MAT351 Partial Differential Equations

September 14, 2020

Partial Derivatives

Consider a function u of several variables:

$$
u=u(x, y, z) \text { or more generally } u=u\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

for $(x, y, z) \in U \subset \mathbb{R}^{3}$ or $\left(x_{1}, \ldots, x_{n}\right) \in U \subset \mathbb{R}^{n}$. We also write $\mathbf{x}=\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$. U is a domain $\Leftrightarrow U$ connected, $U^{\circ} \neq \emptyset$ and ∂U smooth.
$x, y, z\left(\right.$ or $\left.x_{1}, \ldots, x_{n}\right)$ are called independent variables.

Notation

Let u be sufficiently smooth (e.g. $u \in C^{1}(U)$). We denote the partial derivatives with

$$
\lim _{h \rightarrow 0} \frac{u\left(\mathbf{x}+h e_{i}\right)-u(\mathbf{x})}{h}=\frac{\partial u}{\partial x_{i}}(\mathbf{x})=u_{x_{i}}(\mathbf{x}) \quad i=1, \ldots, n .
$$

$e_{i}=(0, \ldots, 0, \underbrace{1}_{i}, 0, \ldots, 0)$. For partial derivatives of order $k \in \mathbb{N}$ we write

$$
\frac{\partial^{k} u}{\partial x_{i_{1}} \ldots \partial x_{i_{k}}}(\mathbf{x})=u_{x_{i_{1}}, \ldots, x_{i_{k}}}(\mathbf{x}) \quad i_{1}, \ldots, i_{k} \in\{1, \ldots, n\} .
$$

For the collection of all partial derivatives of order $k \in \mathbb{N}$ we write

$$
\left\{u_{x_{i_{1}}, \ldots, x_{i_{k}}}: i_{1}, \cdots i_{k} \in\{1, \cdots, n\}\right\}=: D^{k} u
$$

Common Differential Operators

Gradient: The vector $\left(u_{x_{1}}, \ldots, u_{x_{n}}\right)=: \nabla u$ is called the gradient of u.
Directional Derivative: Given a vector $v=\left(v_{1}, \ldots, v_{n}\right)$

$$
\nabla u \cdot v=\sum_{i=1}^{n} u_{x_{i}} v_{i}=\frac{\partial u}{\partial v} \quad \text { derivative of } u \text { in direction } v
$$

In particular $\nabla u \cdot(0, \ldots, 0, \underbrace{1}_{i}, 0, \ldots, 0)=u_{x_{i}}$
Differential of a vectorvalued map, Divergence:
For $V: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, V(\mathbf{x})=\left(V^{1}(\mathbf{x}), \ldots, V^{n}(\mathbf{x})\right)$ one defines

$$
D V=\left(\begin{array}{ccc}
V_{x_{1}}^{1} & \ldots & V_{x_{n}}^{1} \\
\ldots & \ldots & \ldots \\
V_{x_{1}}^{n} & \ldots & V_{x_{n}}^{n}
\end{array}\right) \quad \text { and } \quad \text { trace } D V=\sum_{i=1}^{n} V_{x_{i}}^{i}=: \nabla \cdot V=: \operatorname{Div} V
$$

Hessian and Laplace operator: $u(\mathbf{x})=u\left(x_{1}, \ldots, x_{n}\right)$ smooth, $\mathbf{x} \in U$. Then $\nabla u: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and

$$
D \nabla u=\left(\begin{array}{ccc}
u_{x_{1}, x_{1}} & \cdots & u_{x_{1}, x_{n}} \\
\cdots & \cdots & \cdots \\
u_{x_{n}, x_{1}} & \cdots & u_{x_{n}, x_{n}}
\end{array}\right) \quad \text { and } \quad \operatorname{trace} D^{2} u=\sum_{i=1}^{n} u_{x_{i}, x_{i}}=: \Delta u
$$

What is a Partial Differential Equation (PDE)?

Definition

A PDE is an equation which relates an unknown function u, its partial derivatives and its independent variables.
A general PDE on a domain $U \subset \mathbb{R}^{n}$ can be written as

$$
\begin{equation*}
F\left(\mathbf{x}, u, D^{1} u, \ldots, D^{k} u\right)=F\left(\mathbf{x}, u(\mathbf{x}), D^{1} u(\mathbf{x}), \ldots, D^{k} u(\mathbf{x})\right)=g(\mathbf{x}), \quad \mathbf{x} \in U \tag{1}
\end{equation*}
$$

for functions

$$
g(\mathbf{x}) \text { and } F\left(\mathbf{x}, \theta, \theta^{1}, \ldots, \theta^{k}\right)
$$

where $\left(x_{1}, \ldots, x_{n}\right)=\mathbf{x} \in U, \theta \in \mathbb{R}$ and $\theta^{i}=\left(\theta_{1}^{i}, \ldots, \theta_{n^{i}}^{i}\right) \in \mathbb{R}^{n^{i}}$ and $i=0, \ldots, k$. u and $D^{1} u, \ldots, D^{k} u$ are also called dependent variables.

When we study a PDE often the domain U is not specified yet in the beginning.

Definition

The order of a PDE is the highest order of a partial derivative that appears in the equation.

The most general form of a first order PDE for 2 independent variables is

$$
F\left(x, y, u(x, y), u_{x}(x, y), u_{y}(x, y)\right)=F\left(x, y, u, u_{x}, u_{y}\right)=g(x, y) .
$$

Linear PDEs

Definition

A PDE of the form

$$
\begin{equation*}
F\left(\mathbf{x}, u, D^{1} u, \ldots, D^{k} u\right)=g(\mathbf{x}) \tag{2}
\end{equation*}
$$

is called linear if the function

$$
\left(\theta, \theta^{1}, \ldots, \theta^{k}\right) \in \mathbb{R} \times \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n^{k}} \mapsto F\left(\mathbf{x}, \theta, \theta^{1}, \ldots, \theta^{k}\right) \in \mathbb{R}
$$

is linear.
A linear PDE of order 2 in n indpendent variables can always be written in the form

$$
\sum_{i, j=1}^{n} a_{i, j}(\mathbf{x}) u_{x_{i}, x_{j}}+\sum_{k=1}^{n} b_{k}(\mathbf{x}) u_{x_{k}}+c(\mathbf{x}) u=g(\mathbf{x})
$$

with coefficients $\left(a_{i, j}(\mathbf{x})\right)_{i, j=1, \ldots, n},\left(b_{k}(\mathbf{x})\right)_{k=1, \ldots, n}, c(\mathbf{x})$ that are functions in \mathbf{x}.

Example (Poisson equation)

$$
\Delta u=\sum_{i=1}^{n} u_{x_{i}, x_{j}}=g(\mathbf{x}) \text { where } a_{i, j}=\delta_{i, j}= \begin{cases}1 & \text { if } i=j, \\ 0 & \text { if } i \neq j .\end{cases}
$$

Nonlinear PDEs

Definition

A PDE of the form

$$
\begin{equation*}
F\left(\mathbf{x}, u, D^{1} u, \ldots, D^{k} u\right)=g(\mathbf{x}) \tag{3}
\end{equation*}
$$

is called

- semi linear if we can write

$$
F\left(\mathbf{x}, \theta, \theta^{1}, \ldots, \theta^{k}\right)=L\left(\mathbf{x}, \theta^{k}\right)+G\left(\mathbf{x}, \theta, \theta^{1}, \ldots, \theta^{k-1}\right)
$$

and the function $\theta^{k} \in \mathbb{R}^{n^{k}} \mapsto L\left(\mathbf{x}, \theta^{k}\right)$ is linear.

- quasi linear if we can write

$$
F\left(\mathbf{x}, \theta, \theta^{1}, \ldots, \theta^{k}\right)=L\left(\mathbf{x}, \theta, \theta^{1}, \ldots, \theta^{k-1}, \theta^{k}\right)+G\left(\mathbf{x}, \theta, \theta^{1}, \ldots, \theta^{k-1}\right)
$$

and the function $\theta^{k} \in \mathbb{R}^{n^{k}} \mapsto L\left(\mathbf{x}, \theta, \theta^{1}, \ldots, \theta^{k-1}, \theta^{k}\right)$ is linear.

- fully nonlinear if the PDE is not [linear, semilinear or quasilinear].
linear \Longrightarrow semi-linear \Longrightarrow quasi-linear \Longrightarrow fully non-linear.
- Consider a quasi linear PDE $F\left(\mathbf{x}, u, D^{1} u\right)=g(\mathbf{x})$. Hence F has the form

$$
F\left(\mathbf{x}, \theta, \theta^{1}\right)=\sum_{i=1}^{n} a_{i}(\mathbf{x}, \theta) \theta^{1}+G(\mathbf{x}, \theta)
$$

The coefficients $\left(a_{i}\right)_{i=1, \ldots, n}$ are functions in \mathbf{x} and θ. The PDE takes the form

$$
\sum_{i=1}^{n} a_{i}(\mathbf{x}, u) u_{x_{i}}+G(\mathbf{x}, u)=g(\mathbf{x})
$$

Example (Inviscid (or Non-viscous) Burger's equations)

$$
u_{t}+\left(u^{2}\right)_{x}=0 \Longrightarrow u_{t}+u u_{x}=0
$$

is a quasi-linear PDE of order 1 in 2 independent variables: $t=x_{1}$ and $x=x_{2}$.
$a_{1}(\mathbf{x}, u)=1, a_{2}(\mathbf{x}, u)=u$ and $G=g \equiv 0$.

- Consider a PDE of order $2 F\left(\mathbf{x}, u, D^{1} u, D^{2} u\right)=g(\mathbf{x})$. If the PDE is quasi-linear, it can be writen in the general form

$$
\sum_{i, j=1}^{n} a_{i, j}\left(\mathbf{x}, u, D^{1} u\right) u_{x_{i}, x_{j}}+G\left(\mathbf{x}, u, D^{1} u\right)=g(\mathbf{x})
$$

$\left(a_{i, j}\right)_{i, j=1, \ldots, n}, G$ are functions in \mathbf{x}, θ and θ^{1}.

Solutions

Definition

Consider a PDE of order k :

$$
\begin{equation*}
F\left(\mathbf{x}, u, D^{1} u, \ldots, D^{k} u\right)=g(\mathbf{x}) \tag{4}
\end{equation*}
$$

A classical solution of (4) on a domain $\Omega \subset \mathbb{R}^{n}$ where n is the number of independent variables, is a sufficiently smooth function $u(\mathbf{x})$ that satisfies (4).

If $k \in \mathbb{N}$ is the order of the PDE, then, by sufficiently smooth, we man that $u \in C^{k}(\Omega)$.

Example

The function $u(x, t)=\frac{x}{t}$ solves

$$
\begin{equation*}
u_{t}+u \cdot u_{x}=0 \text { on } \mathbb{R} \times(0, \infty) \subset \mathbb{R}^{2} \tag{5}
\end{equation*}
$$

Homogeneous/Inhomogeneous Linear PDEs

Definition

Consider a linear PDE of order k :

$$
\begin{equation*}
L\left(\mathbf{x}, u, D^{1} u, \ldots, D^{k} u\right)=g(\mathbf{x}) \tag{6}
\end{equation*}
$$

If $g(x) \equiv 0$, the PDE is called homogeneous.
Otherwise, the PDE is called inhomogeneous.

- If u and v solve the homogeneous linear PDE

$$
\begin{equation*}
L\left(\mathbf{x}, u, D^{1} u, \ldots, D^{k} u\right)=0 \text { on a domain } \Omega \subset \mathbb{R}^{n} \tag{7}
\end{equation*}
$$

then also $\alpha u+\beta v$ solves the same homogeneous linear PDE on the domain Ω for $\alpha, \beta \in \mathbb{R}$. (Superposition Principle)

- If u solves the homogeneous linear PDE (7) and w solves the inhomogeneous linear pde (6) then $v+w$ also solves the same inhomogeneous linear PDE.
- We can see the map

$$
u \in \mapsto \mathcal{L} u \text { where }(\mathcal{L} u)(\mathbf{x})=L\left(\mathbf{x}, u, D^{1} u, \ldots, D^{k} u\right)
$$

as a linear (differential) operator.
Hence, it makes sense to specify appropriate function vector spaces V and W such that $u \in V$ and $\mathcal{L} u \in W$.
For instance: For a PDE of order 2 , we can choose $V=C^{2}(\Omega)$ and $W=C^{0}(\Omega)$.

