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Some Preliminaries

Given u ∈ C2(U) for an open subset U ⊂ Rn.

Recall that U ⊂ Rn is open if and only if for all x ∈ U we can find εx > 0 such that

{y ∈ Rn : |x − y |2 < εx}=: Bεx (x) ⊂ U

Also recall that U denote the closure of U, that is

U =
{
x ∈ Rn : ∃(xn)n∈N ⊂ U s.t. lim

n→n
xn = x

}
Then, we define U\U = ∂U.

A set W ⊂ Rn is called connected if there don’t exist sets U1,U2 open and disjoint such that
U1 ∩W ,U2 ∩W 6= ∅ and W ⊂ U1 ∪ U2.

Or in other words, W is connected if for any pair of open and disjoint sets U1,U2 such that
W ⊂ U1 ∪ U2 it follows that either W ∩ U1 = ∅ or W ∩ U2 = ∅.
u ∈ C2(U) if and only if all partial derivatives uxi ,xj , i , j = 1 . . . n, exists and are continuous.

Given u ∈ C2(U) the Laplace operator is defined by

n∑
i=1

uxi ,xi =: ∆u

∆ is a map between C2(U) and C0(U).
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Laplace and Poisson Equation

Laplace Equation

u ∈ C2(U) satisfies the Laplace equation in U if

∆u = 0 in U.

A function u ∈ C2(U) for some open connected set U with ∆u = 0 is called harmonic.

In one dimension the Laplace equation becomes

d2

dx2
u(x) = 0

and open, connected sets are intervals of the form (a, b) with a, b ∈ R ∪ {−∞,∞}.
Hence, harmonic functions are linear functions

u(x) = Ax + B, A,B ∈ R.

Poisson Equation

Given f ∈ C0(U) the inhomogeneous version of the Laplace equation

∆u = f on U

is called the Poisson equation.
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If U is a domain with smooth boundary ∂U 6= ∅, then we usually require suplementary boundary
conditions. For the Laplace equation this leads to the following boundary value problems.

Dirichlet Problem

Let g ∈ C0(∂U), Does there exist u ∈ C2(U) ∩ C0(U) such that

∆u = 0 in U

u(x) = g(x) for x ∈ ∂U.

Smooth boundary: ∂U is a smooth (n − 1)-dimensional submanifold in Rn.

In this case there is a unique tangent plan Tx∂U for every x ∈ ∂U and a unique smooth normal
vector field N : ∂U → Rn: 〈N(x), v〉 = 0 for all v ∈ Tx∂U and for all x ∈ ∂U.

Recall u ∈ C1(U) can be defined by saying there exists an open set Ũ such that U ⊂ Ũ and there
exists ũ ∈ C1(Ũ) such that ũ|

U
= u.

Neumann Problem

Let g ∈ C0(∂U), Does there exist u ∈ C2(U) ∩ C1(U) such that

∆u = 0 in U

∂

∂N
u(x) = g(x) for x ∈ ∂U.

MAT351 Partial Differential Equations Lecture 20 December 6, 2020 4 / 12



Physical interpretation of Laplace equation as diffusion in equilibrium
Physically, u ∈ C2(U) with ∆u = 0 describes a distribution in equilibrium in U.

We can think of u as steady state solution of the diffusion equation for higher dimensions:

ut = k∆u.

To see this imagine u(x , t) as the distribution of some quantity in equilibrium in U ⊂ R3, that is
there is no change over time. That is, for any subdomain V ⊂ U we have∫

V
ut(x, t)dx =

d

dt

∫
V
u(x, t)dx = 0.

On the other, d
dt

∫
V u(x, t)dx is equal to the total flux through the boundary of V∫

∂V
〈F(x, t),N(x)〉dx

where F(x, t) ∈ R3, x ∈ U, is the flux density. As in a previous lecture we assume Fick’s law.

The the flux – or directional change of u(x , t) in a point x at time t is proportional to the
gradient ∇u(x, t)

F(x, t) = −k∇u(x, t).

Hence, by the divergence theorem

0 =
d

dt

∫
V
u(x, t)dx =

∫
ut(x, t)dx = k

∫
V

∆xu(x, t)dx

implying that 0 = ut(x, t) = k∆xu(x, t). In particular u(x, t) = u(x) does not depend on t.
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Other Interpretations
Electrostatics.

Electric current is described by a vector field E in a domain U ⊂ R3 that satisfies

Maxwell’s equations Curl(E) =

(
∂E

∂x3
−
∂E

∂x2
,
∂E

∂x2
−
∂E

∂x1
,
∂E

∂x1
−
∂E

∂x3

)
= 0, DivE = 4πρ

where ρ is the charge density of U.

CurlE = 0 in Rn is equivalent to ∫ b

a
〈E ◦ γ(t), γ′(t)〉dt = 0

for any closed curve γ ∈ C1([a, b],Rn) (γ(a) = γ(b) and γ′(a) = γ′(b)).

We know that in this case there exists a potential φ ∈ C2(Rn) such that E = ∇φ.

Hence, the vector field E is the gradient of a potential −φ that satisfies the Poisson equation:

E(x) = −∇φ(x) ⇒ ∆φ = −4πφ(x).

Classical Newtonian Gravity.

Let g be the gravitational force vector field in R3 according to a mass distribution ρ. Again
one has the following laws

Curlg = 0 in R3 and Divg = −4πGρ

G is the gravitational constant.

Hence, there exists a potential function φ such that ∇φ = −g and ∆φ = −4πGρ.
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Fluid dynamics.

Recall the transport equation

ut + 〈V ,∇u〉

for a vector field V ∈ C1(Rn,Rn). We studied this equation a some lectures ago and assume
that

DivV = 0

which means the flow of V is incompressible and there are no sources and sinks.

Now we also ssume V describes an irrotational flow. That means again that

CurlV = 0 in Rn.

We know that in this case there exists a potential φ ∈ C2(Rn) such that V = ∇φ.

Hence, φ satisfies the Laplace equation:

DivV = ∆φ = 0.
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Polar Coordinates in R2

In R2 the Laplace operator is ∆u = ux,x + uy,y = 0.

Let us express ∆ in polar coordinates

(x(r , θ), y(r , θ)) = (r cos θ, r sin θ) for (r , θ) ∈ (0,∞)× [0, 2π).

The differential of the map (r , θ) ∈ (0,∞)× (0, 2π) 7→ (r cos θ, r sin θ) and its inverse is

D(x , y) =

(
xr yr
xθ yθ

)
=

(
cos θ sin θ
−r sin θ r cos θ

)
and [D(x , y)]−1 =

1

r

(
r cos θ − sin θ
r sin θ cos θ

)
.

Consider u in the new coordinates, that is ũ := u ◦ (x , y). We compute(
ũr
ũθ

)
=

(
−ux sin θ + uy cos θ
ux cos θ + uy sin θ

)
= D(x , y)

(
ux
uy

)
.

Here ux and uy is short for ux ◦ (x , y) and uy ◦ (x , y) respectively. Hence(
ux
uy

)
= [D(x , y)]−1

(
ũr
ũθ

)
=

(
cos θũr − 1

r
sin θũθ

sin θũr + 1
r

cos θũθ

)
=

(
(cos θ ∂

∂r
− 1

r
sin θ ∂

∂θ
)ũ

(sin θ ∂
∂r

+ 1
r

cos θ ∂
∂θ

)ũ

)
.

Hence, the operator ∂
∂x

transform under the coordinate change x = r cos θ, y = r sin θ into

∂

∂x
= cos θ

∂

∂r
−

1

r
sin θ

∂

∂θ

and similar for ∂
∂y

= sin θ ∂
∂r

+ 1
r

cos θ ∂
∂θ

.
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Therefore, it follows

ux,x ◦ (x , y) =

(
cos θ

∂

∂r
−

1

r
sin θ

∂

∂θ

)(
cos θ

∂

∂r
−

1

r
sin θ

∂

∂θ

)
ũ

=
(

cos2 θ
∂2

∂r2
+

1

r2
sin θ cos θ

∂

∂θ
−

1

r
sin θ cos θ

∂2

∂θ∂r
+

1

r
sin2 θ

∂

∂r

−
1

r
sin θ cos θ

∂2

∂θ∂r
+

1

r2
sin θ cos θ

∂

∂θ
+

1

r2
sin2 θ

∂2

∂θ2

)
ũ.

and also

uy,y ◦ (x , y) =

(
sin θ

∂

∂r
+

1

r
cos θ

∂

∂θ

)(
sin θ

∂

∂r
+

1

r
cos θ

∂

∂θ

)
ũ

=
(

sin2 θ
∂2

∂r2
−

1

r2
sin θ cos θ

∂

∂θ
+

1

r
sin θ cos θ

∂2

∂θ∂r
+

1

r
cos2 θ

∂

∂r

+
1

r
cos θ sin θ

∂2

∂r∂θ
−

1

r2
cos θ sin θ

∂

∂θ
+

1

r2
cos2 θ

∂2

∂θ2

)
ũ.

It follows that

ux,x ◦ (x , y) + uy,y ◦ (x , y) =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)
ũ = ũr,r +

1

r
ũr +

1

r2
ũθ,θ.

Corollary

The Laplace operator is invariant w.r.t. rotations of R2 at the center.

Beweis. A rotation is linear transformation w.r.t. θ in polar coordinates.
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Spherical Coordinates in R3

Let us compute the Laplace operator ux,x + uy,y + uz,z = ∆u in R3 in spherical coordintates

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ.

For that we first consider cylindrical coordinates

x = s cosφ, y = s sinφ, z = z.

We set ũ = u ◦ (x , y , z). Similar as for polar coordinates we obtainux
uy
uz

 =

cosφũs − 1
s

sinφũφ
sinφũs + 1

s
cosφũφ

ũz

 and ux,x + uy,y = ũs,s +
1

s
ũs +

1

s2
ũφ,φ.

In particular, we see uz = ũz and uz,z = ũz,z .

Then, we apply cylindrical coordinates a second time setting

z = r cos θ, s = r sin θ, φ = φ,

and setting û = ũ ◦ (s, φ, z). As before we compute

ũs = sin θûr +
1

r
cos θûθ

as well as

ũs,s + ũz,z = ûr,r +
1

r
ûr +

1

r2
ûθ,θ ⇒ uz,z = ûr,r +

1

r
ûr +

1

r2
ûθ,θ − ũs,s

and in particularũφ = ûφ and ũφ,φ = ûφ,φ.
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It follows

ux,x + uy,y + uz,z = ûr,r +
1

r
ûr + +

1

r2
ûθ,θ +

1

s
ũs +

1

s2
ũφ,φ

= ûr,r +
1

r
ûr +

1

r2
ûθ,θ +

1

r sin θ

(
sin θûr +

1

r
cos θûθ

)
+

1

r2 sin2 θ
ûφ,φ

= ûr,r +
2

r
ûr +

1

r2

(
ûθ,θ +

cos θ

sin θ
ûθ +

1

sin2 θ
ûφ,φ

)
.

We can now look for special solutions of the Laplace equation in R2 or in R3 that only depend on√
x2 + y2 or

√
x2 + y2 + z2, that is r > 0 in polar or spherical coordinates.

In R2 the Laplace equation for such functions reduces to

0 = ũr,r +
1

r
ũr ⇒ 0 = r ũr,r + ũr = (r ũr )r ⇒ c1 = r ũr .

Hence the solutions are ũ(r) = c1 log r + c2. In Euclidean coordinates

u(x , y) = c1 log
(√

x2 + y2
)

+ c2.

In R3 the Laplace equation for such functions reduces to

0 = ûr,r +
2

r
ûr ⇒ 0 = r2ûr,r + 2r ûr ⇒ c1 = r2ûr .

Hence, the solutions are û(r) = − c1
r

+ c2. In Euclidean coordinates

u(x , y , z) = −
c1√

x2 + y2 + z2
+ c2.
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Application to Newtonian Gravity
Imagine a star in an otherwise empty universe. We model the star as the point 0 ∈ R3 with all its
mass concentrated in 0.

What does Classical Newtonian Gravity tell us about the gravitational forces in the space around
the star? We can write Newton’s law as the following Poisson equation

∆φ = 4πGρ in R3\{0} ⇒
1

4πG
∆φ = ρ in R3\{0}

where ρ is the mass density in R3\{0}.
By assumption the universe is empty in R3\{0}. Hence, the mass density ρ is 0.

Moreover, we assume the Universe is fully isotrop and homogeneous. Hence, the gravitational
forces are the same independent of the direction and hend only depend on the distance
r =

√
x2 + y2 + z2 to the star at 0. Hence, the Poisson equation becomes

1

4πG

[
φ̃r,r +

2

r
φ̃r

]
= 0.

A solution is

φ̃(r) = −
4πGm

r
+ c2 for constants m, c2 > 0.

We also assume that very far away from the star there is almost no gravitational pull. Hence
c2 = 0 and therefore

φ(x , y , z) = −
4πGm√

x2 + y2 + z2
and g(x , y , z) = −∇φ(x , y , z)

where m describes the mass of the star.
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