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Last Lecture

Theorem

Let f ∈ C 1(R) be periodic with period 2π.

Then the full Fourier serie of f

1

2
Ã0 +

∞∑
n=1

[
An sin(nx) + Ãn cos(nx)

]
converges on [−π, π] uniformily to f . Recall that the coefficients are given by

An =
1

π

∫ π

−π
f (x) sin(nx)dx , Ã0 =

1

π

∫ π

−π
f (x)dx , Ãn =

1

π

∫ π

−π
f (x) cos(nx)dx .

We also showed that

1

2
|Ã0|+

∞∑
n=1

(
|An|+ |Ãn|

)
Note that

An =
1

‖Xn‖2
(f ,Xn), Ãn =

1∥∥∥X̃n

∥∥∥2
(f , X̃n) for n ∈ N

where Xn(x) = sin(nx), X̃n(x) = cos(nx) and (f , g) =
∫ π
−π f (x)g(x)dx for f , g ∈ C 0(R) periodic.

But for X̃0(x) ≡ 1 the definition says

1

2
A0 =

1∥∥∥X̃0

∥∥∥2
(f , X̃0).
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Fourier sine and cosine serie
Consider f ∈ C 1([0, π]) with Dirichlet boundary conditions: f (0) = f (π) = 0.

Let fodd be the odd periodic extension of f to R. Then fodd ∈ C 1(R) because

lim
h↓

f (h)− f (0)

h
= lim

h↓0

f (h)

h
= lim

h↓0

−f (h)

−h
= lim

h↑0

fodd (h)

h
.

We know that the full Fourier series of fodd has the form

∞∑
n=1

An sin(nx) = F(f )

and converges uniformily on [−π, π] to fodd .

Recall that

1

π

∫ π

−π
fodd (x) sin(nx)dx =

1

π

∫ 0

−π
fodd (x)︸ ︷︷ ︸
−f (−x)

sin(nx)dx +
1

π

∫ π

0
f (x) sin(nx)dx =

2

π

∫ π

0
f (x) sin(nx)dx .

Hence An = Asin
n where Asin

n is the Fourier sine coefficient.

Therefore, the full Fourier series F(fodd ) coincides with the Fourier sine series S(f ) of f on [0, π]
and we have the following

Corollary

Let f ∈ C 1([0, π]) with f (0) = f (π) = 0.

Then, the Fourier sine series converges uniformily to f on [0, π].
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For f ∈ C 1([0, π]) with Neumann boundary conditions (f ′(0) = f ′(π) = 0) we consider the even
periodic extension feven.

Then agan feven ∈ C 1(R), the full Fourier serie converges uniformily to f and Ãn = Acos
n where

Acos
n are the coefficients of the Fourier cosine series.

We obtain

Corollary

For f ∈ C 1([0, π]) with Neumann boundary conditions, the Fourier cosine series of f converges
uniformily to f on [0, π].

Recall that more generally one has

Theorem

Let f ∈ C 0(R) be periodic with period 2π.

Then the full Fourier serie of f converges uniformily on [−π, π] to f .

Corollary

Let f ∈ C 0([0, π]) with f (0) = f (π) = 0. Then, the Fourier sine series converges uniformily to f
on [0, π].

For f ∈ C 1([0, π]) with Neumann boundary conditions, the Fourier cosine series of f converges
uniformily to f on [0, π].
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Application: Heat equation with Dirichlet boundary conditions on [0, π]

Let f ∈ C 1([0, π]) with Dirichlet boundary conditions and let fodd be the odd periodic extenstion.
Then f has an expansion as Fourier sine serie:

∞∑
n=1

An sin(nx) = f (x).

Theorem

The series

u(x , t) =
∞∑

n=1

Ane−kn2t sin(nx)

converges uniformily on [0, π]× [0,∞).

We have u ∈ C 2([0, π]× (0,∞)) ∩ C 0([0, π]× [0,∞)) and u solves

ut = kux,x on [0, π]× (0,∞)

u(x , 0) = f (x) on [0, π]

u(0, t) = 0 and u(π, t) = 0 ∀t > 0.
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Proof of the theorem
First, we have for N,M ∈ N and M > N

max
(x,t)∈[0,π]×[0,∞)

∣∣∣∣∣
M∑

n=1

Ane−ktn2
sin(nx)−

N∑
n=1

Ane−kn2t sin(nx)

∣∣∣∣∣
= max

(x,t)∈[0,π]×[0,∞)

∣∣∣∣∣∣
M∑

n=N+1

Ane−kn2t sin(nx)

∣∣∣∣∣∣
≤

M∑
n=N+1

|An|e−kn2t | sin(nx)| → 0.

We use that
∑∞

n=1 |An| <∞ is finite, what was part of the proof of uniform convergence of the
Fourier serie for f ∈ C 1(R) periodic.

Therefore, the partial sums
∑N

n=1 Ane−kn2t sin(nx) are a Cauchy sequence w.r.t. to uniform
convergence, and hence, the uniform limit

u(x , t) =
∞∑

n=1

Ane−ktn2
sin(nx)

exists and u(x , t) is a continuous function on [0, π]× [0,∞) and u(x , t) satisfies u(x , 0) = f (x),
u(0, t) = u(π, t) = 0. In particular, u is continuous on [0, π]× [0,∞).

Moreover, each term Ane−ktn2
sin(nx), n ∈ N, has partial derivatives w.r.t. t and x :

−Ann2ke−ktn2
sin(nx) and Anne−ktn2

cos(nx)
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and second derivatives w.r.t. x : −Ann2e−ktn2
sin(nx) and solves the heat equation by the

separation of variable method. Recall the serie
∑∞

n=1 nαe−ktn2
converges absolutely whenever

t > 0 for all α ∈ N. Hence, it follows that the series

∞∑
n=1

Anne−ktn2
sin(nx),

∞∑
n=1

Ann2e−ktn2
sin(nx)

converge uniformly on [0, π]× [t0,∞) for t0 > 0. This follows because, for instance,

max
(x,t)∈[0,π]×[t0,∞)

∣∣∣∣∣∣
∞∑

n=N+1

Anne−ktn2
sin(nx)

∣∣∣∣∣∣ ≤
∞∑

n=N+1

|An|ne−kt0n2

(Cauchy-Schwartz inequality) ≤

√√√√√
 ∞∑

n=N+1

A2
n

 ∞∑
n=N+1

n2e−2kt0n2


It follows that we can compute the first and second order derivatives of u(x , t) w.r.t. x and t by
computing the partial derivatives of the partial sums:

ux (x , t) =
∞∑

n=1

Ane−ktn2
n cos(nx), ut (x , t) =

∞∑
n=1

Ankn2e−ktn2
sin(nx)

on [0, π]× [t0,∞) for t0 > 0 and

kux,x (x , t) = −k
∞∑

n=1

Ann2e−ktn2
sin(nx) = ut (x , t) for (x , t) ∈ [0, π]× (0,∞).

In particular, u ∈ C 2([0, π]× (0,∞)) and solves the heat equation.
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Complex form of the full Fourier serie
Recall that

sin(nx) =
e inx − e−inx

2i
, cos(nx) =

e inx + e−inx

2
.

Let f ∈ C 0(R) be periodic. The full Fourier serie can be written in complex form

∞∑
n=−∞

cne inθ = F(f )

where

cn =
1

2π

∫ π

−π
f (x)e−inx dx .

To see this we introduce a Hermitien inner product.

(f , g) =

∫ π

−π
f (x)g(x)dx for f , g ∈ C 0(R,C) periodic

where g(x) = Reg(x) + Img(x) and g(x) = Reg(x)− Img(x) is the complex conjugate of the
complex number g(x).

Note that C 0(R,C) is complex vector space. Xn = e inx , n ∈ Z, are orthogonal w.r.t. (·, ·) and∥∥∥e inx
∥∥∥2

2
= (e inx , e inx ) =

∫ π

−π
e inx e−inx dx = 2π.

In particular, the general Fourier coefficients take the form

cn =
1

‖Xn‖
(f ,Xn) =

1

2π

∫ π

−π
f (x)e−inx dx .
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We can interpret a 2π periodic function f on R as a function f̂ on the 1D circle S1 ⊂ R2 = C:

f (x) = f̂
(

e ix
)
.

We interpret the heat equation

ut = kux,x on R
u(x , 0) = f (x) on R
u(x , t) = u(x + 2π, t) ∀x ∈ R

with f ∈ C 1(R) that is 2π periodic as heat equation on S1.

The solution is given by

u(x , t) =
∞∑

n=−∞
cne−ktn2

e inx =
∞∑

n=−∞

∫ π

−π
f (y)

∞∑
n=−∞

e−ktn2
e in(x−y)dy

where cn are the complex Fourier coefficients of f .

We can write this formula as

u(x , t) =

∫ π

−π
f (y)KS1

(x − y , t)dy

with

KS1
(θ, t) =

∞∑
n=−∞

e−ktn2
e inθ

KS1
(θ, t) is called the fundamental solution for the heat equation or heat kernel on S1.
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