_{n} \frac{l}{2 \pi}\left[\frac{1}{n+m} \sin ((n+m) x)+\frac{1}{n-m} \sin ((n-m) x)\right]_{0}^{\pi}=0 .
$$

For $n=m$ we obtain

$$
=\frac{l}{\pi 2} \int_{0}^{\pi}[\cos (2 m x)+1] d x=\frac{l}{2 \pi} \tilde{A}_{m}\left[\frac{1}{2 n} \sin (2 m x)\right]_{0}^{\pi}+\frac{1}{2} \tilde{A}_{m}=\frac{1}{2} \tilde{A}_{m}
$$

A computation yields the same conclusion even when $n=0$ or $m=0$.
We obtain that

$$
\tilde{A}_{0}=\frac{2}{l} \int_{0}^{l} \phi(x) d x, \quad \tilde{A}_{m}=\frac{2}{l} \int_{0}^{l} \phi(x) \cos \left(\lambda_{m} x\right) d x=\frac{2}{l} \int_{0}^{l} \phi(x) \cos \left(\frac{m \pi}{l} x\right) d x
$$

Definition

The Fourier sine series of ϕ is defined

$$
\sum_{n=1}^{\infty}\left[\frac{2}{l} \int_{0}^{l} \phi(x) \sin \left(\frac{n \pi}{l} x\right) d x\right] \sin \left(\frac{n \pi}{l} x\right)=: \mathcal{S}(\phi)
$$

Similar the Fourier cosine series of ϕ is defined

$$
\sum_{n=1}^{\infty}\left[\frac{2}{l} \int_{0}^{l} \phi(x) \cos \left(\frac{n \pi}{l} x\right) d x\right] \cos \left(\frac{n \pi}{l} x\right)=: \mathcal{C}(\phi)
$$

Finally the full Fourier coefficients are (we abuse notation at this point)

$$
\begin{gathered}
B_{m}=\frac{1}{l} \int_{-l}^{l} \phi(x) \cos \left(\frac{m \pi}{l} x\right) d x \\
A_{0}=\frac{1}{l} \int_{-l}^{l} \phi(x) d x, \quad A_{m}=\frac{1}{l} \int_{-l}^{l} \phi(x) \cos \left(\frac{m \pi}{l} x\right) d x
\end{gathered}
$$

Definition

The Fourier series of ϕ is

$$
\frac{1}{2} A_{0}+\sum_{n=1}^{\infty}\left[A_{n} \sin \left(\frac{n \pi}{l} x\right) d x+B_{n} \cos \left(\frac{n \pi}{l} x\right)\right]=\mathcal{F}(\phi)
$$

