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Last Lecture
A PDE

F (x, u,D1u, . . . ,Dk u) = g(x) for x ∈ Ω

is linear if the map

(θ, θ1, . . . , θk ) 7→ F (x, θ, θ1, . . . , θk )

is linear for all x ∈ Ω.

The PDE is called homogeneous if g ≡ 0, otherwise the PDE is called nonhomogeneous.

There is a linear map

L : C k (Ω)→ C 0(Ω), Lu = F (x, u,D1u, . . . ,Dk u).

We call L : C k (Ω)→ C 0(Ω) Linear Differential Operator.

Example (Linear PDE of order 2)

Lu :=
n∑

i,j=1

ai,j (x)uxi ,xj +
n∑

k=1

bk (x)uxk + c(x)u.

If ai,j (x) = δi,j = 1 if i = j and δi,j = 0 if i 6= j (delta function), bk ≡ 0 and c ≡ 0, then

Lu =
n∑

i=1

uxi ,xi = ∆u is called the Laplace operator.
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Important Theorems

V = (V 1, . . . ,V n) : Ω ⊂ Rn → Rn is in C k (Ω,Rn) if V i ∈ C k (Ω), i = 1, . . . , n.

U,V ⊂ Rn open. Φ : U → V is a C k -diffeomorphism if Φ is one-to-one and onto and
Φ ∈ C k (U,Rn) and Φ−1 ∈ C k (V ,Rn).

Theorem (Transformation formula)

Let U,V ⊂ Rn be open and let Φ : U → V be a C 1-diffeomorphism. Then, a function f : V → R
is integrable if and only if (f ◦ Φ)| det DΦ| : U → R is integrable. Moreover, it holds∫

V
f (x)dx =

∫
U

f ◦ Φ(y)| det DΦ(y)|dy.

Theorem (Divergence (also Gauss) Theorem)

Let Ω ⊂ Rn be closed and bounded with smooth boundary ∂Ω. Let N : ∂Ω→ Rn be the outer

unit normal vector field of S. Let V ∈ C 1(Ω,Rn). Then∫
∂Ω

N · VdS =

∫
Ω
∇ · Vdx.

The Divergence Theorem generalizes the Fundamental Theorem of Calculus:

f (b)− f (a) =

∫ b

a
f ′(x)dx , f ∈ C 1([a, b]).
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Simple Transport Equation

Let

V : Rn → Rn, V ∈ C 1(Rn,Rn), ∇ · V = 0 and V (x) 6= 0 for all x ∈ Rn.

We imagine a medium in Rn that moves with a speed that is equal to V (x) at any point x ∈ Rn.

Solve d
dt
γx (t) = V ◦ γx (t), γx (0) = x . The flow of V is the map

Φ : Rn → Rn, Φt (x) = γx (t).

Φt : Rn → Rn is a C 1-diffeomorphism.

Let u(x , t) be the density of a substance Ψ that is released “into” the flow of V .

What is the evolution law for u?

Let Ω ⊂ Rn be any open domain and bounded. We assume:∫
Ω

u(x, t)dx =

∫
φh(Ω)

u(y, t + h)dy

Φt |Ω : Ω→ Φt (Ω) is a C 1-diffeomorphism. The transformation formula yields∫
Ω

u(x, t)dx =

∫
Φh(Ω)

u(y, t + h)dy =

∫
Ω

u(Φh(x), t + h)| det DΦh(x)|dx.
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Since Ω was arbitrary, we get

u(x, t) = u(φh(x), t + h) det DΦt (x).

Differentiate w.r.t. h at h = 0 on both sides:

0 = ∇x u ·
d

dh
|h=0Φ0(x)︸ ︷︷ ︸

V (x)

+ut (x, t) + u( Φ0(x)︸ ︷︷ ︸
γx (0)=x

, t)
d

dh
|h=0 det DΦh(x).

The matrix D(φh) is invertible, DΦ0 = En and (x, h) 7→ Φh(x) = γx(h) is a C 2 map.

Hence h 7→ D(Φh)(x) =: A(h) is differentiable at h = 0.

d

dh
|h=0 det A(h) = det A(0) trace[A−1(0)

d

dh
|h=0A(h)] = trace[

d

dh
|h=0A(h)]

On the other hand we can compute that

d

dh
|h=0DΦh(x) = D

d

dh
|h=0Φh(x) = DV (x)

It follows

d

dh
|h=0 det DΦh = trace DV = ∇ · V = 0.

So the PDE that governs u(x, t) is

ut + V · ∇u = 0.
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Simple Transport, revisited
Let us think the previous model from a different perspective.

We set ∫
Ω

u(x, t)dx = M(Ω, t).

Then

d

dt
M(Ω, t) =

d

dt

∫
Ω

u(x, t)dx =

∫
Ω

ut (x, t)dx

How can we understand the change of M(Ω, t) in time t?

Let F(x, t) = Ft (x) ∈ Rn the (infinitesimal) rate and direction of change of u in x at time t:

F(x, t) = u(x, t)V (x).

The total flux of u through ∂Ω is then∫
∂Ω

N(x) · F (x, t)dS(x) =

∫
∂Ω

N(x) · u(x, t)V (x)dS(x),

the net value of how much of the substance Ψ has flown in and out of Ω.

But clearly

d

dt
M(Ω, t) =

∫
∂Ω

N(x) · u(x, t)V (x)dS(x)
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Applying the divergence theorem yields∫
Ω

ut (x, t)dx =

∫
Ω
∇ · [u(x, t)V (x)] dx = (1)

By the chain rule this becomes

(1) =

∫
Ω

[
∇u(x, t) · V (x) + u(x, t)∇ · V (x)︸ ︷︷ ︸

=0

]
dx =

∫
∇u(x, t) · V (x)dx.

Since Ω was arbitrary, it follows

ut + V (x) · ∇u = 0.
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Diffusion equation
Imagine a liquid in 3D or higher.

Let u(x, t) be a concentrations function of substance Ψ released into the liquid.

The substance Ψ moves from regions with higher concentration to regions with lower
concentrations. We call this process Diffusion.

The rate and direction of change of Ψ in x and t is proportional to the gradient of u w.r.t.
x ∈ Rn at time t.This is known as Fick’s law:

F(x, t) = λ∇xu(x, t) = λ

ux1 (x, t)
. . .

uxn (x, t)

 .

Let Ω be a compact domain with smooth boundary. Let

M(Ω, t) =

∫
Ω

u(x, t)dx and
d

dt
M(Ω, t) =

∫
Ω

ut (x, t)dx

d
dt

M(Ω, t) is equal to the total flux through the boundary ∂Ω. Hence∫
Ω

ut (x, t)dx =

∫
∂Ω

N(x) · F(x, t)dS(x) = λ

∫
∂Ω

N · ∇udS(x).

Hence, by the divergence theorem∫
Ω

ut (x, t)dx = λ

∫
Ω
∇ · ∇u(x, t)dx = λ

∫
Ω

∆u(x, t)dx.

Since Ω ⊂ Rn was arbitrary, it follows ut = λ∆u.
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Nonlinear Scalar Conservation Laws
Imagine a “flowing” substance Ψ.

What if the infinitesimal flux F(x, t) of Ψ in x at time t depends on the concentration function u
in x at time t?

We assume there exists f : R→ Rn such that F(x, t) = f ◦ u(x, t).

Then

d

dt

∫
Ω

u(x, t) =

∫
∂Ω

N(x) · f ◦ u(x, t)dS(x)

As before by the divergence theorem and differentiating under the integral we obtain∫
Ω

ut (x, t)dx =

∫
Ω
∇ · ◦ udx =

∫
Ω

f′(u)(x) · ∇u(x)dx

where

f′(r) =

f′1(r)
. . .

f′n(r)

 .

Example

Consider the 1D case (for instance traffic in a street). Let f(r) = 1
2

r2.

Then f′(r) = r . The corresponding PDE

ut + uux = 0

is the inviscid Burger’s equation.
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Theorem (Fundamental Theorem of Calculus of Variations)

Consider f ∈ C 0(Rn). If∫
f (x)ϕ(x)dx = 0 ∀ϕ ∈ C 0

c (Rn), ϕ ≥ 0 =⇒ f ≡ 0.

Proof. Assume the contrary. We will derive a contradiction.

If f 6= 0, then there exists at least x0 ∈ Rn such that f (x0) 6= 0.

We can assume f (x0) > 0 (otherwise replace f with −f , this does not change
∫

f ϕdx = 0).

In particular, there exist ε > 0 such that f (x0)− ε > 0.

Since f is continuous, there exists δ = δ(ε) > 0 such that

f −1(Bε(f (x0))) = f −1({r ∈ R : |f (x0)− r | < ε}) ⊂ {x ∈ Rn : |x− x0|2 < δ} =: Bδ(x0)

where |x|2 =
√∑n

i=1(xi )2. In particular, if x ∈ Bδ(x0) then f (x) ∈ Bε(f (x0)). So f (x) > ε > 0.

We can choose ϕ ∈ C 0
c (Rn), ϕ(x) ≡ 0 on Rn\Bδ(x0) and ϕ(x) = 1 for x ∈ B δ

2
(x0). For instance

ϕ(x) =

{
min{1− 1

δ
|x|2, 1} for x ∈ Bδ(x0)

0 for x ∈ Rn\Bδ(x0).

Then, it follows

0 =

∫
f (x)ϕ(x)dx =

∫
Bδ(x)

f (x)ϕ(x)dx ≥ ε
∫
φ(x)dx = ε > 0.
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