MAT351 Partial Differential Equations Lecture 22

December 28, 2020

Maximum Principle for harmonic functions

Laplace Equation

$u \in C^{2}(U)$ satisfies the Laplace equation in U if

$$
\Delta u=0 \text { in } U .
$$

A function $u \in C^{2}(U)$ for some open connected set U with $\Delta u=0$ is called harmonic.

Theorem

Let $U \subset \mathbb{R}^{n}$ be open and let $u: \bar{U} \rightarrow \mathbb{R}$ be a function such that $u \in C^{2}(U) \cap C^{0}(\bar{U})$ be harmonic.

- Weak Maximum Principle: The maximum and the minimum value of u are attained on ∂U :

$$
\max _{x \in \bar{U}} u(x)=\max _{x \in \partial U} u(x) \text { and } \min _{x \in \bar{U}} u(x)=\min _{x \in \partial U} u(x)
$$

- Strong Maximum Principle: If U is connected and there exists $x_{0} \in U$ such that

$$
u\left(x_{0}\right)=\max _{x \in \bar{U}} u(x) \text { or } u\left(x_{0}\right)=\min _{x \in \bar{U}} u(x)
$$

then $u \equiv$ const $\equiv u\left(x_{0}\right)$.

Connected sets

A subset $W \subset \mathbb{R}^{n}$ is connected if for any pair of open and disjoint sets $U_{1}, U_{2} \subset \mathbb{R}^{n}$ such that $W \subset U_{1} \cup U_{2}$ it follows that either $W \cap U_{1}=\emptyset$ or $W \cap U_{2}=\emptyset$.

Theorem (Mean Value Property)

Let $u \in C^{2}(U)$ be harmonic for $U \subset \mathbb{R}^{n}$ open. Then, it holds

$$
u\left(\mathrm{x}_{0}\right)=\frac{1}{\operatorname{Vol}\left(B_{r}\left(\mathrm{x}_{0}\right)\right)} \int_{B_{r}\left(x_{0}\right)} u(\mathrm{x}) d \mathrm{x} \quad \forall \mathrm{x}_{0} \in U \text { and } \forall B_{r}\left(\mathrm{x}_{0}\right) \subset U
$$

and

$$
u\left(\mathrm{x}_{0}\right)=\frac{1}{\omega_{n-1} r^{n-1}} \int_{\partial B_{r}\left(\mathrm{x}_{0}\right)} u(\mathbf{x}) d \mathcal{S}_{\partial B_{r}\left(\mathrm{x}_{0}\right)}^{n-1} \forall x_{0} \in U \text { and } \forall B_{r}\left(\mathrm{x}_{0}\right) \subset U .
$$

where ω_{n-1} is the $(n-1)$-dimensional surface of $\partial B_{1}(0)=\mathbb{S}^{n-1}=\left\{\mathbf{x} \in \mathbb{R}^{n}:|\mathbf{x}|=1\right\}$.

Proof of the strong maximum principle.

Let $u \in C^{2}(U) \cap C^{0}(\bar{U})$ be harmonic for a connected and open subset $U \subset \mathbb{R}^{n}$.
Assume there exists $\mathrm{x}_{0} \in U$ such that $u\left(\mathrm{x}_{0}\right)=\max _{\mathrm{x} \in \bar{U}} u(\mathbf{x})=: M$.
We define

$$
V=\{\mathbf{x} \in U: u(\mathbf{x})=M\} \neq \emptyset
$$

as well $W=U \backslash V$.
Claim: V is open.
Proof of the Claim. Pick $\mathbf{x} \in V$ and $r>0$ such that $B_{r}(\mathbf{x}) \subset U$. By the mean value property

$$
M=u(\mathbf{x})=\frac{1}{v_{n}(r)} \int_{\partial B_{r}(\mathbf{x})} u(\mathbf{y}) d \mathbf{y} \leq M .
$$

Hence

$$
0=\frac{1}{v_{n}(r)} \int_{\partial B_{r}(\mathbf{x})}(u(\mathbf{y})-M) d \mathbf{y}=0
$$

Since $u(\mathbf{y})-M \leq 0$, it follows $u(\mathbf{y})=M$ on $B_{r}(\mathbf{x})$. Hence $B_{r}(\mathbf{x}) \subset V$.
Claim: $W=U \backslash V$ is open.
Proof of the Claim. If $\mathbf{x} \in W$, then $|u(\mathbf{x})-M|>0$. Since u is continuous there exists δ such that $|\mathbf{y}-\mathbf{x}|<\delta$ implies $|u(\mathbf{y})-u(\mathbf{x})| \leq \frac{|M-u(\mathbf{x})|}{2}$. Then it follows that $|u(\mathbf{y})-M| \geq|u(\mathbf{x})-M|-|u(\mathbf{y})-u(\mathbf{x})| \geq \frac{|M-u(\mathbf{x})|}{2}>0$. Hence $B_{\delta}(\mathbf{x}) \subset W$ and therefore W is open.
Finally, since U is connected and since V and W are open, either $V=\emptyset$ or $W=\emptyset$. But since $\mathrm{x}_{0} \in V$ and therefore $V \neq \emptyset$, it follows $W=\emptyset$ and $U=V$.

Poisson Formula

Our goal is to solve the Dirichlet problem on a disk $\overline{B_{a}(0)}=\left\{x \in \mathbb{R}^{2}:|x|_{2} \leq a\right\}$ in \mathbb{R}^{2}.
Let $B_{a}(0)=\left\{x \in \mathbb{R}^{2}:|x|_{2}<a\right\}$, and $\partial B_{a}(0)=\overline{B_{a}(0)} \backslash B_{a}(0)$.
Precisely

Dirichlet Problem for the Laplace equation on $B_{a}(0)$

Let $h \in C^{0}\left(\partial B_{a}(0)\right)$.
Find $u \in C^{2}\left(B_{a}(0)\right) \cap C^{0}\left(\overline{B_{a}(0)}\right)$ such that

$$
\begin{aligned}
u_{x, x}+u_{y, y}=0 & \text { in } B_{a}(0) \\
u=h & \text { in } \partial B_{a}(0)
\end{aligned}
$$

For that we first consider $u_{x, x}+u_{y, y}=0$ in polar cooardinates:

$$
0=\tilde{u}_{r, r}+\frac{1}{r} \tilde{u}_{r}+\frac{1}{r^{2}} \tilde{u}_{\theta, \theta}
$$

where $\tilde{u}(r, \theta)=u(r \cos \theta, r \sin \theta)$ and $r>0$ and $\theta \in \mathbb{R}$.
Similar, we can rewrite the boundary data h as $\tilde{h}(\theta)=h(a \cos \theta, a \sin \theta)$.
Note that $\tilde{h}(\theta), \theta \in \mathbb{R}$, is 2π-periodic.

We apply the method of separation of variables to the Laplace equation in polar coordinates (compare with exercise): Assume $\tilde{u}(r, \theta)=R(r) \Theta(\theta)$. Then

$$
R^{\prime \prime}(r) \Theta(\theta)+\frac{1}{r} R^{\prime}(r) \Theta(\theta)=-\frac{1}{r^{2}} R(r) \Theta^{\prime \prime}(\theta)
$$

Hence

$$
\frac{r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)}{R(r)}=-\frac{\Theta^{\prime \prime}(\theta)}{\Theta(\theta)}=\lambda=\text { const. }
$$

The general solution for Θ is

$$
\Theta(\theta)=\left\{\begin{array}{l}
A \cos (\sqrt{\lambda} \theta)+B \sin (\sqrt{\lambda} \theta), \quad \lambda>0, \\
A+B x, \quad \lambda=0, \\
A \cosh (\sqrt{-\lambda} \theta)+B \sinh (\sqrt{-\lambda}), \quad \lambda<0
\end{array}\right.
$$

Since Θ is periodic, we only have to consider the cases $\lambda>0$ and $\lambda=0$ for $B=0$.
Moreover, by evaluation of the function for the points 0 and 2π we see that $\lambda=n^{2}, n \in \mathbb{N} \cup\{0\}$.

The equation for R becomes

$$
r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)-n^{2} R(0)=0
$$

Solutions for $n \in \mathbb{N}$ are r^{n}, r^{-n} and $C r^{n}+D r^{-n}$ for $C, D \in \mathbb{R}$, and $\log r, C$ and $C+D \log r$ for $n=0$.
Since we are looking for smooth solutions u on $B_{a}(0)$ that are continuous we can assume that $D=0$.
Now we consider infinite sums of the form

$$
\begin{equation*}
\tilde{u}(r, \theta)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty} r^{n}\left(A_{n} \cos (n \theta)+B_{n} \sin (n \theta)\right) \tag{1}
\end{equation*}
$$

Finally, let us bring the boundary condition into play. At $r=a$ we require

$$
\begin{equation*}
\tilde{h}(\theta)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty} a^{n}\left(A_{n} \cos (n \theta)+B_{n} \sin (n \theta)\right) . \tag{2}
\end{equation*}
$$

So, assuming that $\tilde{h} \in C^{1}(\mathbb{R})$ (and 2π-periodic) this is the full Fourier series that converges uniformily and the Fourier coefficients are uniquely determined by the formulas

$$
A_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} \tilde{h}(\phi) d \phi, A_{n}=\frac{1}{a^{n} \pi} \int_{-\pi}^{\pi} \tilde{h}(\theta) \sin (n \phi) d \phi, B_{n}=\frac{1}{a^{n} \pi} \int_{-\pi}^{\pi} \tilde{h}(\phi) \cos (n \phi) d \phi .
$$

Uniform convergence of (2) implies uniform convergence of (1).

By replacing A_{n} and B_{n} with the Fourier coefficients of h we can rewrite the formula for u as

$$
\begin{aligned}
\tilde{u}(r, \theta) & =\frac{1}{\pi} \int_{-\pi}^{\pi}\left[\frac{1}{2}+\sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^{n}(\sin (n \theta) \sin (n \phi)+\cos (n \phi) \cos (n \theta))\right] h(\theta) d \theta \\
& =\int_{-\pi}^{\pi}\left[1+2 \sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^{n} \cos (n(\theta-\phi))\right] \frac{d \pi}{2 \pi}
\end{aligned}
$$

Recall $\cos \theta=\frac{e^{i \theta}+e^{i \theta}}{2}$ and the formula $\sum_{n=1}^{\infty} z^{n}=\frac{z}{1-z}$ for $z \in \mathbb{C}$ with $|z|<1$. Hence

$$
\begin{aligned}
1+2 \sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^{n} \cos (n(\theta-\phi)) & =1+\sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^{n} e^{i n(\theta-\phi)}+\sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^{n} e^{-i n(\theta-\phi)} \\
& =1+\frac{r e^{i(\theta-\phi)}}{a-r e^{i(\theta-\phi)}}+\frac{r e^{-i(\theta-\phi)}}{a-r e^{-i(\theta-\phi)}} \\
& =1+\frac{r e^{i(\theta-\phi)}\left(a-r e^{-i(\theta-\phi)}\right)-r e^{-i(\theta-\phi)}\left(a-r e^{i(\theta-\phi)}\right)}{\left(a-r e^{i(\theta-\phi)}\right)\left(a-r e^{-i(\theta-\phi)}\right)} \\
& =\frac{a^{2}-r^{2}}{a^{2}-a r 2 \cos (\theta-\phi)+r^{2}}
\end{aligned}
$$

We get
Poisson solution formula for the Laplace equation on the disk

$$
\tilde{u}(r, \theta)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{h(\phi)\left(a^{2}-r^{2}\right)}{a^{2}-2 a r \cos (\theta-\phi)+r^{2}} d \phi
$$

We can also write this formula again in Euclidean coordinates.
For that note that an infinitesimal length segement of the boundary $\partial B_{a}(0)$ is given by $d s=a d \phi$ where $d \phi$ is the infinitesimal angle of the segment $d s$.
Also note that for $\mathbf{x}=(r, \theta)$ and $\mathbf{y}=(s, \phi)$ we have

$$
|\mathbf{x}-\mathbf{y}|^{2}=r^{2}+s^{2}-2 r s \cos (\theta-\phi)
$$

by the cosine rule. It follows that

Poisson formula, second version

$$
u(\mathbf{x})=\frac{a^{2}-|\mathbf{x}|^{2}}{2 \pi a} \int_{\partial B_{a}(0)} \frac{u(\mathbf{y})}{|\mathbf{x}-\mathbf{y}|^{2}} d s(\mathbf{y}) .
$$

Theorem

Let $h \in C^{0}\left(\partial B_{a}(0)\right)$ be given in polar coordinates by $h(a \cos \theta, a \sin \theta)=\tilde{h}(\theta)$ for $\tilde{h} \in C^{0}(\mathbb{R})$ that it 2π periodic. Then the Poisson formula provides the unique harmonic function on $B_{a}(0)$ for which

$$
\lim _{x \rightarrow x_{0}} u(\mathbf{x})=h\left(\mathbf{x}_{0}\right) \forall \mathrm{x}_{0} \in \partial B_{a}(0) .
$$

Proof of the Theorem

Uniqueness follows by the weak maximum principle.
Given the \tilde{h} as in the theorem the Poisson formula yields

$$
\begin{equation*}
\tilde{u}(r, \theta)=\int_{-\pi}^{\pi} P(r, \theta-\phi) \tilde{h}(\phi) \frac{d \phi}{2 \pi}=\int_{-\pi}^{\pi} P(r, \phi) \tilde{h}(\theta-\phi) \frac{d \phi}{2 \pi} \tag{3}
\end{equation*}
$$

where $P(r, \theta)=\frac{a^{2}-r^{2}}{a^{2}-2 a r \cos \theta+r^{2}}$ is the Poisson kernel.
We have 3 important facts

- $P(r, \theta)>0$ because $0<r<a$ and $a^{2}-2 a r \cos \theta+r^{1} \geq a^{2}-2 a r+r^{2}=(a-r)^{2}$.
- $\int_{-\pi}^{\pi} P(r, \theta) \frac{d \theta}{2 \pi}=1$ by piecewise integration of the previous series.
- $P(r, \theta)$ solve the Laplace equation on $B_{a}(0)$. Moreover $P(r, \theta) \in C^{2}([0, a) \times \mathbb{R})$.

The last fact allows us to differentiate under the integral in (3) and we can check that

$$
\tilde{u}_{r, r}+\frac{1}{r} \tilde{u}_{r}+\frac{1}{r^{2}} \tilde{u}_{\theta, \theta}=\int_{-\pi}^{\pi} \underbrace{\left[\frac{\partial^{2}}{\partial r^{2}} P(r, \theta-\phi)+\frac{1}{r} \frac{\partial}{\partial r} P(r, \theta-\phi)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} P(r, \theta-\phi)\right]}_{=0} \tilde{h}(\phi) \frac{d \phi}{2 \pi} .
$$

So \tilde{u} is harmonic on $B_{a}(0)$.

It remains to prove that $\tilde{u}(r, \theta) \rightarrow h\left(\theta_{0}\right)$ if $(r, \theta) \rightarrow(a, \theta)$.
For that let us consider $r \in[0, a)$ such that $a-r<\delta$. We have

$$
u(r, \theta)-h\left(\theta_{0}\right)=\int_{-\pi}^{\pi} P(r, \theta-\phi)\left[h(\phi)-h\left(\theta_{0}\right)\right] \frac{d \phi}{2 \pi}
$$

by the second fact.
But $P(r, \theta)$ is concentrated in $\theta=0$ in the sense that for $\theta \in(\delta / 2,2 \pi-\delta / 2)$ we have

$$
\begin{equation*}
|P(r, \theta)|=\frac{a^{2}-r^{2}}{a^{2}-2 a r \cos \theta+r^{2}}=\frac{a^{2}-r^{2}}{(a-r)^{2}+4 a r \sin ^{2}(\theta / 2)}<\epsilon \tag{4}
\end{equation*}
$$

for some $\delta>0$ and $a-r$ small. (We used $\left.1-\cos \theta=\cos \left(\frac{\theta}{2}-\frac{\theta}{2}\right)-\cos \left(\frac{\theta}{2}+\frac{\theta}{2}\right)=-2 \sin ^{2}\left(\frac{\theta}{2}\right)\right)$ Now we break the integral into two pieces:

$$
\left|u(r, \theta)-h\left(\theta_{0}\right)\right| \leq \int_{\theta_{0}-\delta}^{\theta_{0}+\delta} P(r, \theta-\phi)\left|h(\phi)-h\left(\theta_{0}\right)\right| \frac{d \phi}{2 \pi}+\int_{\left|\phi-\theta_{0}\right|>\delta} P(r, \theta-\phi)\left|h(\phi)-h\left(\theta_{0}\right)\right| \frac{d \phi}{2 \pi}
$$

Given $\epsilon>0$ we can choose $\delta>0$ small such that $\left|h(\phi)-h\left(\theta_{0}\right)\right|<\epsilon$ for $\left|\phi-\theta_{0}\right|<\delta$. Hence, the first integral can be estimated by

$$
\int_{\theta_{0}-\delta}^{\theta_{0}+\delta} P(r, \theta-\phi) \epsilon \frac{d \phi}{2 \pi} \leq \int_{-\pi}^{\pi} P(r, \theta-\phi) \frac{d \phi}{2 \pi}=\epsilon .
$$

For the second integral we use (4) and that h is bounded on $\partial B_{a}(0)$ by a constant M :

$$
\int_{\left|\phi-\theta_{0}\right|>\delta} P(r, \theta-\phi) 2 M \frac{d \phi}{2 \pi} \leq \epsilon 2 M
$$

provided $\left|\theta-\theta_{0}\right|<\frac{\delta}{2}$.

Application: Mean Value Property, 2n Proof

Let u be harmonic on U and let $B_{r}\left(x_{0}\right) \subset U$.
We replace $u(\mathbf{x})$ with $u\left(\mathbf{x}-\mathrm{x}_{0}\right)$ and $B_{r}\left(\mathrm{x}_{0}\right)$ and U with $B_{r}(0)$ with $U-\mathrm{x}_{0}$. By Poisson's formula

$$
u(0)=\frac{r^{2}-0^{2}}{2 \pi r} \int_{\partial B_{r}(0)} \frac{u(\mathbf{y})}{|\mathbf{y}-0|^{2}} d s(\mathbf{y})=\frac{r^{2}}{2 \pi r} \int_{\partial B_{r}(0)} \frac{u(\mathbf{y})}{r^{2}} d s(\mathbf{y})=\frac{1}{\omega_{1} r} \int_{\partial B_{r}(0)} f(\mathbf{y}) d s(\mathbf{y}) .
$$

