MAT351 Partial Differential Equations

September 14, 2020

Partial Derivatives

Consider a function u of several variables:

$$u = u(x, y, z)$$
 or more generally $u = u(x_1, x_2, \dots, x_n)$

for $(x, y, z) \in U \subset \mathbb{R}^3$ or $(x_1, \ldots, x_n) \in U \subset \mathbb{R}^n$. We also write $\mathbf{x} = \overrightarrow{\mathbf{x}} = (x_1, \ldots, x_n)$. U is a domain $\Leftrightarrow U$ connected, $U^{\circ} \neq \emptyset$ and ∂U smooth.

x, y, z (or x_1, \ldots, x_n) are called independent variables.

Notation

Let u be sufficiently smooth (e.g. $u \in C^1(U)$). We denote the partial derivatives with

$$\lim_{h\to 0}\frac{u(\mathbf{x}+he_i)-u(\mathbf{x})}{h}=\frac{\partial u}{\partial x_i}(\mathbf{x})=u_{x_i}(\mathbf{x}) \quad i=1,\ldots,n.$$

 $e_i = (0, \ldots, 0, \underbrace{1}_i, 0, \ldots, 0).$ For partial derivatives of order $k \in \mathbb{N}$ we write

$$\frac{\partial^{\kappa} u}{\partial x_{i_1} \dots \partial x_{i_k}}(\mathbf{x}) = u_{x_{i_1}, \dots, x_{i_k}}(\mathbf{x}) \quad i_1, \dots, i_k \in \{1, \dots, n\}.$$

For the collection of all partial derivatives of order $k \in \mathbb{N}$ we write

$$\left\{u_{x_{i_1},\ldots,x_{i_k}}:i_1,\cdots,i_k\in\{1,\cdots,n\}\right\}=:D^ku.$$

Common Differential Operators

Gradient: The vector $(u_{x_1}, \ldots, u_{x_n}) =: \nabla u$ is called the gradient of u.

Directional Derivative: Given a vector $v = (v_1, \ldots, v_n)$

$$\nabla u \cdot v = \sum_{i=1}^{n} u_{x_i} v_i = \frac{\partial u}{\partial v}$$
 derivative of u in direction v

In particular $\nabla u \cdot (0, \dots, 0, \underbrace{1}_{i}, 0, \dots, 0) = u_{x_i}$

Differential of a vectorvalued map, Divergence: For $V : U \subset \mathbb{R}^n \to \mathbb{R}^n$, $V(\mathbf{x}) = (V^1(\mathbf{x}), \dots, V^n(\mathbf{x}))$ one defines

$$DV = \begin{pmatrix} V_{x_1}^1 & \dots & V_{x_n}^1 \\ \dots & \dots & \dots \\ V_{x_1}^n & \dots & V_{x_n}^n \end{pmatrix} \text{ and } \text{ trace } DV = \sum_{i=1}^n V_{x_i}^i =: \nabla \cdot V =: \text{Div } V$$

Hessian and Laplace operator: $u(\mathbf{x}) = u(x_1, \dots, x_n)$ smooth, $\mathbf{x} \in U$. Then $\nabla u : U \subset \mathbb{R}^n \to \mathbb{R}^n$ and

$$D\nabla u = \begin{pmatrix} u_{x_1,x_1} & \dots & u_{x_1,x_n} \\ \dots & \dots & \dots \\ u_{x_n,x_1} & \dots & u_{x_n,x_n} \end{pmatrix} \quad \text{and} \quad \text{trace } D^2 u = \sum_{i=1}^n u_{x_i,x_i} =: \Delta u.$$

What is a Partial Differential Equation (PDE)?

Definition

A PDE is an equation which relates an unknown function u, its partial derivatives and its independent variables.

A general PDE on a domain $U \subset \mathbb{R}^n$ can be written as

$$F(\mathbf{x}, u, D^1 u, \dots, D^k u) = F(\mathbf{x}, u(\mathbf{x}), D^1 u(\mathbf{x}), \dots, D^k u(\mathbf{x})) = g(\mathbf{x}), \quad \mathbf{x} \in U$$
(1)

for functions

$$g(\mathbf{x})$$
 and $F(\mathbf{x}, \theta, \theta^1, \dots, \theta^k)$

where $(x_1, \ldots, x_n) = \mathbf{x} \in U$, $\theta \in \mathbb{R}$ and $\theta^i = (\theta_1^i, \ldots, \theta_{n^i}^i) \in \mathbb{R}^{n^i}$ and $i = 0, \ldots, k$. u and D^1u, \ldots, D^ku are also called dependent variables.

When we study a PDE often the domain U is not specified yet in the beginning.

Definition

The order of a PDE is the highest order of a partial derivative that appears in the equation.

The most general form of a first order PDE for 2 independent variables is

$$F(x, y, u(x, y), u_x(x, y), u_y(x, y)) = F(x, y, u, u_x, u_y) = g(x, y).$$

Linear PDEs

Definition

A PDE of the form

$$F(\mathbf{x}, u, D^1 u, \dots, D^k u) = g(\mathbf{x})$$
⁽²⁾

is called linear if the function

$$(heta, heta^1,\ldots, heta^k)\in\mathbb{R} imes\mathbb{R}^n imes\cdots imes\mathbb{R}^{n^k}\mapsto {\sf F}({\sf x}, heta, heta^1,\ldots, heta^k)\in\mathbb{R}$$

is linear.

A linear PDE of order 2 in n indpendent variables can always be written in the form

$$\sum_{i,j=1}^n a_{i,j}(\mathbf{x})u_{x_i,x_j} + \sum_{k=1}^n b_k(\mathbf{x})u_{x_k} + c(\mathbf{x})u = g(\mathbf{x})$$

with coefficients $(a_{i,j}(\mathbf{x}))_{i,j=1,...,n}, (b_k(\mathbf{x}))_{k=1,...,n}, c(\mathbf{x})$ that are functions in \mathbf{x} .

Example (Poisson equation)

$$\Delta u = \sum_{i=1}^n u_{x_i, x_j} = g(\mathbf{x}) \quad \text{where } a_{i,j} = \delta_{i,j} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Nonlinear PDEs

Definition

A PDE of the form

$$F(\mathbf{x}, u, D^{1}u, \dots, D^{k}u) = g(\mathbf{x})$$
(3)

is called

• semi linear if we can write

$$F(\mathbf{x}, \theta, \theta^1, \dots, \theta^k) = L(\mathbf{x}, \theta^k) + G(\mathbf{x}, \theta, \theta^1, \dots, \theta^{k-1})$$

and the function $\theta^k \in \mathbb{R}^{n^k} \mapsto L(\mathbf{x}, \theta^k)$ is linear.

• quasi linear if we can write

$$F(\mathbf{x},\theta,\theta^1,\ldots,\theta^k) = L(\mathbf{x},\theta,\theta^1,\ldots,\theta^{k-1},\theta^k) + G(\mathbf{x},\theta,\theta^1,\ldots,\theta^{k-1})$$

and the function $\theta^k \in \mathbb{R}^{n^k} \mapsto L(\mathbf{x}, \theta, \theta^1, \dots, \theta^{k-1}, \theta^k)$ is linear.

• fully nonlinear if the PDE is not [linear, semilinear or quasilinear].

linear \implies semi-linear \implies quasi-linear \implies fully non-linear.

• Consider a quasi linear PDE $F(\mathbf{x}, u, D^1 u) = g(\mathbf{x})$. Hence F has the form

$$F(\mathbf{x}, \theta, \theta^1) = \sum_{i=1}^n a_i(\mathbf{x}, \theta) \theta^1 + G(\mathbf{x}, \theta).$$

The coefficients $(a_i)_{i=1,...,n}$ are functions in x and θ . The PDE takes the form

$$\sum_{i=1}^{n} a_i(\mathbf{x}, u) u_{x_i} + G(\mathbf{x}, u) = g(\mathbf{x})$$

Example (Inviscid (or Non-viscous) Burger's equations)

$$u_t + (u^2)_x = 0 \implies u_t + uu_x = 0$$

is a quasi-linear PDE of order 1 in 2 independent variables: $t = x_1$ and $x = x_2$. $a_1(\mathbf{x}, u) = 1$, $a_2(\mathbf{x}, u) = u$ and $G = g \equiv 0$.

Consider a PDE of order 2 F(x, u, D¹u, D²u) = g(x). If the PDE is quasi-linear, it can be writen in the general form

$$\sum_{i,j=1}^n a_{i,j}(\mathbf{x}, u, D^1 u) u_{\mathbf{x}_i, \mathbf{x}_j} + G(\mathbf{x}, u, D^1 u) = g(\mathbf{x}).$$

 $(a_{i,j})_{i,j=1,...,n}$, G are functions in **x**, θ and θ^1 .

Solutions

Definition

Consider a PDE of order k:

$$F(\mathbf{x}, u, D^{1}u, \dots, D^{k}u) = g(\mathbf{x})$$
(4)

A classical solution of (4) on a domain $\Omega \subset \mathbb{R}^n$ where *n* is the number of independent variables, is a sufficiently smooth function $u(\mathbf{x})$ that satisfies (4).

If $k \in \mathbb{N}$ is the order of the PDE, then, by sufficiently smooth, we man that $u \in C^k(\Omega)$.

Example

The function $u(x, t) = \frac{x}{t}$ solves

$$u_t + u \cdot u_x = 0 \text{ on } \mathbb{R} \times (0, \infty) \subset \mathbb{R}^2.$$
 (5)

Homogeneous/Inhomogeneous Linear PDEs

Definition

Consider a linear PDE of order k:

$$L(\mathbf{x}, u, D^1 u, \dots, D^k u) = g(\mathbf{x})$$
(6)

If $g(\mathbf{x}) \equiv 0$, the PDE is called homogeneous.

Otherwise, the PDE is called inhomogeneous.

• If u and v solve the homogeneous linear PDE

$$L(\mathbf{x}, u, D^1 u, \dots, D^k u) = 0$$
 on a domain $\Omega \subset \mathbb{R}^n$ (7)

then also $\alpha u + \beta v$ solves the same homogeneous linear PDE on the domain Ω for $\alpha, \beta \in \mathbb{R}$. (Superposition Principle)

- If u solves the homogeneous linear PDE (7) and w solves the inhomogeneous linear pde (6) then v + w also solves the same inhomogeneous linear PDE.
- We can see the map

$$u \in \mapsto \mathcal{L}u$$
 where $(\mathcal{L}u)(\mathbf{x}) = L(\mathbf{x}, u, D^1u, \dots, D^ku)$

as a linear (differential) operator.

Hence, it makes sense to specify appropriate function vector spaces V and W such that $u \in V$ and $\mathcal{L}u \in W$.

For instance: For a PDE of order 2, we can choose $V = C^2(\Omega)$ and $W = C^0(\Omega)$.

September 14, 2020 9 / 10