MAT351 Partial Differential Equations Lecture 19

November 30, 2020

Last Lecture

Theorem

Let $f \in C^{1}(\mathbb{R})$ be periodic with period 2π.
Then the full Fourier serie of f

$$
\frac{1}{2} \tilde{A}_{0}+\sum_{n=1}^{\infty}\left[A_{n} \sin (n x)+\tilde{A}_{n} \cos (n x)\right]
$$

converges on $[-\pi, \pi]$ uniformily to f. Recall that the coefficients are given by

$$
A_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x, \tilde{A}_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x, \tilde{A}_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x
$$

We also showed that

$$
\frac{1}{2}\left|\tilde{A}_{0}\right|+\sum_{n=1}^{\infty}\left(\left|A_{n}\right|+\left|\tilde{A}_{n}\right|\right)
$$

Note that

$$
A_{n}=\frac{1}{\left\|X_{n}\right\|^{2}}\left(f, X_{n}\right), \quad \tilde{A}_{n}=\frac{1}{\left\|\tilde{X}_{n}\right\|^{2}}\left(f, \tilde{X}_{n}\right) \quad \text { for } n \in \mathbb{N}
$$

where $X_{n}(x)=\sin (n x), \tilde{X}_{n}(x)=\cos (n x)$ and $(f, g)=\int_{-\pi}^{\pi} f(x) g(x) d x$ for $f, g \in C^{0}(\mathbb{R})$ periodic.

Fourier sine and cosine serie

Consider $f \in C^{1}([0, \pi])$ with Dirichlet boundary conditions: $f(0)=f(\pi)=0$.
Let $f_{\text {odd }}$ be the odd periodic extension of f to \mathbb{R}. Then $f_{\text {odd }} \in C^{1}(\mathbb{R})$ because

$$
\lim _{h \downarrow} \frac{f(h)-f(0)}{h}=\lim _{h \downarrow 0} \frac{f(h)}{h}=\lim _{h \downarrow 0} \frac{-f(h)}{-h}=\lim _{h \uparrow 0} \frac{f_{\text {odd }}(h)}{h} .
$$

We know that the full Fourier series of $f_{\text {odd }}$ has the form

$$
\sum_{n=1}^{\infty} A_{n} \sin (n x)=\mathcal{F}(f)
$$

and converges uniformily on $[-\pi, \pi]$ to $f_{\text {odd }}$.
Recall that
$\frac{1}{\pi} \int_{-\pi}^{\pi} f_{\text {odd }}(x) \sin (n x) d x=\frac{1}{\pi} \int_{-\pi}^{0} \underbrace{f_{\text {odd }}(x)}_{-f(-x)} \sin (n x) d x+\frac{1}{\pi} \int_{0}^{\pi} f(x) \sin (n x) d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (n x) d x$
Hence $A_{n}=A_{n}^{\text {sin }}$ where $A_{n}^{\text {sin }}$ is the Fourier sine coefficient.
Therefore, the full Fourier series $\mathcal{F}\left(f_{\text {odd }}\right)$ coincides with the Fourier sine series $\mathcal{S}(f)$ of f on $[0, \pi]$ and we have the following

Corollary

Let $f \in C^{1}([0, \pi])$ with $f(0)=f(\pi)=0$.
Then, the Fourier sine series converges uniformily to f on $[0, \pi]$.

For $f \in C^{1}([0, \pi])$ with Neumann boundary conditions $\left(f^{\prime}(0)=f^{\prime}(\pi)=0\right)$ we consider the even periodic extension $f_{\text {even }}$.
Then agan $f_{\text {even }} \in C^{1}(\mathbb{R})$, the full Fourier serie converges uniformily to f and $\tilde{A}_{n}=A_{n}^{\text {cos }}$ where $A_{n}^{\text {cos }}$ are the coefficients of the Fourier cosine series.
We obtain

Corollary

For $f \in C^{1}([0, \pi])$ with Neumann boundary conditions, the Fourier cosine series of f converges uniformily to f on $[0, \pi]$.

Recall that more generally one has

Theorem

Let $f \in C^{0}(\mathbb{R})$ be periodic with period 2π.
Then the full Fourier serie of f converges uniformily on $[-\pi, \pi]$ to f.

Corollary

Let $f \in C^{0}([0, \pi])$ with $f(0)=f(\pi)=0$. Then, the Fourier sine series converges uniformily to f on $[0, \pi]$.
For $f \in C^{1}([0, \pi])$ with Neumann boundary conditions, the Fourier cosine series of f converges uniformily to f on $[0, \pi]$.

Application: Heat equation with Dirichlet boundary conditions on $[0, \pi]$

Let $f \in C^{1}([0, \pi])$ with Dirichlet boundary conditions and let $f_{\text {odd }}$ be the odd periodic extenstion. Then f has an expansion as Fourier sine serie:

$$
\sum_{n=1}^{\infty} A_{n} \sin (n x)=f(x)
$$

Theorem

The series

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} e^{-k n^{2} t} \sin (n x)
$$

converges uniformily on $[0, \pi] \times[0, \infty)$.
We have $u \in C^{2}([0, \pi] \times(0, \infty)) \cap C^{0}([0, \pi] \times[0, \infty))$ and u solves

$$
\begin{aligned}
u_{t} & =k u_{x, x} \quad \text { on }[0, \pi] \times(0, \infty) \\
u(x, 0) & =f(x) \quad \text { on }[0, \pi] \\
u(0, t) & =0 \text { and } u(\pi, t)=0 \forall t>0 .
\end{aligned}
$$

Proof of the theorem

First, we have for $N, M \in \mathbb{N}$ and $M>N$

$$
\begin{aligned}
& \max _{(x, t) \in[0, \pi] \times[0, \infty)}\left|\sum_{n=1}^{M} A_{n} e^{-k t n^{2}} \sin (n x)-\sum_{n=1}^{N} A_{n} e^{-k n^{2} t} \sin (n x)\right| \\
& =\max _{(x, t) \in[0, \pi] \times[0, \infty)}\left|\sum_{n=N+1}^{M} A_{n} e^{-k n^{2} t} \sin (n x)\right| \\
& \leq \sum_{n=N+1}^{M}\left|A_{n}\right| e^{-k n^{2} t}|\sin (n x)| \rightarrow 0 .
\end{aligned}
$$

We use that $\sum_{n=1}^{\infty}\left|A_{n}\right|<\infty$ is finite, what was part of the proof of uniform convergence of the Fourier serie for $f \in C^{1}(\mathbb{R})$ periodic.
Therefore, the partial sums $\sum_{n=1}^{N} A_{n} e^{-k n^{2} t} \sin (n x)$ are a Cauchy sequence w.r.t. to uniform convergence, and hence, the uniform limit

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} e^{-k t n^{2}} \sin (n x)
$$

exists and $u(x, t)$ is a continuous function on $[0, \pi] \times[0, \infty)$ and $u(x, t)$ satisfies $u(x, 0)=f(x)$, $u(0, t)=u(\pi, t)=0$. In particular, u is continuous on $[0, \pi] \times[0, \infty)$.
Moreover, each term $A_{n} e^{-k t n^{2}} \sin (n x), n \in \mathbb{N}$, has partial derivatives w.r.t. t and x :

$$
-A_{n} n^{2} k e^{-k t n^{2}} \sin (n x) \text { and } A_{n} n e^{-k t n^{2}} \cos (n x)
$$

and second derivatives w.r.t. $x:-A_{n} n^{2} e^{-k t n^{2}} \sin (n x)$ and solves the heat equation by the separation of variable method. Recall the serie $\sum_{n=1}^{\infty} n^{\alpha} e^{-k t n^{2}}$ converges absolutely whenever $t>0$ for all $\alpha \in \mathbb{N}$. Hence, it follows that the series

$$
\sum_{n=1}^{\infty} A_{n} n e^{-k t n^{2}} \sin (n x), \quad \sum_{n=1}^{\infty} A_{n} n^{2} e^{-k t n^{2}} \sin (n x)
$$

converge uniformly on $[0, \pi] \times\left[t_{0}, \infty\right)$ for $t_{0}>0$. This follows because, for instance,

$$
\begin{aligned}
& \max _{(x, t) \in[0, \pi] \times\left[t_{0}, \infty\right)}\left|\sum_{n=N+1}^{\infty} A_{n} n e^{-k t n^{2}} \sin (n x)\right| \leq \sum_{n=N+1}^{\infty}\left|A_{n}\right| n e^{-k t_{0} n^{2}} \\
& \text { (Cauchy-Schwartz inequality) } \leq \sqrt{\left(\sum_{n=N+1}^{\infty} A_{n}^{2}\right)\left(\sum_{n=N+1}^{\infty} n^{2} e^{-2 k t_{0} n^{2}}\right)}
\end{aligned}
$$

It follows that we can compute the first and second order derivatives of $u(x, t)$ w.r.t. x and t by computing the partial derivatives of the partial sums:

$$
u_{x}(x, t)=\sum_{n=1}^{\infty} A_{n} e^{-k t n^{2}} n \cos (n x), u_{t}(x, t)=\sum_{n=1}^{\infty} A_{n} k n^{2} e^{-k t n^{2}} \sin (n x)
$$

on $[0, \pi] \times\left[t_{0}, \infty\right)$ for $t_{0}>0$ and

$$
k u_{x, x}(x, t)=-k \sum_{n=1}^{\infty} A_{n} n^{2} e^{-k t n^{2}} \sin (n x)=u_{t}(x, t) \text { for }(x, t) \in[0, \pi] \times(0, \infty)
$$

In particular, $u \in C^{2}([0, \pi] \times(0, \infty))$ and solves the heat equation.

Complex form of the full Fourier serie

Recall that

$$
\sin (n x)=\frac{e^{i n x}-e^{-i n x}}{2 i}, \quad \cos (n x)=\frac{e^{i n x}+e^{-i n x}}{2}
$$

Let $f \in C^{0}(\mathbb{R})$ be periodic. The full Fourier serie can be written in complex form

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{i n \theta}=\mathcal{F}(f)
$$

where

$$
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x
$$

To see this we introduce a Hermitien inner product.

$$
(f, g)=\int_{-\pi}^{\pi} f(x) \overline{g(x)} d x \text { for } f, g \in C^{0}(\mathbb{R}, \mathbb{C}) \text { periodic }
$$

where $g(x)=\operatorname{Reg}(x)+\operatorname{Im} g(x)$ and $\overline{g(x)}=\operatorname{Reg}(x)-\operatorname{Im} g(x)$ is the complex conjugate of the complex number $g(x)$.
Note that $C^{0}(\mathbb{R}, \mathbb{C})$ is complex vector space. $X_{n}=e^{i n x}, n \in \mathbb{Z}$, are orthogonal w.r.t. (\cdot, \cdot) and

$$
\left\|e^{i n x}\right\|_{2}^{2}=\left(e^{i n x}, e^{i n x}\right)=\int_{-\pi}^{\pi} e^{i n x} e^{-i n x} d x=2 \pi
$$

In particular, the general Fourier coefficients take the form

$$
c_{n}=\frac{1}{\left\|X_{n}\right\|}\left(f, X_{n}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x
$$

We can interpret a 2π periodic function f on \mathbb{R} as a function \hat{f} on the $1 D$ circle $\mathbb{S}^{1} \subset \mathbb{R}^{2}=\mathbb{C}$:

$$
f(x)=\hat{f}\left(e^{i x}\right)
$$

We interpret the heat equation

$$
\begin{aligned}
u_{t} & =k u_{x, x} \text { on } \mathbb{R} \\
u(x, 0) & =f(x) \text { on } \mathbb{R} \\
u(x, t) & =u(x+2 \pi, t) \forall x \in \mathbb{R}
\end{aligned}
$$

with $f \in C^{1}(\mathbb{R})$ that is 2π periodic as heat equation on \mathbb{S}^{1}.
The solution is given by

$$
u(x, t)=\sum_{n=-\infty}^{\infty} c_{n} e^{-k t n^{2}} e^{i n x}=\sum_{n=-\infty}^{\infty} \int_{-\pi}^{\pi} f(y) \sum_{n=-\infty}^{\infty} e^{-k t n^{2}} e^{i n(x-y)} d y
$$

where c_{n} are the complex Fourier coefficients of f.
We can write this formula as

$$
u(x, t)=\int_{-\pi}^{\pi} f(y) K^{\mathbb{S}^{1}}(x-y, t) d y
$$

with

$$
K^{\mathbb{S}^{1}}(\theta, t)=\sum_{n=-\infty}^{\infty} e^{-k t n^{2}} e^{i n \theta}
$$

$K^{\mathbb{S}^{1}}(\theta, t)$ is called the fundamental solution for the heat equation or heat kernel on \mathbb{S}^{1}.

