MAT351 Partial Differential Equations Lecture 18

November 25, 2020

Notions of convergence

Definition (Pointwise and uniform convergence)

We say an infinite series $\sum_{n=1}^{\infty} f_{n}(x)$ converges pointwise to a function f in (a, b) if

$$
\left|f(x)-\sum_{n=1}^{N} f_{n}(x)\right| \rightarrow 0 \text { as } N \rightarrow \infty \text { for all } x \in(a, b)
$$

We say the series converges uniformly to f in $[a, b]$ if

$$
\max _{x \in[a, b]}\left|f(x)-\sum_{n=1}^{N} f_{n}(x)\right| \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty
$$

Note that for the notion of uniform convergence we include a and b.

Definition (Mean square convergence)

The serie $\sum_{n=1}^{\infty} f_{n}(x)$ converges in mean square (or L^{2}) sense to f in (a, b) if

$$
\int_{a}^{b}\left|f(x)-\sum_{n=1}^{N} f_{n}(x)\right|^{2} d x \rightarrow 0 \text { as } N \rightarrow \infty
$$

Remark

We have: uniform convergence \Rightarrow pointwise and mean square convergence.
But in general not the other way.

Example

Consider $f_{n}(x)=(1-x) x^{n-1}$ on $[0,1]$. Then

$$
\sum_{n=1}^{N} f_{n}(x)=\sum_{n=1}^{N}\left(x^{n-1}-x^{n}\right)=1-x^{N} \rightarrow 1 \text { as } N \rightarrow \infty \text { for all } x \in[0,1]
$$

But the convergence is not uniform because

$$
\max _{x \in[0,1]}\left|1-\left(1-x^{N}\right)\right|=1 \quad \text { for all } N \in \mathbb{N}
$$

On the other hand, we still have mean square convergence because

$$
\int_{0}^{1}\left|1-\left(1-x^{N}\right)\right| d x=\int_{0}^{1} x^{2 N} d x=\frac{1}{2 N+1} \rightarrow 0 \text { as } N \rightarrow \infty
$$

Consider

$$
\begin{gathered}
f_{n}(x)=\frac{n}{1+n^{2} x^{2}}-\frac{n-1}{1+(n-1)^{2} x^{2}} \text { on }(0, l) \\
\sum_{n=1}^{N} f_{n}(x)=\frac{N}{1+N^{2} x^{2}}=\frac{1}{N\left[\frac{1}{N^{2}}+x^{2}\right]} \rightarrow 0 \text { as } N \rightarrow \infty \text { if } x>0 .
\end{gathered}
$$

So the series converges pointwise to 0 .
On the other hand

$$
\int_{0}^{l} \frac{N^{2}}{\left(1+N^{2} x^{2}\right)^{2}} d x=N \int_{0}^{N /} \frac{1}{\left(1+y^{2}\right)^{2}} d y \rightarrow \infty \text { where } y=N x
$$

because

$$
\int_{0}^{N /} \frac{1}{\left(1+y^{2}\right)^{2}} d y \rightarrow \int_{0}^{\infty} \frac{1}{\left(1+y^{2}\right)^{2}} d y
$$

Hence the series does not converge in mean square sense to 0 .
Also it does not converge uniformily because

$$
\max _{x \in(0, l)} \frac{N}{1+N^{2} x^{2}}=N \rightarrow \infty
$$

Recall we have an inner product

$$
(f, g)=\int_{a}^{b} f(x) g(x) d x \text { for } f, g \in C^{0}([a, b])
$$

and a norm given by $\|f\|_{2}=\sqrt{(f, f)}$. Convergence of $\sum_{n=1}^{N} f_{n}(x)$ to $f(x)$ in L^{2} sense means that

$$
\left\|f-\sum_{n=1}^{N} f_{n}\right\|_{2}^{2} \rightarrow 0
$$

that is convergence w.r.t. the norm $\|\cdot\|_{2}$.

Theorem (Least Square Approximation)

Let $X_{n}, n \in \mathbb{N}$, be a set of eigenfunctions for the operator $-\frac{\partial^{2}}{\partial x^{2}}$ on $[a, b]$ with symmetric boundary condition. In particular, we have

$$
\left(X_{n}, X_{m}\right)=\int_{a}^{b} X_{n}(x) X_{m}(x) d x=0
$$

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and hence $\|f\|_{2}<\infty$ and let $N \in \mathbb{N}$ be fixed. Among all possible choices of N constants $c_{1}, c_{2}, \ldots, c_{N} \in \mathbb{R}$ the choice that minimizes

$$
E_{N}:=E_{N}\left(c_{1}, \ldots, c_{N}\right):=\left\|f-\sum_{n=1}^{N} c_{n} X_{n}\right\|_{2}^{2}=\int_{a}^{b}\left(f(x)-\sum_{n=1}^{N} c_{n} X_{n}(x)\right)^{2} d x
$$

is $c_{1}=A_{1}, \ldots, c_{N}=A_{N}$ where $A_{n}=\frac{1}{\left\|X_{n}\right\|_{2}^{2}}\left(f, X_{n}\right)$.

Proof

We expand E_{N} :

$$
\begin{aligned}
E_{N} & =\int_{a}^{b}\left(f(x)-\sum_{n=1}^{N} c_{n} X_{n}(x)\right)^{2} d x \\
& =\int_{a}^{b}|f(x)|^{2} d x-2 \sum_{n=1}^{N} c_{n} \int_{a}^{b} f(x) X_{n}(x) d x+\sum_{n, m=1}^{N} c_{n} c_{m} \int_{a}^{b} X_{n}(x) X_{m}(x) d x
\end{aligned}
$$

By orthogonality of the eigenfunctions the last term reduces to $\sum_{n=1}^{N} c_{n}^{2} \int_{a}^{b}\left|X_{n}(x)\right|^{2} d x$. Hence

$$
\begin{aligned}
0 \leq E_{N} & =\|f\|_{2}^{2}-\sum_{n=1}^{N} \frac{\left(f, X_{n}\right)^{2}}{\left\|X_{n}\right\|_{2}^{2}}+\sum_{n=1}^{N} \frac{\left(f, X_{n}\right)^{2}}{\left\|X_{n}\right\|_{2}^{2}}-2 \sum_{n=1}^{N} c_{n}\left(f, X_{n}\right)+\sum_{n=1}^{N} c_{n}^{2}\left\|X_{n}\right\|_{2}^{2} \\
& =\|f\|_{2}^{2}-\sum_{n=1}^{N} \frac{\left(f, X_{n}\right)^{2}}{\left\|X_{n}\right\|_{2}^{2}}+\sum_{n=1}^{N}\left\|X_{n}\right\|_{2}^{2}\left(\frac{\left(f, X_{n}\right)^{2}}{\left\|X_{n}\right\|_{2}^{4}}-2 c_{n} \frac{\left(f, X_{n}\right)}{\left\|X_{n}\right\|_{2}^{2}}+c_{n}^{2}\right) \\
& =\|f\|_{2}^{2}-\sum_{n=1}^{N} \frac{\left(f, X_{n}\right)^{2}}{\left\|X_{n}\right\|_{2}^{2}}+\sum_{n=1}^{N}\left\|X_{n}\right\|_{2}^{2}\left(\frac{\left(f, X_{n}\right)}{\left\|X_{n}\right\|_{2}^{2}}-c_{n}\right)^{2}
\end{aligned}
$$

The coefficients appear only in one place and we see that the right hand side is minimal if

$$
c_{n}=\frac{1}{\left\|X_{n}\right\|_{2}^{2}}\left(f, X_{n}\right)=A_{n} .
$$

Corollary (Bessel's Inequality)

$$
\sum_{n=1}^{N} \frac{\left(f, X_{n}\right)^{2}}{\left\|X_{n}\right\|_{2}^{2}}=\sum_{n=1}^{N} A_{n}^{2}\left\|X_{n}\right\|^{2} \leq\|f\|_{2}^{2}
$$

In particular, if $\|f\|_{2}^{2}=\int_{a}^{b}|f(x)|^{2} d x$ is finite then the series

$$
\sum_{n=1}^{\infty} A_{n}^{2}\left\|X_{n}\right\|^{2}=\sum_{n=1}^{\infty} A_{n} \int_{a}^{b}\left|X_{n}(x)\right|^{2} d x \text { converges absolutely } .
$$

By the theorem we have for any collection $c_{1}, \ldots, c_{N} \in \mathbb{R}$:

$$
\left\|f-\sum_{n=1}^{N} A_{n} x_{n}\right\|_{2}=E_{N}\left(A_{1}, \ldots, A_{N}\right) \leq E_{N}\left(c_{1}, \ldots, c_{N}\right)
$$

If we can find a sequence of finite linear combinations

$$
g_{i}=\sum_{n=1}^{N_{i}} c_{n}^{i} X_{n} \text { with } N_{i} \rightarrow \infty \text { for } i \rightarrow \infty
$$

such that $g_{i} \rightarrow f$ in L^{2} sense, that is $\left\|g_{i}-f\right\|=E_{N}\left(c_{1}^{i}, \ldots, c_{N_{i}}^{i}\right) \rightarrow 0$, then

$$
\sum_{n=1}^{N} A_{n} X_{n} \rightarrow f \text { in } L^{2} \text { sense, and } \quad \sum_{n=1}^{\infty} \frac{\left(f, X_{n}\right)^{2}}{\left\|X_{n}\right\|_{2}^{2}}=\sum_{n=1}^{\infty} A_{n}^{2}\left\|X_{n}\right\|_{2}^{2}=\|f\|_{2}^{2}
$$

We say eigenfunctions $X_{n}, n \in \mathbb{N}$, are complete if this holds for every function $f \in C^{0}([a, b])$.

Pointwise convergence

We will prove pointwise convergence of the full Fourier series on $[-I, I]=[-\pi, \pi]$.
That is we consider the set of eigenfunctions $\sin (n x), 1, \cos (n x)$ with periodic boundary condition on $[-\pi, \pi]$, that is the functions are periodic with period $2 \pi: X_{n}(x)=X_{n}(x+2 \pi)$ for all $x \in \mathbb{R}$. Given $\phi \in C^{0}(\mathbb{R})$ that is periodic with period 2π, its full Fourier serie is

$$
\frac{1}{2} \tilde{A}_{0}+\sum_{n=1}^{\infty}\left(\tilde{A}_{n} \cos (n x)+A_{n} \sin (n x)\right), x \in[-\pi, \pi]
$$

with Fourier coefficients

$$
A_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} \phi(x) \sin (n x) d x, \tilde{A}_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} \phi(x) d x, \tilde{A}_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} \phi(x) \cos (n x) d x, n \in \mathbb{N} .
$$

We denote

$$
S_{N}(x)=\frac{1}{2} \tilde{A}_{0}+\sum_{n=1}^{N}\left(\tilde{A}_{n} \cos (n x)+A_{n} \sin (n x)\right), x \in[-\pi, \pi], N \in \mathbb{N}
$$

the N th partial sum. We can rewrite this as

$$
S_{N}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left[1+2 \sum_{n=1}^{N}(\cos (n y) \cos (n x)+\sin (n y) \sin (n x))\right] \phi(y) d y
$$

This simplifies as

$$
S_{N}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \underbrace{\left[1+2 \sum_{n=1}^{N} \cos (n(x-y))\right]}_{=: K_{N}(x-y)} \phi(y) d y
$$

Lemma

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{N}(\theta) d \theta=1 \quad \text { and } \quad K_{N}(\theta)=1+2 \sum_{n=1}^{N} \cos (n \theta)=\frac{\sin \left[\left(N+\frac{1}{2}\right) \theta\right]}{\sin \left(\frac{1}{2} \theta\right)}
$$

Proof of the Lemma.

$$
\int_{-\pi}^{\pi} K_{N}(\theta) d \theta=\frac{1}{2 \pi} \int_{-\pi}^{\pi} 1 d \theta+\sum_{n=1}^{N} \frac{1}{2 \pi} \int_{-\pi}^{\pi} \cos (n \theta) d \theta=1
$$

This proves the first claim.

$$
1+2 \sum_{n=1}^{N} \cos (n \theta)=1+\sum_{n=1}^{N}\left(e^{i n \theta}+e^{-i n \theta}\right)=\sum_{n=-N}^{N} e^{i N \theta} .
$$

Now consider for some $x \in \mathbb{C}$
$\left(x^{-N}+x^{-(N-1)}+\cdots+1+\cdots+x^{N-1}+x^{N}\right)(1-x)=x^{-N}+\ldots x^{N}-\left(x^{-(N-1)}+\ldots x^{N+1}\right)$.
Hence

$$
x^{-N}+\cdots+x^{N}=\frac{x^{-N}-x^{N+1}}{1-x}=\frac{x^{-N-\frac{1}{2}}-x^{N+\frac{1}{2}}}{x^{\frac{1}{2}}-x^{\frac{1}{2}}} .
$$

If we set $x=e^{i}$, it follows $K_{N}(\theta)=\frac{e^{i\left(N+\frac{1}{2}\right) \theta}-e^{-i\left(N+\frac{1}{2}\right) \theta}}{e^{i \frac{1}{2} \theta}-e^{-i \frac{1}{2} \theta}}=\frac{\sin \left(\left(N+\frac{1}{2}\right) \theta\right)}{\sin \left(\frac{1}{2} \theta\right)}$.

Theorem

If $\phi \in C^{0}(\mathbb{R})$ with periodic boundary condition with period 2π, that is $\phi(x+2 \pi)=\phi(x)$ for all $x \in \mathbb{R}$ and if ϕ is differentiable (not necessarily $\phi \in C^{1}(\mathbb{R})$) then

$$
\frac{1}{2} \tilde{A}_{0}+\sum_{n=1}^{\infty}\left(A_{n} \sin (n x)+\tilde{A}_{n} \cos (n x)\right)=\phi(x) \text { for all } x \in \mathbb{R}
$$

Proof of pointwise convergence.
We want to show that $S_{N}(x) \rightarrow \phi(x)$ for all $x \in \mathbb{R}$. We write

$$
\begin{aligned}
& S_{N}(x)-\phi(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{N}(y-x)(\phi(y)-\phi(x)) d y \\
& \quad=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sin \left(\left(N+\frac{1}{2}\right)(y-x)\right) \frac{\phi(y)-\phi(x)}{\sin \left(\frac{1}{2}(y-x)\right)} d y \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \underbrace{\sin \left(\left(N+\frac{1}{2}\right) \theta\right)}_{=Y_{n}(\theta)} \underbrace{\frac{\phi(x+\theta)-\phi(x)}{\sin \left(\frac{1}{2} \theta\right)} d \theta}_{=g(\theta)}
\end{aligned}
$$

The functions $Y_{n}, n \in \mathbb{N}$, are eigenfunction for $-\frac{\partial^{2}}{\partial x^{2}}$ on $[0, \pi]$ with mixed boundary conditions $Y_{n}(0)=0$ and $\frac{d}{d \theta} Y_{n}(\pi)=0$.

Mixed boundary conditions are symmetric. Hence, Y_{n} are orthogonal w.r.t. (\cdot, \cdot) on $[0, \pi]$:

$$
\int_{0}^{\pi} Y_{n}(\theta) Y_{m}(\theta) d \theta=0, \quad \int_{0}^{\pi}\left(Y_{n}(\theta)\right)^{2} d \theta=\frac{\pi}{2}
$$

Since $Y(-\theta)=-Y(\theta)$, they are also orthogonal on $[-\pi, \pi]$:

$$
\int_{-\pi}^{\pi} Y_{n}(\theta) Y_{m}(\theta) d \theta=0, \quad \int_{-\pi}^{\pi}\left(Y_{n}(\theta)\right)^{2} d \theta=\pi
$$

Therefore

$$
S_{N}(x)-\phi(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} Y_{n}(\theta) g(\theta) d \theta=\frac{1}{2} C_{n} \text { for } g(\theta)=\frac{\phi(x+\theta)-\phi(x)}{\sin \left(\frac{1}{2} \theta\right)}
$$

C_{n} in fact the Fourier coefficient of g w.r.t. the set of orthogonal eigenfunctions Y_{n} on $[-\pi, \pi]$. If we can show that $\int_{-\pi}^{\pi}|g(\theta)|^{2} d \theta=\|g\|_{2}^{2}<\infty$, then by the Bessel inequality the serie

$$
0 \leq \sum_{n=1}^{\infty} C_{n}^{2} \underbrace{\left\|Y_{n}\right\|}_{=\pi} \leq\|g\|_{2}^{2}<\infty
$$

converges and hence $C_{n} \rightarrow 0$. The claim is true, if g is continuous on $[-\pi, \pi]$. For that we only need continuity at $\theta=0$ of

$$
g(\theta)=\frac{\phi(x+\theta)-\phi(x)}{\sin \left(\frac{1}{2} \theta\right)}=\frac{\phi(x+\theta)-\phi(x)}{\theta} \frac{\theta}{\sin \left(\frac{1}{2} \theta\right)} \rightarrow 2 \phi^{\prime}(\theta)
$$

Theorem

The full Fourier serie of $\phi \in C^{1}(\mathbb{R})$ periodic converges uniformily on $[-\pi, \pi]$.
Proof of uniform convergence.
Since we assume $\phi \in C^{1}(\mathbb{R})$ with periodic boundary condition, the function ϕ^{\prime} is continuous and periodic. Hence, the full Fourier coefficients A_{n}^{\prime} and \tilde{A}_{n}^{\prime} of ϕ are defined. By integration by parts

$$
A_{n}=\int_{-\pi}^{\pi} \phi(x) \sin (n x) d x=-\left.\frac{1}{n} \phi(x) \cos (n x)\right|_{-\pi} ^{\pi}+\frac{1}{n} \int_{-\pi}^{\pi} f^{\prime}(x) \cos (n x) d x=\frac{1}{n} \tilde{A}_{n}^{\prime}
$$

Similar $\tilde{A}_{n}=-\frac{1}{n} A_{n}^{\prime}$.
On the other hand we know that $\|\phi\|_{2},\left\|\phi^{\prime}\right\|_{2}<\infty$ because ϕ and ϕ^{\prime} are continuous functions on $[-\pi, \pi]$. In particular

$$
\sum_{n=1}^{\infty}\left(\left|A_{n}^{\prime}\right|^{2}+\left|\tilde{A}_{n}^{\prime}\right|^{2}\right)<\infty
$$

It follows that

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(\left|A_{n}\right|+\left|\tilde{A}_{n}\right|\right) & =\sum_{n=1}^{\infty} \frac{1}{n}\left|A_{n}^{\prime}\right|+\sum_{n=1}^{\infty} \frac{1}{n}\left|\tilde{A}_{n}^{\prime}\right| \\
(\text { Cauchy-Schwartz) } & \leq \sqrt{\sum_{n=1}^{\infty} \frac{1}{n^{2}}} \sqrt{\sum_{n=1}^{\infty}\left(\left|A_{n}^{\prime}\right|+\left|\tilde{A}_{n}^{\prime}\right|\right)^{2}} \\
(a+b)^{2} \leq 2 a^{2}+2 b^{2} & \leq \sqrt{\sum_{n=1}^{\infty} \frac{1}{n^{2}}} \sqrt{\sum_{n=1}^{\infty} 2\left(\left|A_{n}^{\prime}\right|^{2}+\left|\tilde{A}_{n}^{\prime}\right|^{2}\right)}
\end{aligned}
$$

Hence
$\max _{x \in[-\pi, \pi]}\left|f(x)-S_{N}(x)\right| \leq \sum_{n=N+1}^{\infty}\left|A_{n} \cos (n x)+\tilde{A}_{n} \sin (n x)\right| \leq \sum_{n=N+1}^{\infty}\left|A_{n}\right|+\left|\tilde{A}_{n}\right| \rightarrow 0$ as $N \rightarrow \infty$.

In fact the following stronger theorems is true

Theorem

For every $f \in C^{0}(\mathbb{R})$ with periodic boundary conditions and period π its full Fourier serie converges uniformily to f on $[-\pi, \pi]$.

