MAT351 Partial Differential Equations Lecture 17

November 25, 2020

Orthogonality and General Fourier Series

Consider two continuous functions $f, g:[a, b] \rightarrow \mathbb{R}$ that are square integrable:

$$
\|f\|_{2}^{2}=\int_{a}^{b}|f(x)|^{2} d x, \quad\|g\|_{2}^{2}=\int_{a}^{b}|g(x)|^{2} d x<\infty
$$

We define the inner product between f and g as the integral of their product:

$$
\begin{equation*}
(f, g)=\int_{a}^{b} f(x) g(x) d x \tag{1}
\end{equation*}
$$

The product $g(x) f(x)$ is integrable because of the Cauchy-Schwartz inequality:

$$
\int_{a}^{b}|f(x) g(x)| d x \leq \sqrt{\int_{a}^{b}|f(x)|^{2} d x \int_{a}^{b}|g(x)|^{2} d x}=\|f\|_{2}\|g\|_{2}<\infty .
$$

We say that two square integrable functions f and g are orthogonal if $(f, g)=0$.
Note that a real valued continuous function f is never orthogonal to itself unless $f=0$.
Recall the case of an inner product (v, w) on \mathbb{R}^{n}, for instance $v_{1} w_{1}+\cdots+v_{n} w_{n}$.
The number $\|v\|=\sqrt{(v, v)}$.
A basis v_{1}, \ldots, v_{n} of V is orthonormal if $\left\|v_{i}\right\|=1, i=1, \ldots, n$, and $\left(v_{i}, v_{j}\right)=0, i \neq j$. Then

$$
w=\sum_{i=1}^{n}\left(v_{i}, w\right) v_{i} \text { and }\|w\|^{2}=\sum_{i=1}^{n}\left|\left(v_{i}, w\right)\right|^{2}
$$

For instance, v_{1}, \ldots, v_{n} can be the eigenvectors of a symmetric operator $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

The theory of Fourier series translates this idea to an infinite dimensional context.
Let $[a, b]=[0, I]$. Let us go back to the operator

$$
L f=-\frac{\partial^{2}}{\partial x^{2}} f \text { for } f \in C^{2}([0, /])
$$

We saw that

$$
\sin \left(\frac{n \pi}{l} x\right), n \in \mathbb{N}
$$

was a set of eigenfunctions for the operator L with Dirichlet boundary conditions, and

$$
1, \quad \cos \left(\frac{n \pi}{l} x\right), n \in \mathbb{N}
$$

was a set of eigenfunctions for the same operator with Neumann boundary conditions.
To determine Fourier sine coefficients we computed that

$$
\int_{0}^{l} \sin \left(\frac{n \pi}{l} x\right) \sin \left(\frac{m \pi}{l} x\right) d x=0 \text { for } n \neq m \in \mathbb{N}
$$

Also we can compute that

$$
\int_{0}^{l} \cos \left(\frac{n \pi}{l} x\right) \cdot 1 d x=\int_{0}^{l} \cos \left(\frac{n \pi}{l} x\right) \cos \left(\frac{m \pi}{l} x\right) d x=0 \text { for } n \neq m \in \mathbb{N}
$$

Hence, these eigenvectors are orthogonal w.r.t. (\cdot, \cdot).

General Fourier series

Let us consider two eigenfunctions X_{1} and X_{2} of $L=-\frac{d^{2}}{d x^{2}}$ on $[a, b]$ for eigenvalues $\lambda_{1} \neq \lambda_{2}$. We don't specify boundary conditions yet. We can compute the following

$$
\left(-X_{1}^{\prime} X_{2}+X_{1} X_{2}^{\prime}\right)^{\prime}=-X_{1}^{\prime \prime} X_{2}+X_{1} X_{2}^{\prime \prime}
$$

Integration over $[a, b]$ yields

$$
\begin{aligned}
\int_{a}^{b}\left[-X_{1}^{\prime \prime}(x) X_{2}(x)+X_{1}(x) X_{2}^{\prime \prime}(x)\right] d x & =-X_{1}^{\prime}(x) X_{2}(x)+\left.X_{1}(x) X_{2}^{\prime}(x)\right|_{a} ^{b} \\
& =-X_{1}^{\prime}(b) X_{2}(b)+X_{1}(b) X_{2}^{\prime}(b)+X_{1}^{\prime}(a) X_{2}(a)-X_{1}(a) X_{2}^{\prime}(a)
\end{aligned}
$$

If the right hand side is 0 we have that

$$
0=-\int_{a}^{b} X_{1}^{\prime \prime}(x) X_{2}(x) d x-\int_{a}^{b} X_{1}(x) X_{2}^{\prime \prime}(x) d x=\left(L X_{1}, X_{2}\right)-\left(X_{1}, L X_{2}\right)=\left(\lambda_{1}-\lambda_{2}\right)\left(X_{1}, X_{2}\right)
$$

Since $\lambda_{1} \neq \lambda_{2},\left(X_{1}, X_{2}\right)=0$. Hence X_{1} and X_{2} are othogonal.

Question: When do we have

$$
-X_{1}^{\prime}(b) X_{2}(b)+X_{1}(b) X_{2}^{\prime}(b)+X_{1}^{\prime}(a) X_{2}(a)-X_{1}(a) X_{2}^{\prime}(a)=0 ?
$$

For instance, for Dirichlet or Neumann boundary conditions on $[0, l]=[a, b]$.

But also for periodic boundary conditions: $f \in C^{1}(\mathbb{R})$ satisfies a periodic boundary conditions with period $I>0$ if $f(x+n I)=f(x)$ for all $x \in \mathbb{R}$. Hence

$$
f(a)=f(b) \& f^{\prime}(a)=f^{\prime}(b)
$$

In general, we could consider boundary conditions of the form

$$
\left\{\begin{array}{l}
\alpha_{1} f(a)+\beta_{1} f(b)+\gamma_{1} f^{\prime}(a)+\delta_{1} f^{\prime}(b)=0 \tag{2}\\
\alpha_{2} f(a)+\beta_{2} f(b)+\gamma_{2} f^{\prime}(a)+\delta_{2} f^{\prime}(b)=0
\end{array}\right\}
$$

for 8 independent constants $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}, \delta_{1}, \delta_{2} \in \mathbb{R}$.

Definition

The set of boundary conditions (2) are called symmetric if

$$
f^{\prime}(x) g(x)-\left.f(x) g^{\prime}(x)\right|_{a} ^{b}=f^{\prime}(b) g(b)-f(b) g^{\prime}(b)-f^{\prime}(a) g(a)+f(a) g^{\prime}(a)=0
$$

for any pair of functions that satisfy (2).

Hence, we proved the following theorem.

Theorem

Eigenfunctions of $-\frac{\partial^{2}}{\partial x^{2}}$ with symmetric boundary conditions for eigenvalues $\lambda_{1} \neq \lambda_{2}$ are orthogonal.

By explicite compuations we saw that this is true for L with Dirichlet boundary conditions on $[0, I]$ where the eigenfunctions are $\sin \left(\frac{n \pi}{I} x\right), \quad n \in \mathbb{N}$.

If there are 2 eigenfunctions X_{1} and X_{2} for the same eigenvalue λ, then either $X_{1}=c X_{2}$ for some constant c, or they can be made orthogonal by the Gram-Schmidt orthogonalization procedure.

Considering $L=-\frac{\partial^{2}}{\partial x^{2}}$ with periodic boundary conditions on $[-I, I]$. There are eigenfunctions

$$
\sin \left(\frac{n \pi}{I} x\right), \quad \cos \left(\frac{n \pi}{I} x\right)
$$

for the same eigenvalue $\left(\frac{n \pi}{l}\right)^{2}$ that are orthogonal.
But also any linear combination is again an eigenfunction for the same eigenvalue. In particular

$$
\sin \left(\frac{n \pi}{l} x\right), \quad \cos \left(\frac{n \pi}{l} x\right)+\sin \left(\frac{n \pi}{l} x\right)
$$

But they are not orthogonal.

General Fourier coefficients

If a continuous and integrable function ϕ is given by an infinite converging serie $\sum_{n=1}^{\infty} A_{n} X_{n}$ for eigenfunctions X_{n} of $L=-\frac{\partial^{2}}{\partial x^{2}}$ on $[a, b]$ with symmetric boundary conditions, then the coefficients are determined by the formula

$$
A_{m}=\frac{1}{\left\|X_{m}\right\|_{2}^{2}}\left(X_{m}, \phi\right)=\frac{1}{\int_{a}^{b}\left(X_{m}\right)^{2}(x) d x} \int_{a}^{b} \phi(x) X_{m}(x) d x
$$

Indeed

$$
\left(\phi, X_{m}\right)=\left(\sum_{n=1}^{\infty} A_{n} X_{n}, X_{m}\right)=\sum_{n=1}^{\infty} A_{n}\left(X_{n}, X_{m}\right)=A_{m}\left(X_{m}, X_{m}\right)=A_{m}\left\|X_{m}\right\|_{2}^{2}
$$

For instance, if we consider the set $\sin \left(\frac{n \pi}{l} x\right)$ of eigenfunctions $L=-\frac{\partial^{2}}{\partial x^{2}}$ with Dirichlet boundary conditions, we computed

$$
A_{m}=\frac{1}{\int_{0}^{l}\left(\sin \left(\frac{m \pi}{l} x\right)\right)^{2} d x} \int_{0}^{l} \phi(x) \sin \left(\frac{m \pi}{l} x\right) d x \text { where } \int_{0}^{l}\left(\sin \left(\frac{m \pi}{l} x\right)\right)^{2} d x=\frac{l}{2}
$$

For periodic boundary conditions on $[-l, l]$ the eigenfunctions are $1, \cos \left(\frac{n \pi}{l} x\right), \sin \left(\frac{n \pi}{l} x\right)$ and the Fourier coefficients are

$$
A_{n}=\frac{1}{l} \int_{-l}^{l} \phi(x) \sin \left(\frac{n \pi}{l} x\right), n \in \mathbb{N}, \tilde{A}_{0}=\frac{1}{l} \int \phi(x) d x, \tilde{A}_{n}=\frac{1}{l} \int_{-l}^{l} \phi(x) \cos \left(\frac{n \pi}{l} x\right) d x, n \in \mathbb{N}
$$

Problem/Questions: In which sense does $\sum_{n=1}^{\infty} A_{n} X_{n}$ converge? And why does the second equality hold in the previous equation?

Notions of convergence

Definition (Pointwise and uniform convergence)

We say an infinite series $\sum_{n=1}^{\infty} f_{n}(x)$ converges pointwise to a function f in (a, b) if

$$
\left|f(x)-\sum_{n=1}^{N} f_{n}(x)\right| \rightarrow 0 \text { as } N \rightarrow \infty \text { for all } x \in(a, b)
$$

We say the series converges uniformly to f in $[a, b]$ if

$$
\max _{x \in[a, b]}\left|f(x)-\sum_{n=1}^{N} f_{n}(x)\right| \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty
$$

Note that for the notion of uniform convergence we include a and b.

Definition (Mean square convergence)

The serie $\sum_{n=1}^{\infty} f_{n}(x)$ converges in mean square (or L^{2}) sense to f in (a, b) if

$$
\int_{a}^{b}\left|f(x)-\sum_{n=1}^{N} f_{n}(x)\right|^{2} d x \rightarrow 0 \text { as } N \rightarrow \infty
$$

Remark

We have: uniform convergence \Rightarrow pointwise and mean square convergence.
But in general not the other way.

Example

Consider $f_{n}(x)=(1-x) x^{n-1}$ on $[0,1]$. Then

$$
\sum_{n=1}^{N} f_{n}(x)=\sum_{n=1}^{N}\left(x^{n-1}-x^{n}\right)=1-x^{N} \rightarrow 1 \text { as } N \rightarrow \infty \text { for all } x \in[0,1]
$$

But the convergence is not uniform because

$$
\max _{x \in[0,1]}\left|1-\left(1-x^{N}\right)\right|=1 \quad \text { for all } N \in \mathbb{N}
$$

On the other hand, we still have mean square convergence because

$$
\int_{0}^{1}\left|1-\left(1-x^{N}\right)\right| d x=\int_{0}^{1} x^{2 N} d x=\frac{1}{2 N+1} \rightarrow 0 \text { as } N \rightarrow \infty
$$

