MAT351 Partial Differential Equations
 Lecture 20

December 6, 2020

Some Preliminaries

Given $u \in C^{2}(U)$ for an open subset $U \subset \mathbb{R}^{n}$.

- Recall that $U \subset \mathbb{R}^{n}$ is open if and only if for all $x \in U$ we can find $\epsilon_{x}>0$ such that

$$
\left\{y \in \mathbb{R}^{n}:|x-y|_{2}<\epsilon_{x}\right\}=: B_{\epsilon_{x}}(x) \subset U
$$

Also recall that \bar{U} denote the closure of U, that is

$$
\bar{U}=\left\{x \in \mathbb{R}^{n}: \exists\left(x_{n}\right)_{n \in \mathbb{N}} \subset U \text { s.t. } \lim _{n \rightarrow n} x_{n}=x\right\}
$$

Then, we define $\bar{U} \backslash U=\partial U$.

- A set $W \subset \mathbb{R}^{n}$ is called connected if there don't exist sets U_{1}, U_{2} open and disjoint such that $U_{1} \cap W, U_{2} \cap W \neq \emptyset$ and $W \subset U_{1} \cup U_{2}$.
Or in other words, W is connected if for any pair of open and disjoint sets U_{1}, U_{2} such that $W \subset U_{1} \cup U_{2}$ it follows that either $W \cap U_{1}=\emptyset$ or $W \cap U_{2}=\emptyset$.
- $u \in C^{2}(U)$ if and only if all partial derivatives $u_{x_{i}, x_{j}}, i, j=1 \ldots n$, exists and are continuous.

Given $u \in C^{2}(U)$ the Laplace operator is defined by

$$
\sum_{i=1}^{n} u_{x_{i}, x_{i}}=: \Delta u
$$

Δ is a map between $C^{2}(U)$ and $C^{0}(U)$.

Laplace and Poisson Equation

Laplace Equation

$u \in C^{2}(U)$ satisfies the Laplace equation in U if

$$
\Delta u=0 \text { in } U .
$$

A function $u \in C^{2}(U)$ for some open connected set U with $\Delta u=0$ is called harmonic.
In one dimension the Laplace equation becomes

$$
\frac{d^{2}}{d x^{2}} u(x)=0
$$

and open, connected sets are intervals of the form (a, b) with $a, b \in \mathbb{R} \cup\{-\infty, \infty\}$.
Hence, harmonic functions are linear functions

$$
u(x)=A x+B, A, B \in \mathbb{R}
$$

Poisson Equation

Given $f \in C^{0}(U)$ the inhomogeneous version of the Laplace equation

$$
\Delta u=f \text { on } U
$$

is called the Poisson equation.

If U is a domain with smooth boundary $\partial U \neq \emptyset$, then we usually require suplementary boundary conditions. For the Laplace equation this leads to the following boundary value problems.

Dirichlet Problem

Let $g \in C^{0}(\partial U)$, Does there exist $u \in C^{2}(U) \cap C^{0}(\bar{U})$ such that

$$
\begin{aligned}
\Delta u & =0 & & \text { in } U \\
u(x) & =g(x) & & \text { for } x \in \partial U .
\end{aligned}
$$

Smooth boundary: ∂U is a smooth $(n-1)$-dimensional submanifold in \mathbb{R}^{n}.
In this case there is a unique tangent plan $T_{x} \partial U$ for every $x \in \partial U$ and a unique smooth normal vector field $N: \partial U \rightarrow \mathbb{R}^{n}:\langle N(x), v\rangle=0$ for all $v \in T_{x} \partial U$ and for all $x \in \partial U$.
Recall $u \in C^{1}(\bar{U})$ can be defined by saying there exists an open set \tilde{U} such that $U \subset \tilde{U}$ and there exists $\tilde{u} \in C^{1}(\tilde{U})$ such that $\left.\tilde{u}\right|_{\bar{U}}=u$.

Neumann Problem

Let $g \in C^{0}(\partial U)$, Does there exist $u \in C^{2}(U) \cap C^{1}(\bar{U})$ such that

$$
\begin{aligned}
\Delta u & =0 & & \text { in } U \\
\frac{\partial}{\partial N} u(x) & =g(x) & & \text { for } x \in \partial U .
\end{aligned}
$$

Physical interpretation of Laplace equation as diffusion in equilibrium

Physically, $u \in C^{2}(U)$ with $\Delta u=0$ describes a distribution in equilibrium in U.
We can think of u as steady state solution of the diffusion equation for higher dimensions:

$$
u_{t}=k \Delta u .
$$

To see this imagine $u(x, t)$ as the distribution of some quantity in equilibrium in $U \subset \mathbb{R}^{3}$, that is there is no change over time. That is, for any subdomain $V \subset U$ we have

$$
\int_{V} u_{t}(\mathbf{x}, t) d \mathbf{x}=\frac{d}{d t} \int_{V} u(\mathbf{x}, t) d \mathbf{x}=0
$$

On the other, $\frac{d}{d t} \int_{V} u(\mathbf{x}, t) d \mathbf{x}$ is equal to the total flux through the boundary of V

$$
\int_{\partial V}\langle\mathbf{F}(\mathbf{x}, t), N(\mathbf{x})\rangle d \mathbf{x}
$$

where $\mathbf{F}(\mathbf{x}, t) \in \mathbb{R}^{3}, x \in U$, is the flux density. As in a previous lecture we assume Fick's law.
The the flux - or directional change of $u(x, t)$ in a point x at time t is proportional to the gradient $\nabla u(\mathbf{x}, t)$

$$
\mathbf{F}(\mathbf{x}, t)=-k \nabla u(\mathbf{x}, t) .
$$

Hence, by the divergence theorem

$$
0=\frac{d}{d t} \int_{V} u(\mathbf{x}, t) d \mathbf{x}=\int u_{t}(\mathbf{x}, t) d \mathbf{x}=k \int_{V} \Delta_{\mathrm{x}} u(\mathbf{x}, t) d \mathbf{x}
$$

implying that $0=u_{t}(\mathbf{x}, t)=k \Delta_{x} u(\mathbf{x}, t)$. In particular $u(\mathbf{x}, t)=u(\mathbf{x})$ does not depend on t.

Other Interpretations

- Electrostatics.

Electric current is described by a vector field \mathbf{E} in a domain $U \subset \mathbb{R}^{3}$ that satisfies Maxwell's equations $\operatorname{Curl}(\mathbf{E})=\left(\frac{\partial \mathbf{E}}{\partial x_{3}}-\frac{\partial \mathbf{E}}{\partial x_{2}}, \frac{\partial \mathbf{E}}{\partial x_{2}}-\frac{\partial \mathbf{E}}{\partial x_{1}}, \frac{\partial \mathbf{E}}{\partial x_{1}}-\frac{\partial \mathbf{E}}{\partial x_{3}}\right)=0, \quad \operatorname{Div} \mathbf{E}=4 \pi \rho$
where ρ is the charge density of U.
CurlE $=0$ in \mathbb{R}^{n} is equivalent to

$$
\int_{a}^{b}\left\langle\mathbf{E} \circ \gamma(t), \gamma^{\prime}(t)\right\rangle d t=0
$$

for any closed curve $\gamma \in C^{1}\left([a, b], \mathbb{R}^{n}\right)\left(\gamma(a)=\gamma(b)\right.$ and $\left.\gamma^{\prime}(a)=\gamma^{\prime}(b)\right)$.
We know that in this case there exists a potential $\phi \in C^{2}\left(\mathbb{R}^{n}\right)$ such that $\mathbf{E}=\nabla \phi$.
Hence, the vector field \mathbf{E} is the gradient of a potential $-\phi$ that satisfies the Poisson equation:

$$
\mathbf{E}(\mathbf{x})=-\nabla \phi(\mathbf{x}) \Rightarrow \Delta \phi=-4 \pi \phi(x)
$$

- Classical Newtonian Gravity.

Let \mathbf{g} be the gravitational force vector field in \mathbb{R}^{3} according to a mass distribution ρ. Again one has the following laws

$$
\text { Curlg }=0 \text { in } \mathbb{R}^{3} \text { and Divg }=-4 \pi G \rho
$$

G is the gravitational constant.
Hence, there exists a potential function ϕ such that $\nabla \phi=-\mathbf{g}$ and $\Delta \phi=-4 \pi G \rho$.

- Fluid dynamics.

Recall the transport equation

$$
u_{t}+\langle V, \nabla u\rangle
$$

for a vector field $V \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$. We studied this equation a some lectures ago and assume that

$$
\operatorname{Div} V=0
$$

which means the flow of V is incompressible and there are no sources and sinks. Now we also ssume V describes an irrotational flow. That means again that

$$
\text { Curl } V=0 \text { in } \mathbb{R}^{n} \text {. }
$$

We know that in this case there exists a potential $\phi \in C^{2}\left(\mathbb{R}^{n}\right)$ such that $V=\nabla \phi$. Hence, ϕ satisfies the Laplace equation:

$$
\operatorname{Div} V=\Delta \phi=0
$$

Polar Coordinates in \mathbb{R}^{2}

In \mathbb{R}^{2} the Laplace operator is $\Delta u=u_{x, x}+u_{y, y}=0$.
Let us express Δ in polar coordinates

$$
(x(r, \theta), y(r, \theta))=(r \cos \theta, r \sin \theta) \text { for }(r, \theta) \in(0, \infty) \times[0,2 \pi)
$$

The differential of the map $(r, \theta) \in(0, \infty) \times(0,2 \pi) \mapsto(r \cos \theta, r \sin \theta)$ and its inverse is

$$
D(x, y)=\left(\begin{array}{ll}
x_{r} & y_{r} \\
x_{\theta} & y_{\theta}
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right) \text { and }[D(x, y)]^{-1}=\frac{1}{r}\left(\begin{array}{cc}
r \cos \theta & -\sin \theta \\
r \sin \theta & \cos \theta
\end{array}\right) .
$$

Consider u in the new coordinates, that is $\tilde{u}:=u \circ(x, y)$. We compute

$$
\binom{\tilde{u}_{r}}{\tilde{u}_{\theta}}=\binom{-u_{x} \sin \theta+u_{y} \cos \theta}{u_{x} \cos \theta+u_{y} \sin \theta}=D(x, y)\binom{u_{x}}{u_{y}} .
$$

Here u_{x} and u_{y} is short for $u_{x} \circ(x, y)$ and $u_{y} \circ(x, y)$ respectively. Hence

$$
\binom{u_{x}}{u_{y}}=[D(x, y)]^{-1}\binom{\tilde{u}_{r}}{\tilde{u}_{\theta}}=\binom{\cos \theta \tilde{u}_{r}-\frac{1}{r} \sin \theta \tilde{u}_{\theta}}{\sin \theta \tilde{u}_{r}+\frac{1}{r} \cos \theta \tilde{u}_{\theta}}=\binom{\left(\cos \theta \frac{\partial}{\partial r}-\frac{1}{r} \sin \theta \frac{\partial}{\partial \theta}\right) \tilde{u}}{\left(\sin \theta \frac{r}{\partial r}+\frac{1}{r} \cos \theta \frac{\partial}{\partial \theta}\right) \tilde{u}} .
$$

Hence, the operator $\frac{\partial}{\partial x}$ transform under the coordinate change $x=r \cos \theta, y=r \sin \theta$ into

$$
\frac{\partial}{\partial x}=\cos \theta \frac{\partial}{\partial r}-\frac{1}{r} \sin \theta \frac{\partial}{\partial \theta}
$$

and similar for $\frac{\partial}{\partial y}=\sin \theta \frac{\partial}{\partial r}+\frac{1}{r} \cos \theta \frac{\partial}{\partial \theta}$.

Therefore, it follows

$$
\begin{aligned}
u_{x, x} \circ(x, y)= & \left(\cos \theta \frac{\partial}{\partial r}-\frac{1}{r} \sin \theta \frac{\partial}{\partial \theta}\right)\left(\cos \theta \frac{\partial}{\partial r}-\frac{1}{r} \sin \theta \frac{\partial}{\partial \theta}\right) \tilde{u} \\
= & \left(\cos ^{2} \theta \frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r^{2}} \sin \theta \cos \theta \frac{\partial}{\partial \theta}-\frac{1}{r} \sin \theta \cos \theta \frac{\partial^{2}}{\partial \theta \partial r}+\frac{1}{r} \sin ^{2} \theta \frac{\partial}{\partial r}\right. \\
& \left.-\frac{1}{r} \sin \theta \cos \theta \frac{\partial^{2}}{\partial \theta \partial r}+\frac{1}{r^{2}} \sin \theta \cos \theta \frac{\partial}{\partial \theta}+\frac{1}{r^{2}} \sin ^{2} \theta \frac{\partial^{2}}{\partial \theta^{2}}\right) \tilde{u} .
\end{aligned}
$$

and also

$$
\begin{aligned}
u_{y, y} \circ(x, y)= & \left(\sin \theta \frac{\partial}{\partial r}+\frac{1}{r} \cos \theta \frac{\partial}{\partial \theta}\right)\left(\sin \theta \frac{\partial}{\partial r}+\frac{1}{r} \cos \theta \frac{\partial}{\partial \theta}\right) \tilde{u} \\
= & \left(\sin ^{2} \theta \frac{\partial^{2}}{\partial r^{2}}-\frac{1}{r^{2}} \sin \theta \cos \theta \frac{\partial}{\partial \theta}+\frac{1}{r} \sin \theta \cos \theta \frac{\partial^{2}}{\partial \theta \partial r}+\frac{1}{r} \cos ^{2} \theta \frac{\partial}{\partial r}\right. \\
& \left.+\frac{1}{r} \cos \theta \sin \theta \frac{\partial^{2}}{\partial r \partial \theta}-\frac{1}{r^{2}} \cos \theta \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{r^{2}} \cos ^{2} \theta \frac{\partial^{2}}{\partial \theta^{2}}\right) \tilde{u} .
\end{aligned}
$$

It follows that

$$
u_{x, x} \circ(x, y)+u_{y, y} \circ(x, y)=\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}\right) \tilde{u}=\tilde{u}_{r, r}+\frac{1}{r} \tilde{u}_{r}+\frac{1}{r^{2}} \tilde{u}_{\theta, \theta} .
$$

Corollary

The Laplace operator is invariant w.r.t. rotations of \mathbb{R}^{2} at the center.
Beweis. A rotation is linear transformation w.r.t. θ in polar coordinates.

Spherical Coordinates in \mathbb{R}^{3}

Let us compute the Laplace operator $u_{x, x}+u_{y, y}+u_{z, z}=\Delta u$ in \mathbb{R}^{3} in spherical coordintates

$$
x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, z=r \cos \theta .
$$

For that we first consider cylindrical coordinates

$$
x=s \cos \phi, y=s \sin \phi, z=z
$$

We set $\tilde{u}=u \circ(x, y, z)$. Similar as for polar coordinates we obtain

$$
\left(\begin{array}{l}
u_{x} \\
u_{y} \\
u_{z}
\end{array}\right)=\left(\begin{array}{c}
\cos \phi \tilde{u}_{s}-\frac{1}{s} \sin \phi \tilde{u}_{\phi} \\
\sin \phi \tilde{u}_{s}+\frac{1}{s} \cos \phi \tilde{u}_{\phi} \\
\tilde{u}_{z}
\end{array}\right) \text { and } u_{x, x}+u_{y, y}=\tilde{u}_{s, s}+\frac{1}{s} \tilde{u}_{s}+\frac{1}{s^{2}} \tilde{u}_{\phi, \phi} .
$$

In particular, we see $u_{z}=\tilde{u}_{z}$ and $u_{z, z}=\tilde{u}_{z, z}$.
Then, we apply cylindrical coordinates a second time setting

$$
z=r \cos \theta, s=r \sin \theta, \phi=\phi
$$

and setting $\hat{u}=\tilde{u} \circ(s, \phi, z)$. As before we compute

$$
\tilde{u}_{s}=\sin \theta \hat{u}_{r}+\frac{1}{r} \cos \theta \hat{u}_{\theta}
$$

as well as

$$
\tilde{u}_{s, s}+\tilde{u}_{z, z}=\hat{u}_{r, r}+\frac{1}{r} \hat{u}_{r}+\frac{1}{r^{2}} \hat{u}_{\theta, \theta} \quad \Rightarrow \quad u_{z, z}=\hat{u}_{r, r}+\frac{1}{r} \hat{u}_{r}+\frac{1}{r^{2}} \hat{u}_{\theta, \theta}-\tilde{u}_{s, s}
$$

and in particular $\tilde{u}_{\phi}=\hat{u}_{\phi}$ and $\tilde{u}_{\phi, \phi}=\hat{u}_{\phi, \phi}$.

It follows

$$
\begin{aligned}
u_{x, x}+u_{y, y}+u_{z, z} & =\hat{u}_{r, r}+\frac{1}{r} \hat{u}_{r}++\frac{1}{r^{2}} \hat{u}_{\theta, \theta}+\frac{1}{s} \tilde{u}_{s}+\frac{1}{s^{2}} \tilde{u}_{\phi, \phi} \\
& =\hat{u}_{r, r}+\frac{1}{r} \hat{u}_{r}+\frac{1}{r^{2}} \hat{u}_{\theta, \theta}+\frac{1}{r \sin \theta}\left(\sin \theta \hat{u}_{r}+\frac{1}{r} \cos \theta \hat{u}_{\theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \hat{u}_{\phi, \phi} \\
& =\hat{u}_{r, r}+\frac{2}{r} \hat{u}_{r}+\frac{1}{r^{2}}\left(\hat{u}_{\theta, \theta}+\frac{\cos \theta}{\sin \theta} \hat{u}_{\theta}+\frac{1}{\sin ^{2} \theta} \hat{u}_{\phi, \phi}\right) .
\end{aligned}
$$

We can now look for special solutions of the Laplace equation in \mathbb{R}^{2} or in \mathbb{R}^{3} that only depend on $\sqrt{x^{2}+y^{2}}$ or $\sqrt{x^{2}+y^{2}+z^{2}}$, that is $r>0$ in polar or spherical coordinates. In \mathbb{R}^{2} the Laplace equation for such functions reduces to

$$
0=\tilde{u}_{r, r}+\frac{1}{r} \tilde{u}_{r} \Rightarrow 0=r \tilde{u}_{r, r}+\tilde{u}_{r}=\left(r \tilde{u}_{r}\right)_{r} \Rightarrow c_{1}=r \tilde{u}_{r} .
$$

Hence the solutions are $\tilde{u}(r)=c_{1} \log r+c_{2}$. In Euclidean coordinates

$$
u(x, y)=c_{1} \log \left(\sqrt{x^{2}+y^{2}}\right)+c_{2} .
$$

In \mathbb{R}^{3} the Laplace equation for such functions reduces to

$$
0=\hat{u}_{r, r}+\frac{2}{r} \hat{u}_{r} \Rightarrow 0=r^{2} \hat{u}_{r, r}+2 r \hat{u}_{r} \Rightarrow c_{1}=r^{2} \hat{u}_{r} .
$$

Hence, the solutions are $\hat{u}(r)=-\frac{c_{1}}{r}+c_{2}$. In Euclidean coordinates

$$
u(x, y, z)=-\frac{c_{1}}{\sqrt{x^{2}+y^{2}+z^{2}}}+c_{2}
$$

Application to Newtonian Gravity

Imagine a star in an otherwise empty universe. We model the star as the point $0 \in \mathbb{R}^{3}$ with all its mass concentrated in 0 .
What does Classical Newtonian Gravity tell us about the gravitational forces in the space around the star? We can write Newton's law as the following Poisson equation

$$
\Delta \phi=4 \pi G \rho \text { in } \mathbb{R}^{3} \backslash\{0\} \Rightarrow \frac{1}{4 \pi G} \Delta \phi=\rho \text { in } \mathbb{R}^{3} \backslash\{0\}
$$

where ρ is the mass density in $\mathbb{R}^{3} \backslash\{0\}$.
By assumption the universe is empty in $\mathbb{R}^{3} \backslash\{0\}$. Hence, the mass density ρ is 0 .
Moreover, we assume the Universe is fully isotrop and homogeneous. Hence, the gravitational forces are the same independent of the direction and hend only depend on the distance $r=\sqrt{x^{2}+y^{2}+z^{2}}$ to the star at 0 . Hence, the Poisson equation becomes

$$
\frac{1}{4 \pi G}\left[\tilde{\phi}_{r, r}+\frac{2}{r} \tilde{\phi}_{r}\right]=0
$$

A solution is

$$
\tilde{\phi}(r)=-\frac{4 \pi G m}{r}+c_{2} \text { for constants } m, c_{2}>0
$$

We also assume that very far away from the star there is almost no gravitational pull. Hence $c_{2}=0$ and therefore

$$
\phi(x, y, z)=-\frac{4 \pi G m}{\sqrt{x^{2}+y^{2}+z^{2}}} \text { and } \mathbf{g}(x, y, z)=-\nabla \phi(x, y, z)
$$

where m describes the mass of the star.

