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Orthogonality and General Fourier Series
Consider two continuous functions f , g : [a, b]→ R that are square integrable:

‖f ‖2
2 =

∫ b

a
|f (x)|2dx , ‖g‖2

2 =

∫ b

a
|g(x)|2dx <∞

We define the inner product between f and g as the integral of their product:

(f , g) =

∫ b

a
f (x)g(x)dx (1)

The product g(x)f (x) is integrable because of the Cauchy-Schwartz inequality:

∫ b

a
|f (x)g(x)|dx ≤

√∫ b

a
|f (x)|2dx

∫ b

a
|g(x)|2dx = ‖f ‖2 ‖g‖2 <∞.

We say that two square integrable functions f and g are orthogonal if (f , g) = 0.

Note that a real valued continuous function f is never orthogonal to itself unless f = 0.

Recall the case of an inner product (v ,w) on Rn, for instance v1w1 + · · ·+ vnwn.

The number ‖v‖ =
√

(v , v).

A basis v1, . . . , vn of V is orthonormal if ‖vi‖ = 1, i = 1, . . . , n, and (vi , vj ) = 0, i 6= j . Then

w =
n∑

i=1

(vi ,w)vi and ‖w‖2 =
n∑

i=1

|(vi ,w)|2.

For instance, v1, . . . , vn can be the eigenvectors of a symmetric operator A : Rn → Rn.
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The theory of Fourier series translates this idea to an infinite dimensional context.

Let [a, b] = [0, l ]. Let us go back to the operator

Lf = −
∂2

∂x2
f for f ∈ C2([0, l ]).

We saw that

sin
(nπ

l
x
)
, n ∈ N

was a set of eigenfunctions for the operator L with Dirichlet boundary conditions, and

1, cos
(nπ

l
x
)
, n ∈ N

was a set of eigenfunctions for the same operator with Neumann boundary conditions.

To determine Fourier sine coefficients we computed that∫ l

0
sin
(nπ

l
x
)

sin
(mπ

l
x
)
dx = 0 for n 6= m ∈ N.

Also we can compute that∫ l

0
cos
(nπ

l
x
)
· 1dx =

∫ l

0
cos
(nπ

l
x
)

cos
(mπ

l
x
)
dx = 0 for n 6= m ∈ N.

Hence, these eigenvectors are orthogonal w.r.t. (·, ·).
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General Fourier series
Let us consider two eigenfunctions X1 and X2 of L = − d2

dx2 on [a, b] for eigenvalues λ1 6= λ2.

We don’t specify boundary conditions yet. We can compute the following

(−X ′1X2 + X1X
′
2)′ = −X ′′1 X2 + X1X

′′
2

Integration over [a, b] yields∫ b

a

[
−X ′′1 (x)X2(x) + X1(x)X ′′2 (x)

]
dx = −X ′1(x)X2(x) + X1(x)X ′2(x)

∣∣∣b
a

= −X ′1(b)X2(b) + X1(b)X ′2(b) + X ′1(a)X2(a)− X1(a)X ′2(a).

If the right hand side is 0 we have that

0 = −
∫ b

a
X ′′1 (x)X2(x)dx −

∫ b

a
X1(x)X ′′2 (x)dx = (LX1,X2)− (X1, LX2) = (λ1 − λ2)(X1,X2)

Since λ1 6= λ2, (X1,X2) = 0. Hence X1 and X2 are othogonal.

Question: When do we have

−X ′1(b)X2(b) + X1(b)X ′2(b) + X ′1(a)X2(a)− X1(a)X ′2(a) = 0 ?

For instance, for Dirichlet or Neumann boundary conditions on [0, l ] = [a, b].
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But also for periodic boundary conditions: f ∈ C1(R) satisfies a periodic boundary conditions
with period l > 0 if f (x + nl) = f (x) for all x ∈ R. Hence

f (a) = f (b) & f ′(a) = f ′(b).

In general, we could consider boundary conditions of the form{
α1f (a) + β1f (b) + γ1f ′(a) + δ1f ′(b) = 0

α2f (a) + β2f (b) + γ2f ′(a) + δ2f ′(b) = 0

}
(2)

for 8 independent constants α1, α2, β1, β2, γ1, γ2, δ1, δ2 ∈ R.

Definition

The set of boundary conditions (2) are called symmetric if

f ′(x)g(x)− f (x)g ′(x)
∣∣∣b
a

= f ′(b)g(b)− f (b)g ′(b)− f ′(a)g(a) + f (a)g ′(a) = 0

for any pair of functions that satisfy (2).
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Hence, we proved the following theorem.

Theorem

Eigenfunctions of − ∂2

∂x2 with symmetric boundary conditions for eigenvalues λ1 6= λ2 are
orthogonal.

By explicite compuations we saw that this is true for L with Dirichlet boundary conditions on
[0, l ] where the eigenfunctions are sin

(
nπ
l
x
)
, n ∈ N.

If there are 2 eigenfunctions X1 and X2 for the same eigenvalue λ, then either X1 = cX2 for some
constant c, or they can be made orthogonal by the Gram-Schmidt orthogonalization procedure.

Considering L = − ∂2

∂x2 with periodic boundary conditions on [−l , l ]. There are eigenfunctions

sin
(nπ

l
x
)
, cos

(nπ
l
x
)

for the same eigenvalue
(
nπ
l

)2
that are orthogonal.

But also any linear combination is again an eigenfunction for the same eigenvalue. In particular

sin
(nπ

l
x
)
, cos

(nπ
l
x
)

+ sin
(nπ

l
x
)
.

But they are not orthogonal.
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General Fourier coefficients
If a continuous and integrable function φ is given by an infinite converging serie

∑∞
n=1 AnXn for

eigenfunctions Xn of L = − ∂2

∂x2 on [a, b] with symmetric boundary conditions, then the
coefficients are determined by the formula

Am =
1

‖Xm‖2
2

(Xm, φ) =
1∫ b

a (Xm)2(x)dx

∫ b

a
φ(x)Xm(x)dx .

Indeed

(φ,Xm) =

( ∞∑
n=1

AnXn,Xm

)
=
∞∑
n=1

An(Xn,Xm) = Am(Xm,Xm) = Am ‖Xm‖2
2 .

For instance, if we consider the set sin
(
nπ
l
x
)

of eigenfunctions L = − ∂2

∂x2 with Dirichlet boundary
conditions, we computed

Am =
1∫ l

0

(
sin
(
mπ
l
x
))2

dx

∫ l

0
φ(x) sin

(mπ
l

x
)
dx where

∫ l

0

(
sin
(mπ

l
x
))2

dx =
l

2
.

For periodic boundary conditions on [−l , l ] the eigenfunctions are 1, cos
(
nπ
l
x
)
, sin

(
nπ
l
x
)

and the
Fourier coefficients are

An =
1

l

∫ l

−l
φ(x) sin

(nπ
l
x
)
, n ∈ N, Ã0 =

1

l

∫
φ(x)dx , Ãn =

1

l

∫ l

−l
φ(x) cos

(nπ
l
x
)
dx , n ∈ N.

Problem/Questions: In which sense does
∑∞

n=1 AnXn converge? And why does the second
equality hold in the previous equation?

MAT351 Partial Differential Equations Lecture 17 November 25, 2020 7 / 12



Notions of convergence

Definition (Pointwise and uniform convergence)

We say an infinite series
∑∞

n=1 fn(x) converges pointwise to a function f in (a, b) if∣∣∣∣∣f (x)−
N∑

n=1

fn(x)

∣∣∣∣∣→ 0 as N →∞ for all x ∈ (a, b).

We say the series converges uniformly to f in [a, b] if

max
x∈[a,b]

∣∣∣∣∣f (x)−
N∑

n=1

fn(x)

∣∣∣∣∣→ 0 as N →∞

Note that for the notion of uniform convergence we include a and b.

Definition (Mean square convergence)

The serie
∑∞

n=1 fn(x) converges in mean square (or L2) sense to f in (a, b) if

∫ b

a

∣∣∣∣∣f (x)−
N∑

n=1

fn(x)

∣∣∣∣∣
2

dx → 0 as N →∞.
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Remark

We have: uniform convergence ⇒ pointwise and mean square convergence.

But in general not the other way.

Example

Consider fn(x) = (1− x)xn−1 on [0, 1]. Then

N∑
n=1

fn(x) =
N∑

n=1

(
xn−1 − xn

)
= 1− xN → 1 as N →∞ for all x ∈ [0, 1].

But the convergence is not uniform because

max
x∈[0,1]

∣∣∣1− (1− xN)
∣∣∣ = 1 for all N ∈ N.

On the other hand, we still have mean square convergence because∫ 1

0

∣∣∣1− (1− xN)
∣∣∣ dx =

∫ 1

0
x2Ndx =

1

2N + 1
→ 0 as N →∞.
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