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Notions of convergence

Definition (Pointwise and uniform convergence)

We say an infinite series 2, f;(x) converges pointwise to a function f in (a, b) if

N

F(x) =D falx)

n=1

— 0 as N — oo for all x € (a, b).

We say the series converges uniformly to f in [a, b] if

N

F(x) =D fa(x)

n=1

max —0 as N—

x€[a,b]

Note that for the notion of uniform convergence we include a and b.

Definition (Mean square convergence)

The serie Y22, f,(x) converges in mean square (or L?) sense to f in (a, b) if

/ab

w 2
f(X)—an(X) dx -0 as N — oo.

n=1
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Remark
We have: uniform convergence = pointwise and mean square convergence.

But in general not the other way.

v
Example
Consider f,(x) = (1 — x)x"~! on [0,1]. Then
N N
an(x):Z(x"’l —x") =1-xN—1as N— oo forall x € [0,1].
n=1 n=1
But the convergence is not uniform because
max ‘1 -1 —XN)’ =1 forall NeN.
x€[0,1]
On the other hand, we still have mean square convergence because
1 1 1
/ ‘1—(1—XN)‘dXI/ xNdx = ——— 5 0as N — oo.
8 Q 2N +1 )
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Consider

n n—1
f; = - 0,/
() = e 1+ (n—1)2x2 on (0,1)
N
N 1
an(x): 55 = —0 as N — oo if x > 0.
n=1 14 N2x N[# +X2]

So the series converges pointwise to 0.
On the other hand

/ N2 NI 1
— _dx=N[ —dy— here y = N,
A (1+N2X2)2 X A (1+y2)2 y OO where y X

because

NI 1 oo 1
——=dy — / —=d
/o 22 Y 7 @y
Hence the series does not converge in mean square sense to 0.

Also it does not converge uniformily because

max ———— =N —
x€(0,) 1 4+ N2x2
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Recall we have an inner product
b
(F.) = [ F(0(d for f.g € C(la, )
a

and a norm given by [|f||, = /(f, ). Convergence of Z,’Y:l fa(x) to f(x) in L? sense means that

N 2
fF=> fl| =0
n=1 2
that is convergence w.r.t. the norm ||-[|,.
Theorem (Least Square Approximation)
n q 2 g 2
Let X,, n € N, be a set of eigenfunctions for the operator —% on [a, b] with symmetric

boundary condition. In particular, we have
b
(Xngxm) = / Xn(X)Xm(X)dX = 0
a

Let f : [a, b] = R be continuous and hence ||f||, < oo and let N € N be fixed.

Among all possible choices of N constants ci, ¢, ...,cy € R the choice that minimizes
N 2 b N 2
En = En(c1,. ., cn) = ||f =Y caXal = / <f(x) = Ech,,(x)> dx
n=1 2 & n=1
isc; = A1,...,cy = Ay where A, = ﬁ(f7 Xn).
nlla

v
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Proof
We expand Ey:

b N 2
Ey = / <f(x) - Zc,,X,,(X))

/ |f(X)|2dX*2ZCn/ F(x)Xn(x)dx + Z cncm/ X (x) X (x)dx.

n,m=1
By orthogonality of the eigenfunctions the last term reduces to c? f | Xn(x)|?dx. Hence
> - (F X0)? (. Xn)?
OSEN:Hsz*Z 3 +Z —2ch(f X,,)+Zc,,|\X,,||2
= 1%l 1Xn13 =1
(f, Xn)? (F, Xn)? (£, X))
= Ifll3 - + D 1Xll3 —2¢n +c
Z IIXnH2 ,,2_: [1Xnl13 IXall3 "
(F, Xn) (F, Xa) 2
= Ifll5 - ") + [1Xal13 < T = Cn)
Z 1Xl13 2; 1Xl13
The coefficients appear only in one place and we see that the right hand side is minimal if
ch = (f, Xn) = An.
||Xn||2

O
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Corollary (Bessel's Inequality)

f, X
2‘ S a2 xR < 1.
EAE

n=1

In particular, if ||f||§ = fab |f(x)|?dx is finite then the series

=) oo b
ZA% 1% = ZA"/ |Xa(x)|?dx converges absolutely.
a

By the theorem we have for any collection c1,...,cy € R:

N
f—> AnX,
n=1 2

If we can find a sequence of finite linear combinations

= EN(Al,. . .,AN) < EN(Cl,. ‘.,CN)

Ni
g;:Zc,’;Xn with N; — oo for i — oo
n=1
such that g; — f in L2 sense, that is ||g; — || = En(ci, ..., c;'\,f) — 0, then

f, Xn)
ZAanf.n 12 sense, and Z(Hxﬁ =S R X = 12
ni2 n=1

We say eigenfunctions X,,, n € N, are complete if this holds for every function f € C([a, b]).
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Pointwise convergence
We will prove pointwise convergence of the full Fourier series on [/, /] = [—=, x].

That is we consider the set of eigenfunctions sin(nx), 1, cos(nx) with periodic boundary condition
on [—m,x], that is the functions are periodic with period 27: Xp(x) = Xa(x + 27) for all x € R.
Given ¢ € CO(R) that is periodic with period 2, its full Fourier serie is

1. /s
EAO + Z (An cos(nx) + An sin(nx)) , X € [—m, 7]
n=1
with Fourier coefficients
1 (/" ~ 1 /" ~ 1 /7
An = f/ P(x) sin(nx)dx, Ay = 7/ o(x)dx, An = 7/ @(x) cos(nx)dx, n € N.
TJ_x ™) _x ) _x
We denote

N
1~ ~
Sn(x) = EAO + E (A,, cos(nx) + An sin(nx)) , X € [-m,7], NeN
n=1

the Nth partial sum. We can rewrite this as

- N
Sn(x) = % [ 1+2 Z (cos(ny) cos(nx) + sin(ny) sin(nx))] o(y)dy
This simplifies as
1 v
Su(x) = 5 /7
=:Ky(x—y)

n=1
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n=1




Lemma

sin [(N + %)6] .

N
1 Xy
— Kn(6)do =1 d Kn(d) =1 25 0) =
27r/,,r w(®) an w(®) + cos(n6) sin(%&)

n=1

Proof of the Lemma.

N
/4 Ky (0)do = g/,ﬂ 1d0+;§[ﬂ cos(nf)d = 1.

This proves the first claim.

N

N N
1+ 22(;05(”9) =1+ Z (eine + e—in9>: Z eiNG-
n=1 n=1 n=—N
Now consider for some x € C

(X_N+X_(N_1)+~~~+1+~~~+XN_1+XN)(1—X):X_N+...XN— (X_(N_1)+.,.XN+1).

Hence

i(N+1)e _ —i(N+1)e in((N + %
. e 2 e 2 sin —+ 2)9)
If we set x = €, it follows Ky (0) = T, —1; = — T

e'2? —e7'2 sin(56)
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Theorem

If ¢ € CO(R) with periodic boundary condition with period 27, that is ¢(x + 2m) = ¢(x) for all
x € R and if ¢ is differentiable (not necessarily ¢ € C1(R)) then

7A0 + E (A,, sin(nx) + A, cos(nx)) = ¢(x) for all x € R.
n=1

Proof of pointwise convergence.
We want to show that Sy(x) — ¢(x) for all x € R. We write

Su) = 60) = - [ Kuly = x) (9ly) - () dy

27

— 5 [ s+ 0 - x)>7sm((y ’(y o0 ))) y

_ 1 ¢(x+6) — ¢(x)
_—/ sin(( N—l—2 0) ——— = sm( ) do

O =(6)

82

The functions Y,, n € N, are eigenfunction for 32

Yn(0) =0 and -5 Yn(7r) =0.

on [0, w] with mixed boundary conditions
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Mixed boundary conditions are symmetric. Hence, Y, are orthogonal w.r.t. (-,-) on [0, 7]:
v us T
[ va@Yaio)do =0, ["(vio)pao = 2.
0 0
Since Y(—0) = —Y(0), they are also orthogonal on [—m, 7]

/ﬂ Y,(8) Ym(6)do = 0, /ﬂ (Yn(0))?d6 = .

Therefore

Su(x) = 6) = - [ Vl0)g(0)d0 = 3., for g(0) = W
» 2

27

Cn in fact the Fourier coefficient of g w.r.t. the set of orthogonal eigenfunctions Y}, on [—m, ].

If we can show that [™_|g(6)|2d6 = llgll? < oo, then by the Bessel inequality the serie

2 2
ColIYall < llgllz < o0
——

=7

8

0<

I
-

n

converges and hence C, — 0. The claim is true, if g is continuous on [—, 7]. For that we only
need continuity at § = 0 of

p(x+6) —d(x) _ o(x+0)—9(x) ¢ /
sin(k) 0 anZoy 200

g(0) =

O
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The full Fourier serie of ¢ € C1(R) periodic converges uniformily on [—m,7].

Theorem J

Proof of uniform convergence.

Since we assume ¢ € C!(R) with periodic boundary condition, the function ¢’ is continuous and
periodic. Hence, the full Fourier coefficients A}, and A/, of ¢ are defined. By integration by parts

An

/_T; o(x) sin(nx)dx = —%qb(x) cos(nx)[7r + % /_7; f'(x) cos(nx)dx = %;42

S A — 1
Similar A, = —EAf,.
On the other hand we know that ||¢]|,,||¢'||, < co because ¢ and ¢’ are continuous functions on
[, 7]. In particular

[e'S]

> (142 + 1A,2) < o

n=1
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It follows that

i(\Anl-i—IAn)

n=1

=1
Z;A’H—Z |A’

(Cauchy-Schwartz)

IN

n=1
(oo}

1

(a+b)> <22 +26° <, |> =
n=1

Hence

oo

x€l=m, n=N+1

[e'e) 1 [e'e] . >
S0 (14 + 144))
n n=1

© ~
a2 (1402 + 1A, )
n=1

oo

max _ | (x) = Sn(x)| < Z |An cos(nx) + A, sin(nx)| < Z |An| +|As| = 0as N — occ.

n=N+1

O
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In fact the following stronger theorems is true

Theorem

For every f € CO(R) with periodic boundary conditions and period 7 its full Fourier serie
converges uniformily to f on [—m,7].
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