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Maximum Principle for harmonic functions

Laplace Equation

u € C?(U) satisfies the Laplace equation in U if
Au=0in U.

A function u € C?(U) for some open eennected set U with Au = 0 is called harmonic.

Theorem
Let U C R" be open and let u: U — R be a function such that u € C?(U)N CO(U) be harmonic.

o Weak Maximum Principle: The maximum and the minimum value of u are attained on OU:

max u(x) = max u(x) and minu(x) = min u(x
maxu(x) = ma u(x) and minu(x) = min u(x)

o Strong Maximum Principle: If U is connected and there exists xg € U such that

u(xo) = max u(x) or u(xp) = min u(x)
xeU xeu

then u = const = u(xo).
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Connected sets

A subset W C R" is connected if for any pair of open and disjoint sets U;, Uo C R" such that

W C U; U Us it follows that either W N Uy =0 or W N Uy = 0.

Theorem (Mean Value Property)
Let u € C?(U) be harmonic for U C R" open. Then, it holds

1
u(xg) = ——«+— u(x)dx Vxg € U and VB,(xg) C U.
(0) = VaitE o)) /B o VR (x0)
and
1
= dsi=l v U and VB uU.
u(xo) w1t LBr(xo) o i) s sen o) ©

where w,_1 is the (n — 1)-dimensional surface of 9B1(0) = S"~! = {x € R" : |x| = 1}.
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Proof of the strong maximum principle.

Let u € C?(U) N C°(U) be harmonic for a connected and open subset U C R”".
Assume there exists xg € U such that u(xq) = max__5 u(x) =: M.
We define

xeU

V={xeU:u(x)=M}#0.
as well W = U\V.
Claim: V is open.
Proof of the Claim. Pick x € V and r > 0 such that B,(x) C U. By the mean value property
1

M=o = /as,(x) u(y)dy < M.

Hence
1
0= (u(y) = M)dy =0
vn(r) Jos,(x)
Since u(y) — M <0, it follows u(y) = M on B.(x). Hence B,(x) C V.
Claim: W = U\V is open.
Proof of the Claim. If x € W, then |u(x) — M| > 0. Since u is continuous there exists ¢ such that
ly — x| < & implies |u(y) — u(x)| < M= u(9] (X)‘ . Then it follows that
lu(y) — M| > |u(x) — M| — |u(y) — u(x )| > M > 0. Hence Bs(x) C W and therefore W is
open.

Finally, since U is connected and since V and W are open, either V = () or W = (). But since
xo € V and therefore V # 0, it follows W =0 and U = V. O
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Poisson Formula

Our goal is to solve the Dirichlet problem on a disk B,(0) = {x € R?: |x|> < a} in R
Let B,(0) = {x € R? : |x|]> < a}, and 8B,(0) = B,(0)\Ba(0).

Precisely

Dirichlet Problem for the Laplace equation on B,(0)

Let h € C°(9B4(0)).
Find u € C?(B,(0)) N C°%(B,(0)) such that

Ux,x + uy,y =0 in B3(0)
u=h in 0B,(0)

For that we first consider ux x 4 uy,, = 0 in polar cooardinates:
~ 1. 1.
0= Urr+ —Ur + 7“9,9
r r

where 0(r,0) = u(rcosd,rsin@) and r > 0 and 0 € R.

Similar, we can rewrite the boundary data h as h() = h(acos 6, asin 6).
Note that 71(0), 0 € R, is 2m-periodic.
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We apply the method of separation of variables to the Laplace equation in polar coordinates
(compare with exercise): Assume i(r,0) = R(r)©(6). Then

R"()0(0) + TR'()0(0) = ——R(1)&"(0)
Hence

r2R"(r) + rR'(r) _ o"(0)
R(r) o(0)

= )\ = const.

The general solution for © is

Acos(v/A0) + Bsin(v/A9), A >0,
©0)=¢A+Bx, A=0,
Acosh(v/—A0) + Bsinh(v/—X), A <0
Since © is periodic, we only have to consider the cases A > 0 and A =0 for B = 0.

Moreover, by evaluation of the function for the points 0 and 27 we see that A = n?, n€ NU {0}.
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The equation for R becomes
r2R"(r) + rR'(r) — n?R(0) = 0.

Solutions for n € N are r", r=" and Cr" + Dr=" for C,D € R, and logr, C and C + D log r for
n=0.

Since we are looking for smooth solutions u on B;(0) that are continuous we can assume that
D=0.

Now we consider infinite sums of the form
1
i(r,0) = 7A0 + Z " (An cos(nf) + By sin(nf)) . (1)
Finally, let us bring the boundary condition into play. At r = a we require

h(6) = 7A0 + Z a" (A, cos(nf) + B, sin(nf)). (2)
n=1

So, assuming that h € C1(R) (and 2n-periodic) this is the full Fourier series that converges
uniformily and the Fourier coefficients are uniquely determined by the formulas

1 [7 - 1 o 1 o
= f/ h(¢)do, An = T/ h(0) sin(n¢)dp, Bn = T/ h(¢) cos(ngp)de.
L — a"m J_ amJ_r
Uniform convergence of (2) implies uniform convergence of (1).
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By replacing A, and B, with the Fourier coefficients of h we can rewrite the formula for u as

u(r,0) = - /7T -+ Z( ) (sin(nB) sin(ng) + cos(ng) cos(n@))] h(0)d6

:/:r 1+2Z( ) cos(n(6 — ¢)):| d::

o9 ei® o _n_
Recall cos§ = ==~ and the formula >°°, 2" = 5

1+22( ) cos(n(6 — ¢)) _1+Z( ) &in(0—¢) +Z( ) —in(6—¢)

re (9-4)) re_ (9—({))
a—rell0=¢) = g re=i(0—9)
rei(0=)(a — re=(0=9)) _ re=i(0—=9) (5 — rei(0=9))
(a— rel(0=9))(a — re=i(6—¢))
2_p
a% — ar2cos(6 — ¢) +r2’

=1+

We get

Poisson solution formula for the Laplace equation on the disk

u(r 0) 1 /ﬂ- h(¢)(32 — I‘2) dd)

27 J_n a® — 2arcos(0 — ¢) + r?
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We can also write this formula again in Euclidean coordinates.

For that note that an infinitesimal length segement of the boundary 9B,(0) is given by ds = ad¢
where d¢ is the infinitesimal angle of the segment ds.

Also note that for x = (r,6) and y = (s, ¢) we have

|x —y[2 = r?+ % — 2rscos(f — ¢)
by the cosine rule. It follows that
Poisson formula, second version

2 1y)2 .
u(x) = = /6 )iy,

2ma B,(0) [x — y[?

Theorem

Let h € CO(8B,(0)) be given in polar coordinates by h(acos®, asin6) = h(8) for h € CO(R) that
it 27 periodic. Then the Poisson formula provides the unique harmonic function on B;(0) for
which

lim u(x) = h(xo) Vxo € 9B,(0).

X—>X0
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Proof of the Theorem

Uniqueness follows by the weak maximum principle.

Given the F as in the theorem the Poisson formula yields

a(r,e):/f P(r,6 - 9)h(9) 2 = / P(r, 9)h(6 ~ )5

2

—f? . .
where P(r,0) = m is the Poisson kernel.

We have 3 important facts
e P(r,0) >0 because 0 < r < a and a® —2arcosf + rt > a> — 2ar +r? = (a —r)2.
° ffw P(r, 0)% = 1 by piecewise integration of the previous series.
o P(r,0) solve the Laplace equation on B,(0). Moreover P(r,0) € C([0,a) x R).

The last fact allows us to differentiate under the integral in (3) and we can check that

1 1 T [6? 1 02 .
4 2ot Stna = [ [ 2P00-0)+ T L P(0-6)+ % 5P - )| o) 3

=0

So @i is harmonic on B,(0).
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It remains to prove that @i(r,0) — h(6o) if (r,0) — (a,0).
For that let us consider r € [0, a) such that a — r < §. We have

u(r.0) ~ h(o0) = | P(r.0— 6)[h(&) — h(6o)) 5

-7

d(b

by the second fact.
But P(r,0) is concentrated in & = 0 in the sense that for 0 € (§/2,27 — 6/2) we have

22 22
IP(r. 0)] a2 —2arcos@+r2  (a—r)? 4+ 4arsin?(6/2) ‘ )
for some § > 0 and a — r small. (We used 1 — cos = cos(g - 7) — cos(2 g) =2 sin2(g))
Now we break the integral into two pieces:
0o+6 do d¢
lu(r,8) — h(6o)] S/ P(r,0 = ¢)Ih(¢) — h(Bo)| - + P(r,0 — ¢)|h(¢) — h(bo)| 5~
00—5 T Jig—6g|>6 2r

Given € > 0 we can choose § > 0 small such that |h(¢) — h(6o)| < € for |¢p — 6g| < 4.
Hence, the first integral can be estimated by

L ro -t < [ po- i

For the second integral we use (4) and that h is bounded on 9B,(0) by a constant M:

/ P(r,0 — )2Md¢ < M
(60015

: )
provided |0 — o] < 3
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Application: Mean Value Property, 2n Proof

Let u be harmonic on U and let B/(xo) C U.
We replace u(x) with u(x — xg) and Br(xg) and U with B,(0) with U — xq. By Poisson’s formula

22 2
wo) =5 [ sy = [ Mgy = [ syasty)
27r Ja,0) ly — Ol 2nr JoB,(0) r wir JaB,(0)

MAT351 Partial Differential Equations Lecture 22 December 28, 2020 12/12



