MAT351 Partial Differential Equations Lecture 2

September 16, 2020

Last Lecture

- A PDE

$$
F\left(\mathbf{x}, u, D^{1} u, \ldots, D^{k} u\right)=g(x) \text { for } \mathbf{x} \in \Omega
$$

is linear if the map

$$
\left(\theta, \theta^{1}, \ldots, \theta^{k}\right) \mapsto F\left(\mathbf{x}, \theta, \theta^{1}, \ldots, \theta^{k}\right)
$$

is linear for all $\mathrm{x} \in \Omega$.

- The PDE is called homogeneous if $g \equiv 0$, otherwise the PDE is called nonhomogeneous.
- There is a linear map

$$
\mathcal{L}: C^{k}(\Omega) \rightarrow C^{0}(\Omega), \mathcal{L} u=F\left(\mathbf{x}, u, D^{1} u, \ldots, D^{k} u\right)
$$

We call $\mathcal{L}: C^{k}(\Omega) \rightarrow C^{0}(\Omega)$ Linear Differential Operator.

Example (Linear PDE of order 2)

$$
\mathcal{L} u:=\sum_{i, j=1}^{n} a_{i, j}(\mathbf{x}) u_{x_{i}, x_{j}}+\sum_{k=1}^{n} b_{k}(\mathbf{x}) u_{x_{k}}+c(\mathbf{x}) u .
$$

If $a_{i, j}(\mathbf{x})=\delta_{i, j}=1$ if $i=j$ and $\delta_{i, j}=0$ if $i \neq j$ (delta function), $b_{k} \equiv 0$ and $c \equiv 0$, then

$$
\mathcal{L} u=\sum_{i=1}^{n} u_{x_{i}, x_{i}}=\Delta u \text { is called the Laplace operator. }
$$

Important Theorems

- $V=\left(V^{1}, \ldots, V^{n}\right): \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is in $C^{k}\left(\Omega, \mathbb{R}^{n}\right)$ if $V^{i} \in C^{k}(\Omega), i=1, \ldots, n$.
- $U, V \subset \mathbb{R}^{n}$ open. $\Phi: U \rightarrow V$ is a C^{k}-diffeomorphism if Φ is one-to-one and onto and $\Phi \in C^{k}\left(U, \mathbb{R}^{n}\right)$ and $\Phi^{-1} \in C^{k}\left(V, \mathbb{R}^{n}\right)$.

Theorem (Transformation formula)

Let $U, V \subset \mathbb{R}^{n}$ be open and let $\Phi: U \rightarrow V$ be a C^{1}-diffeomorphism. Then, a function $f: V \rightarrow \mathbb{R}$ is integrable if and only if $(f \circ \Phi)|\operatorname{det} D \Phi|: U \rightarrow \mathbb{R}$ is integrable. Moreover, it holds

$$
\int_{V} f(\mathbf{x}) d \mathbf{x}=\int_{U} f \circ \Phi(\mathbf{y})|\operatorname{det} D \Phi(\mathbf{y})| \mathbf{d} \mathbf{y}
$$

Theorem (Divergence (also Gauss) Theorem)

Let $\Omega \subset \mathbb{R}^{n}$ be closed and bounded with smooth boundary $\partial \Omega$. Let $N: \partial \Omega \rightarrow \mathbb{R}^{n}$ be the outer unit normal vector field of S. Let $V \in C^{1}\left(\Omega, \mathbb{R}^{n}\right)$. Then

$$
\int_{\partial \Omega} N \cdot V d S=\int_{\Omega} \nabla \cdot V d \mathbf{x} .
$$

The Divergence Theorem generalizes the Fundamental Theorem of Calculus:

$$
f(b)-f(a)=\int_{a}^{b} f^{\prime}(x) d x, \quad f \in C^{1}([a, b])
$$

Simple Transport Equation

Let

$$
V: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad V \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right), \quad \nabla \cdot V=0 \text { and } V(\mathbf{x}) \neq 0 \text { for all } \mathbf{x} \in \mathbb{R}^{n}
$$

We imagine a medium in \mathbb{R}^{n} that moves with a speed that is equal to $V(\mathbf{x})$ at any point $\mathbf{x} \in \mathbb{R}^{n}$. Solve $\frac{d}{d t} \gamma_{x}(t)=V \circ \gamma_{x}(t), \gamma_{x}(0)=x$. The flow of V is the map

$$
\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \Phi_{t}(x)=\gamma_{x}(t)
$$

$\Phi_{t}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a C^{1}-diffeomorphism.
Let $u(x, t)$ be the density of a substance Ψ that is released "into" the flow of V.
What is the evolution law for u ?
Let $\Omega \subset \mathbb{R}^{n}$ be any open domain and bounded. We assume:

$$
\int_{\Omega} u(\mathbf{x}, t) d \mathbf{x}=\int_{\phi_{h}(\Omega)} u(\mathbf{y}, t+h) d \mathbf{y}
$$

$\left.\Phi_{t}\right|_{\Omega}: \Omega \rightarrow \Phi_{t}(\Omega)$ is a C^{1}-diffeomorphism. The transformation formula yields

$$
\int_{\Omega} u(\mathbf{x}, t) d \mathbf{x}=\int_{\Phi_{h}(\Omega)} u(\mathbf{y}, t+h) d \mathbf{y}=\int_{\Omega} u\left(\Phi_{h}(\mathbf{x}), t+h\right)\left|\operatorname{det} D \Phi_{h}(\mathbf{x})\right| d \mathbf{x}
$$

Since Ω was arbitrary, we get

$$
u(\mathbf{x}, t)=u\left(\phi_{h}(\mathbf{x}), t+h\right) \operatorname{det} D \Phi_{t}(\mathbf{x})
$$

Differentiate w.r.t. h at $h=0$ on both sides:

$$
0=\nabla_{x} u \cdot \underbrace{\left.\frac{d}{d h}\right|_{h=0} \Phi_{0}(\mathbf{x})}_{V(\mathbf{x})}+u_{t}(\mathbf{x}, t)+\left.u(\underbrace{\Phi_{0}(\mathbf{x})}_{\gamma_{x}(0)=x}, t) \frac{d}{d h}\right|_{h=0} \operatorname{det} D \Phi_{h}(\mathbf{x}) .
$$

The matrix $D\left(\phi_{h}\right)$ is invertible, $D \Phi_{0}=E_{n}$ and $(\mathbf{x}, h) \mapsto \Phi_{h}(\mathbf{x})=\gamma_{\mathbf{x}}(h)$ is a C^{2} map. Hence $h \mapsto D\left(\Phi_{h}\right)(\mathbf{x})=: A(h)$ is differentiable at $h=0$.

$$
\left.\frac{d}{d h}\right|_{h=0} \operatorname{det} A(h)=\operatorname{det} A(0) \operatorname{trace}\left[\left.A^{-1}(0) \frac{d}{d h}\right|_{h=0} A(h)\right]=\operatorname{trace}\left[\left.\frac{d}{d h}\right|_{h=0} A(h)\right]
$$

On the other hand we can compute that

$$
\left.\frac{d}{d h}\right|_{h=0} D \Phi_{h}(\mathbf{x})=\left.D \frac{d}{d h}\right|_{h=0} \Phi_{h}(\mathbf{x})=D V(\mathbf{x})
$$

It follows

$$
\left.\frac{d}{d h}\right|_{h=0} \operatorname{det} D \Phi_{h}=\operatorname{trace} D V=\nabla \cdot V=0
$$

So the PDE that governs $u(\mathbf{x}, t)$ is

$$
u_{t}+V \cdot \nabla u=0
$$

Simple Transport, revisited

Let us think the previous model from a different perspective.
We set

$$
\int_{\Omega} u(\mathbf{x}, t) d \mathbf{x}=M(\Omega, t)
$$

Then

$$
\frac{d}{d t} M(\Omega, t)=\frac{d}{d t} \int_{\Omega} u(\mathbf{x}, t) d \mathbf{x}=\int_{\Omega} u_{t}(\mathbf{x}, t) d \mathbf{x}
$$

How can we understand the change of $M(\Omega, t)$ in time t ?
Let $\mathbf{F}(\mathbf{x}, t)=\mathbf{F}_{t}(\mathbf{x}) \in \mathbb{R}^{n}$ the (infinitesimal) rate and direction of change of u in \mathbf{x} at time t :

$$
\mathbf{F}(\mathbf{x}, t)=u(\mathbf{x}, t) V(\mathbf{x})
$$

The total flux of u through $\partial \Omega$ is then

$$
\int_{\partial \Omega} N(\mathbf{x}) \cdot F(\mathbf{x}, t) d S(\mathbf{x})=\int_{\partial \Omega} N(\mathbf{x}) \cdot u(\mathbf{x}, t) V(\mathbf{x}) d S(\mathbf{x})
$$

the net value of how much of the substance Ψ has flown in and out of Ω.
But clearly

$$
\frac{d}{d t} M(\Omega, t)=\int_{\partial \Omega} N(\mathbf{x}) \cdot u(\mathbf{x}, t) V(\mathbf{x}) d S(\mathbf{x})
$$

Applying the divergence theorem yields

$$
\int_{\Omega} u_{t}(\mathbf{x}, t) d \mathbf{x}=\int_{\Omega} \nabla \cdot[u(\mathbf{x}, t) V(\mathbf{x})] d \mathbf{x}=(1)
$$

By the chain rule this becomes

$$
(1)=\int_{\Omega}[\nabla u(\mathbf{x}, t) \cdot V(\mathbf{x})+u(\mathbf{x}, t) \underbrace{\nabla \cdot V(\mathbf{x})}_{=0}] d \mathbf{x}=\int \nabla u(\mathbf{x}, t) \cdot V(\mathbf{x}) d \mathbf{x} .
$$

Since Ω was arbitrary, it follows

$$
u_{t}+V(\mathbf{x}) \cdot \nabla u=0
$$

Diffusion equation

Imagine a liquid in $3 D$ or higher.
Let $u(\mathbf{x}, t)$ be a concentrations function of substance Ψ released into the liquid.
The substance Ψ moves from regions with higher concentration to regions with lower concentrations. We call this process Diffusion.
The rate and direction of change of Ψ in x and t is proportional to the gradient of u w.r.t. $\mathbf{x} \in \mathbb{R}^{n}$ at time t. This is known as Fick's law:

$$
\mathbf{F}(\mathbf{x}, t)=\lambda \nabla_{\mathbf{x}} u(\mathbf{x}, t)=\lambda\left(\begin{array}{c}
u_{x_{1}}(\mathbf{x}, t) \\
\ldots \\
u_{x_{n}}(\mathbf{x}, t)
\end{array}\right) .
$$

Let Ω be a compact domain with smooth boundary. Let

$$
M(\Omega, t)=\int_{\Omega} u(\mathbf{x}, t) d \mathbf{x} \text { and } \frac{d}{d t} M(\Omega, t)=\int_{\Omega} u_{t}(\mathbf{x}, t) d x
$$

$\frac{d}{d t} M(\Omega, t)$ is equal to the total flux through the boundary $\partial \Omega$. Hence

$$
\int_{\Omega} u_{t}(\mathbf{x}, t) d \mathbf{x}=\int_{\partial \Omega} N(\mathbf{x}) \cdot \mathbf{F}(\mathbf{x}, t) d S(\mathbf{x})=\lambda \int_{\partial \Omega} N \cdot \nabla u d S(\mathbf{x}) .
$$

Hence, by the divergence theorem

$$
\int_{\Omega} u_{t}(\mathbf{x}, t) d \mathbf{x}=\lambda \int_{\Omega} \nabla \cdot \nabla u(\mathbf{x}, t) d \mathbf{x}=\lambda \int_{\Omega} \Delta u(\mathbf{x}, t) d \mathbf{x} .
$$

Since $\Omega \subset \mathbb{R}^{n}$ was arbitrary, it follows $u_{t}=\lambda \Delta u$.

Nonlinear Scalar Conservation Laws

Imagine a "flowing" substance Ψ.
What if the infinitesimal flux $\mathbf{F}(\mathbf{x}, t)$ of Ψ in \mathbf{x} at time t depends on the concentration function u in x at time t ?
We assume there exists $\mathbf{f}: \mathbb{R} \rightarrow \mathbb{R}^{n}$ such that $\mathbf{F}(\mathbf{x}, t)=\mathbf{f} \circ u(\mathbf{x}, t)$.
Then

$$
\frac{d}{d t} \int_{\Omega} u(\mathbf{x}, t)=\int_{\partial \Omega} N(\mathbf{x}) \cdot \mathbf{f} \circ u(\mathbf{x}, t) d S(\mathbf{x})
$$

As before by the divergence theorem and differentiating under the integral we obtain

$$
\int_{\Omega} u_{t}(\mathbf{x}, t) d \mathbf{x}=\int_{\Omega} \nabla \cdot \circ u d \mathbf{x}=\int_{\Omega} \mathbf{f}^{\prime}(u)(\mathbf{x}) \cdot \nabla u(\mathbf{x}) d \mathbf{x}
$$

where

$$
\mathbf{f}^{\prime}(r)=\left(\begin{array}{c}
\mathbf{f}_{1}^{\prime}(r) \\
\cdots \\
\mathbf{f}_{n}^{\prime}(r)
\end{array}\right)
$$

Example

Consider the $1 D$ case (for instance traffic in a street). Let $\mathbf{f}(r)=\frac{1}{2} r^{2}$. Then $f^{\prime}(r)=r$. The corresponding PDE

$$
u_{t}+u u_{x}=0
$$

is the inviscid Burger's equation.

Theorem (Fundamental Theorem of Calculus of Variations)

Consider $f \in C^{0}\left(\mathbb{R}^{n}\right)$. If

$$
\int f(\mathbf{x}) \varphi(\mathbf{x}) d \mathbf{x}=0 \quad \forall \varphi \in C_{c}^{0}\left(\mathbb{R}^{n}\right), \varphi \geq 0 \quad \Longrightarrow \quad f \equiv 0
$$

Proof. Assume the contrary. We will derive a contradiction.
If $f \neq 0$, then there exists at least $\mathbf{x}_{0} \in \mathbb{R}^{n}$ such that $f\left(\mathbf{x}_{0}\right) \neq 0$.
We can assume $f\left(x_{0}\right)>0$ (otherwise replace f with $-f$, this does not change $\int f \varphi d x=0$). In particular, there exist $\epsilon>0$ such that $f\left(\mathrm{x}_{0}\right)-\epsilon>0$.
Since f is continuous, there exists $\delta=\delta(\epsilon)>0$ such that

$$
f^{-1}\left(B_{\epsilon}\left(f\left(\mathbf{x}_{0}\right)\right)\right)=f^{-1}\left(\left\{r \in \mathbb{R}:\left|f\left(\mathbf{x}_{0}\right)-r\right|<\epsilon\right\}\right) \subset\left\{\mathbf{x} \in \mathbb{R}^{n}:\left|\mathbf{x}-\mathbf{x}_{0}\right|_{2}<\delta\right\}=: B_{\delta}\left(\mathbf{x}_{0}\right)
$$

where $|\mathbf{x}|_{2}=\sqrt{\sum_{i=1}^{n}\left(x_{i}\right)^{2}}$. In particular, if $\mathbf{x} \in B_{\delta}\left(\mathbf{x}_{0}\right)$ then $f(\mathbf{x}) \in B_{\epsilon}\left(f\left(\mathbf{x}_{0}\right)\right)$. So $f(\mathbf{x})>\epsilon>0$.
We can choose $\varphi \in C_{c}^{0}\left(\mathbb{R}^{n}\right), \varphi(\mathbf{x}) \equiv 0$ on $\mathbb{R}^{n} \backslash B_{\delta}\left(\mathrm{x}_{0}\right)$ and $\varphi(\mathrm{x})=1$ for $\mathrm{x} \in B_{\frac{\delta}{2}}\left(x_{0}\right)$. For instance

$$
\varphi(\mathbf{x})= \begin{cases}\min \left\{1-\frac{1}{\delta}|\mathbf{x}|_{2}, 1\right\} & \text { for } \mathbf{x} \in B_{\delta}\left(\mathbf{x}_{0}\right) \\ 0 & \text { for } \mathbf{x} \in \mathbb{R}^{n} \backslash B_{\delta}\left(\mathbf{x}_{0}\right)\end{cases}
$$

Then, it follows

$$
0=\int f(\mathbf{x}) \varphi(\mathbf{x}) d \mathbf{x}=\int_{B_{\delta}(\mathrm{x})} f(\mathbf{x}) \varphi(\mathbf{x}) d \mathbf{x} \geq \epsilon \int \phi(\mathbf{x}) d \mathbf{x}=\epsilon>0
$$

