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Maximum Principle for harmonic functions

Laplace Equation

u ∈ C2(U) satisfies the Laplace equation in U if

∆u = 0 in U.

A function u ∈ C2(U) for some open connected set U with ∆u = 0 is called harmonic.

Theorem

Let U ⊂ Rn be open and let u : U → R be a function such that u ∈ C2(U)∩C0(U) be harmonic.

Weak Maximum Principle: The maximum and the minimum value of u are attained on ∂U:

max
x∈U

u(x) = max
x∈∂U

u(x) and min
x∈U

u(x) = min
x∈∂U

u(x)

Strong Maximum Principle: If U is connected and there exists x0 ∈ U such that

u(x0) = max
x∈U

u(x) or u(x0) = min
x∈U

u(x)

then u ≡ const ≡ u(x0).
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Connected sets

A subset W ⊂ Rn is connected if for any pair of open and disjoint sets U1,U2 ⊂ Rn such that
W ⊂ U1 ∪ U2 it follows that either W ∩ U1 = ∅ or W ∩ U2 = ∅.

Theorem (Mean Value Property)

Let u ∈ C2(U) be harmonic for U ⊂ Rn open. Then, it holds

u(x0) =
1

Vol(Br (x0))

∫
Br (x0)

u(x)dx ∀x0 ∈ U and ∀Br (x0) ⊂ U.

and

u(x0) =
1

ωn−1rn−1

∫
∂Br (x0)

u(x)dSn−1
∂Br (x0)

∀x0 ∈ U and ∀Br (x0) ⊂ U.

where ωn−1 is the (n − 1)-dimensional surface of ∂B1(0) = Sn−1 = {x ∈ Rn : |x| = 1}.
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Proof of the strong maximum principle.
Let u ∈ C2(U) ∩ C0(U) be harmonic for a connected and open subset U ⊂ Rn.

Assume there exists x0 ∈ U such that u(x0) = max
x∈U u(x) =: M.

We define

V = {x ∈ U : u(x) = M} 6= ∅.

as well W = U\V .

Claim: V is open.

Proof of the Claim. Pick x ∈ V and r > 0 such that Br (x) ⊂ U. By the mean value property

M = u(x) =
1

vn(r)

∫
∂Br (x)

u(y)dy ≤ M.

Hence

0 =
1

vn(r)

∫
∂Br (x)

(u(y)−M)dy = 0

Since u(y)−M ≤ 0, it follows u(y) = M on Br (x). Hence Br (x) ⊂ V .

Claim: W = U\V is open.

Proof of the Claim. If x ∈W , then |u(x)−M| > 0. Since u is continuous there exists δ such that

|y − x| < δ implies |u(y)− u(x)| ≤ |M−u(x)|
2

. Then it follows that

|u(y)−M| ≥ |u(x)−M| − |u(y)− u(x)| ≥ |M−u(x)|
2

> 0. Hence Bδ(x) ⊂W and therefore W is
open.

Finally, since U is connected and since V and W are open, either V = ∅ or W = ∅. But since
x0 ∈ V and therefore V 6= ∅, it follows W = ∅ and U = V .

MAT351 Partial Differential Equations Lecture 22 December 28, 2020 4 / 12



Poisson Formula

Our goal is to solve the Dirichlet problem on a disk Ba(0) = {x ∈ R2 : |x |2 ≤ a} in R2.

Let Ba(0) = {x ∈ R2 : |x |2 < a}, and ∂Ba(0) = Ba(0)\Ba(0).

Precisely

Dirichlet Problem for the Laplace equation on Ba(0)

Let h ∈ C0(∂Ba(0)).

Find u ∈ C2(Ba(0)) ∩ C0(Ba(0)) such that

ux,x + uy,y = 0 in Ba(0)

u = h in ∂Ba(0)

For that we first consider ux,x + uy,y = 0 in polar cooardinates:

0 = ũr,r +
1

r
ũr +

1

r2
ũθ,θ

where ũ(r , θ) = u(r cos θ, r sin θ) and r > 0 and θ ∈ R.

Similar, we can rewrite the boundary data h as h̃(θ) = h(a cos θ, a sin θ).

Note that h̃(θ), θ ∈ R, is 2π-periodic.
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We apply the method of separation of variables to the Laplace equation in polar coordinates
(compare with exercise): Assume ũ(r , θ) = R(r)Θ(θ). Then

R′′(r)Θ(θ) +
1

r
R′(r)Θ(θ) = −

1

r2
R(r)Θ′′(θ)

Hence

r2R′′(r) + rR′(r)

R(r)
= −

Θ′′(θ)

Θ(θ)
= λ = const.

The general solution for Θ is

Θ(θ) =


A cos(

√
λθ) + B sin(

√
λθ), λ > 0,

A + Bx , λ = 0,

A cosh(
√
−λθ) + B sinh(

√
−λ), λ < 0

Since Θ is periodic, we only have to consider the cases λ > 0 and λ = 0 for B = 0.

Moreover, by evaluation of the function for the points 0 and 2π we see that λ = n2, n ∈ N ∪ {0}.
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The equation for R becomes

r2R′′(r) + rR′(r)− n2R(0) = 0.

Solutions for n ∈ N are rn, r−n and Crn + Dr−n for C ,D ∈ R, and log r , C and C + D log r for
n = 0.

Since we are looking for smooth solutions u on Ba(0) that are continuous we can assume that
D = 0.

Now we consider infinite sums of the form

ũ(r , θ) =
1

2
A0 +

∞∑
n=1

rn (An cos(nθ) + Bn sin(nθ)) . (1)

Finally, let us bring the boundary condition into play. At r = a we require

h̃(θ) =
1

2
A0 +

∞∑
n=1

an (An cos(nθ) + Bn sin(nθ)) . (2)

So, assuming that h̃ ∈ C1(R) (and 2π-periodic) this is the full Fourier series that converges
uniformily and the Fourier coefficients are uniquely determined by the formulas

A0 =
1

π

∫ π

−π
h̃(φ)dφ, An =

1

anπ

∫ π

−π
h̃(θ) sin(nφ)dφ, Bn =

1

anπ

∫ π

−π
h̃(φ) cos(nφ)dφ.

Uniform convergence of (2) implies uniform convergence of (1).
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By replacing An and Bn with the Fourier coefficients of h we can rewrite the formula for u as

ũ(r , θ) =
1

π

∫ π

−π

[
1

2
+
∞∑
n=1

( r
a

)n
(sin(nθ) sin(nφ) + cos(nφ) cos(nθ))

]
h(θ)dθ

=

∫ π

−π

[
1 + 2

∞∑
n=1

( r
a

)n
cos(n(θ − φ))

]
dπ

2π

Recall cos θ = e iθ+e iθ

2
and the formula

∑∞
n=1 z

n = z
1−z

for z ∈ C with |z| < 1. Hence

1 + 2
∞∑
n=1

( r
a

)n
cos(n(θ − φ)) = 1 +

∞∑
n=1

( r
a

)n
e in(θ−φ) +

∞∑
n=1

( r
a

)n
e−in(θ−φ)

= 1 +
re i(θ−φ)

a− re i(θ−φ)
+

re−i(θ−φ)

a− re−i(θ−φ)

= 1 +
re i(θ−φ)(a− re−i(θ−φ))− re−i(θ−φ)(a− re i(θ−φ))

(a− re i(θ−φ))(a− re−i(θ−φ))

=
a2 − r2

a2 − ar2 cos(θ − φ) + r2
.

We get

Poisson solution formula for the Laplace equation on the disk

ũ(r , θ) =
1

2π

∫ π

−π

h(φ)(a2 − r2)

a2 − 2ar cos(θ − φ) + r2
dφ
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We can also write this formula again in Euclidean coordinates.

For that note that an infinitesimal length segement of the boundary ∂Ba(0) is given by ds = adφ
where dφ is the infinitesimal angle of the segment ds.

Also note that for x = (r , θ) and y = (s, φ) we have

|x− y|2 = r2 + s2 − 2rs cos(θ − φ)

by the cosine rule. It follows that

Poisson formula, second version

u(x) =
a2 − |x|2

2πa

∫
∂Ba(0)

u(y)

|x− y|2
ds(y).

Theorem

Let h ∈ C0(∂Ba(0)) be given in polar coordinates by h(a cos θ, a sin θ) = h̃(θ) for h̃ ∈ C0(R) that
it 2π periodic. Then the Poisson formula provides the unique harmonic function on Ba(0) for
which

lim
x→x0

u(x) = h(x0) ∀x0 ∈ ∂Ba(0).
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Proof of the Theorem

Uniqueness follows by the weak maximum principle.

Given the h̃ as in the theorem the Poisson formula yields

ũ(r , θ) =

∫ π

−π
P(r , θ − φ)h̃(φ)

dφ

2π
=

∫ π

−π
P(r , φ)h̃(θ − φ)

dφ

2π
(3)

where P(r , θ) = a2−r2

a2−2ar cos θ+r2 is the Poisson kernel.

We have 3 important facts

P(r , θ) > 0 because 0 < r < a and a2 − 2ar cos θ + r1 ≥ a2 − 2ar + r2 = (a− r)2.∫ π
−π P(r , θ) dθ

2π
= 1 by piecewise integration of the previous series.

P(r , θ) solve the Laplace equation on Ba(0). Moreover P(r , θ) ∈ C2([0, a)× R).

The last fact allows us to differentiate under the integral in (3) and we can check that

ũr,r +
1

r
ũr +

1

r2
ũθ,θ =

∫ π

−π

[
∂2

∂r2
P(r , θ − φ) +

1

r

∂

∂r
P(r , θ − φ) +

1

r2

∂2

∂θ2
P(r , θ − φ)

]
︸ ︷︷ ︸

=0

h̃(φ)
dφ

2π
.

So ũ is harmonic on Ba(0).
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It remains to prove that ũ(r , θ)→ h(θ0) if (r , θ)→ (a, θ).

For that let us consider r ∈ [0, a) such that a− r < δ. We have

u(r , θ)− h(θ0) =

∫ π

−π
P(r , θ − φ)[h(φ)− h(θ0)]

dφ

2π

by the second fact.

But P(r , θ) is concentrated in θ = 0 in the sense that for θ ∈ (δ/2, 2π − δ/2) we have

|P(r , θ)| =
a2 − r2

a2 − 2ar cos θ + r2
=

a2 − r2

(a− r)2 + 4ar sin2(θ/2)
< ε. (4)

for some δ > 0 and a− r small. (We used 1− cos θ = cos( θ
2
− θ

2
)− cos( θ

2
+ θ

2
) = −2 sin2( θ

2
))

Now we break the integral into two pieces:

|u(r , θ)− h(θ0)| ≤
∫ θ0+δ

θ0−δ
P(r , θ − φ)|h(φ)− h(θ0)|

dφ

2π
+

∫
|φ−θ0|>δ

P(r , θ − φ)|h(φ)− h(θ0)|
dφ

2π

Given ε > 0 we can choose δ > 0 small such that |h(φ)− h(θ0)| < ε for |φ− θ0| < δ.

Hence, the first integral can be estimated by∫ θ0+δ

θ0−δ
P(r , θ − φ)ε

dφ

2π
≤
∫ π

−π
P(r , θ − φ)

dφ

2π
= ε.

For the second integral we use (4) and that h is bounded on ∂Ba(0) by a constant M:∫
|φ−θ0|>δ

P(r , θ − φ)2M
dφ

2π
≤ ε2M

provided |θ − θ0| < δ
2

.

MAT351 Partial Differential Equations Lecture 22 December 28, 2020 11 / 12



Application: Mean Value Property, 2n Proof

Let u be harmonic on U and let Br (x0) ⊂ U.

We replace u(x) with u(x− x0) and Br (x0) and U with Br (0) with U − x0. By Poisson’s formula

u(0) =
r2 − 02

2πr

∫
∂Br (0)

u(y)

|y − 0|2
ds(y) =

r2

2πr

∫
∂Br (0)

u(y)

r2
ds(y) =

1

ω1r

∫
∂Br (0)

f (y)ds(y).
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