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1. BASiC NOTATIONS AND DEFINITIONS
1.1. Partial Derivatives. Consider a function u of several variables:
u=u(z,y,z) or more generally u = u(x1,za,...,z,)

for (z,y,2z) € U C R or (x1,...,2,) € U C R". We also write x = @ = (z1,...,2n).
U is a domain < U connected, U° # () and OU smooth.

x,y,z (or x1,...,2,) are called independent variables.

Notation. Let u be sufficiently smooth (e.g. u € C'(U)). We denote the partial derivatives with

lim u(x + he;) —u(x)  Ou

lim - —6xi(x):umi(x) i=1,...,n,

where e; = (0,...,0, 1 ,0,...,0). For partial derivatives of order k € N we write

FoaT)

m(x) = Umil’“.’xik (X) 7;1, e ,Z’k S {1, - ,n}.

For the collection of all partial derivatives of order k € N we write

. . k
{umlwk sip, i € {1, ,n}} =: D"u.
1
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1.2. Differential Operators.
e Gradient: The vector (ug,,...,u,, ) =: Vu is called the gradient of w.

e Directional Derivative: Given a vector v = (v1,...,Uy)

n
ou . L. .
Vu-v= g Ug, Vi = 5 derivative of u in direction v.
v
=1

In particular Vu - (0,...,0, 1 ,0,...,0) = uy,
~~ '
e Differential of a vectorvalued map, Divergence:
For V:U CR" - R", V(x) = (V}(x),...,V"(x)) one defines

1 1
viooovd "
Dv=1|... ... .. and trDVzZVLz:V-V::DivV
|4 U3 P
e Hessian and Laplace operator: u(x) = u(zy,...,2,) smooth, x € U. Then Vu : U C
R™ — R™ and
Ugy,zy oo Uz, n
DVu = and tr D?u = Zumx =: Au.
Upp zr oo Ugy 2 i=1

1.3. What is a Partial Differential Equation (PDE).

Definition 1.1. A PDE is an equation which relates an unknown function u, its partial derivatives
and its independent variables.

A general PDE on a domain U C R™ can be written as
(1) F(x,u, D, ..., D*u) = F(x,u(x), D'u(x),..., D*u(x)) = g(x), x€U

for functions
g(x) and F(x,0,0',...,60%)
where (z1,...,2,) =x €U, € Rand 6" = (6},...,0",) eER" andi=0,..., k.
w and D'u, ..., D*u are also called dependent variables.
When we study a PDE often the domain U is not specified yet in the beginning.

Definition 1.2. The order of a PDE is the highest order of a partial derivative that appears in
the equation.

The most general form of a first order PDE for 2 independent variables is
P, y, u(z, y), ue(2,y), uy (2,)) = F(2,y, 0, uz, uy) = g(2,y).
1.4. Linear PDEs.
Definition 1.3. A PDE of the form
(2) F(x,u, D u, ..., D*u) = g(x)
is called linear if the function
0,0%,...0F) eRxR" x - x R" > F(x,0,0,....0") R

is linear.
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A linear PDE of order 2 in n indpendent variables can always be written in the form

n

Z ai uwl,mﬁrzbk X)t, + c(x)u = g(x)

with coefficients (a;,;(x))i j=1,...n, (bk(X))k=1,...n, c(x) that are functions in x.
Ezample 1.4 (Poisson equation).

Au — Zuw% = g(x) where a;; =0;; = {0 1f z # ? .

1.5. Nonlinear PDEs.
Definition 1.5. A PDE of the form
(3) F(x,u, D, ..., D*u) = g(x)

is called

e semi linear if we can write
F(x,6,0%,...,0%) = L(x,0%) + G(x,0,6,...,6%1)
and the function 8% € R"" L(x,6%) is linear.
e quasi linear if we can write

F(x,0,0,...,0%) = L(x,6,0",...,08 1 0") + G(x,0,0",...,6"1)

and the function 8F € R"" L(x,0,0%,...,081 %) is linear.

e fully nonlinear if the PDE is not | linear, semilinear or quasilinear }

The following implications are clear: linear = semi-linear = quasi-linear = fully non-linear.
Consider a quasi linear PDE F(x,u, D'u) = g(x). Hence F has the form
F(x,0,0") =Y ai(x,0)0" + G(x,0).
i=1

The coefficients (a;);=1,... » are functions in x and §. The PDE takes the form

,,,,,

n

> ai(x,u)ua, + G(x,u) = g(x).

i=1
Ezample 1.6 (Inviscid (or Non-viscous) Burger’s equations).
w4 () =0 = uy +uuy =0
is a quasi-linear PDE of order 1 in 2 independent variables: ¢t = x; and © = x5. Here we have
a1(x,u) =1, az(x,u) =u and G =g =0.
Consider a PDE of order 2 F(x,u, D'u, D?>u) = g(x). If the PDE is quasi-linear, it can be

writen in the general form

n

Z aij(x,u, D)y, o, + G(x,u,D'u) = g(x).

ij=1

(@i,j)ij=1,..n, G are functions in x, ¢ and oL
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1.6. Solutions.

Definition 1.7. Consider a PDE of order k:
(4) F(x,u, D', ..., D*u) = g(x)

A classical solution of (4) on a domain {2 C R™ where n is the number of independent variables, is
a sufficiently smooth function u(x) that satisfies (4).

If k € N is the order of the PDE, then, by sufficiently smooth, we man that v € C*(Q).
Ezample 1.8. The function u(x,t) = ¥ solves
(5) ug +u-uy, =0 on R x (0,00) C R?
1.7. Homogeneous/Inhomogeneous Linear PDEs.
Definition 1.9. Consider a linear PDE of order k:
(6) L(x,u, D', ..., D*u) = g(x)
If g(x) =0, the PDE is called homogeneous. Otherwise, the PDE is called inhomogeneous.
Remark 1.10. e If u and v solve the homogeneous linear PDE
(7) L(x,u, D', ..., D*u) =0 on a domain Q C R"
then also au+ Bv solves the same homogeneous linear PDE on the domain 2 for «, 8 € R.
(Superposition Principle)
e If u solves the homogeneous linear PDE (7) and w solves the inhomogeneous linear pde
(6) then v + w also solves the same inhomogeneous linear PDE.
e We can see the map
u €~ Lu where (Lu)(x) = L(x,u, D'u, ..., D*u)

as a linear (differential) operator.

Hence, it makes sense to specify appropriate function vector spaces V and W such that
ueV and Lue W.

For instance: For a PDE of order 2, we can choose V = C?(Q2) and W = C°(Q).

For instance, for a linear PDE of order one for independent variable x and ¥y, we could
set V = C1(R?) and W € C°(R?).
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Lecture 02

1.8. Important Theorems.
e V=VH. .., V):QCR* - R"isin C¥(Q,R") if Vi€ C*(Q),i=1,...,n.
e UV C R* open. ® : U — V is a C*-diffeomorphism if ® is one-to-one and onto and
® € C*(U,R") and &~ ! € C*(V,R").

Theorem 1.11 (Transformation formula). Let U,V C R™ be open and let ® : U — V be a C1-
diffeomorphism. Then, a function f :V — R is integrable if and only if (f o ®)|det D®|: U — R

1s integrable. Moreover, it holds

/ f(x)dx = / f 0 ®(y)| det DB(y)|dy.
1% U

Theorem 1.12 (Divergence (also Gauss) Theorem). Let Q@ C R™ be closed and bounded with
smooth boundary Of. Let N : 00 — R™ be the outer unit normal vector field of 0. Let

V € CYR™,R"). Then

N~VdS:/V-de.
aQ Q

The Divergence Theorem generalizes the Fundamental Theorem of Calculus:
b
f() — f(a) :/ f'(x)dz, fe€C[a,b]).

2. SOME IMPORTANT EXMPLES OF PDES FROM PHYSICAL CONTEXT
2.1. Simple Transport Equation. Let
V:R" - R" VeC(R"R"), V-V =0and V(x)#0 for all x € R".
We imagine a medium in R™ that moves with a speed that is equal to V(x) at any point x € R"™.
Solve Ly (t) =V 0 x(t), 7x(0) = x. The flow of V' is the map
O, : R 5 R™, $p(x) = v« (t).

®; : R* — R" is a O''-diffeomorphism (this follows from smooth dependence of ODEs on initial
values and will not be proven).

Remark 2.1. In this context the subscripts ¢ and x in ®; and v do not stand for the partial
derivative of ® or v w.r.t. £ and x, but denote parameters.

Let u(x,t) be the density of a substance ¥ that is released “into” the flow of V.
What is the evolution law for u?

Let 2 C R™ be any open domain and bounded. We assume:

/ u(x,t)dx = / u(y,t+ h)dy
Q ¢}L(Q)

Dyl : Q — D,(Q) is a C'-diffeomorphism. The transformation formula yields
/ u(x, t)dx = / u(y,t+ h)dy = / u(Pp(x),t + h)| det DDy (x)|dx.
Q 2, (2) Q

Let us assume det D®p,(x) > 0. Since Q) was arbitrary, we get

u(x,t) = u(¢dp(x),t + h)det DP,(x).



6 MAT351 PARTIAL DIFFERENTIAL EQUATIONS - LECTURE NOTES -

Differentiate w.r.t. A at h = 0 on both sides:
d d
0=V,u- —|h=0Po(x) +ui(x,t) + u( Po(x) ,t)—|n=0 det DDy (x).
dh ~—~— ' dh
V(x) 'Yx(o):x

The matrix D(¢y,) is invertible, D®y = E,, and (x,h) — ®p,(x) = 7x(h) is a C? map.
Hence h — D(®p)(x) =: A(h) is differentiable at h = 0.

d B 10 d . d
o det (k) = det A(0) tr[A™(0) - |- A()] = trl - o A(h)
On the other hand we can compute that

oD®p(x) = 0@ (x) = DV (x)

anln= dh'h

It follows

%MzodetD@h =trDV=V-V =0.

So the PDE that governs u(x,t) is
ug +V - Vu=0.

Simple Transport, revisited. Let us think the previous model from a different perspective.
We set

/ u(x, t)dx = M(Q,1).
Q

Then
d

d
%M(Q t) = dt/gu(x,t)dxz/ﬂut(xat)dx

How can we understand the change of M(£2,t) in time ¢?
Let F(x,t) = F(x) € R™ defined as
F(x,t) = u(x,t)V(x).
The total flux of u through 0 is then

N(x)- F(x,t)dS(x) = N(x) - u(x,t)V(x)dS(x),
a0 o0

the net value of how much of the substance ¥ flows in and out of € at time ¢.
But clearly
d
—M(Q,t) = N(x) - u(x,t)V(x)dS(x)
dt o9

Applying the divergence theorem yields

/Qutxt /V u(x, )V (x)] dx = (1)

By the chain rule this becomes
(1):—/[Vu(x,t)-V( )—i—u(xt)V V(x /Vuxt (x)dx
Q

Since (2 was arbitrary, it follows

ug + V(x) - Vu = 0.
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2.2. Diffusion equation. Imagine a liquid in 3D or higher.
Let u(x,t) be a concentrations function of substance ¥ released into the liquid.

The substance ¥ moves from regions with higher concentration to regions with lower concen-
trations. We call this process Diffusion.

The rate and direction of change of ¥ in = and ¢ is proportional to the gradient of u w.r.t.
x € R™ at time ¢t. This is known as Fick’s law:

Ug, (X, 1)
F(x,t) = AVyu(x,t) = A , A>0.
Uy, (X, 1)

Let Q be a compact domain with smooth boundary. Let

d
M(Q,t) = / u(x,t)dx and —M(Q,t) = / ug(x,t)dx
Q dt Q
4 M(Q,t) is equal to the total flux through the boundary 9. Hence

/ ug(x,t)dx = — N(x)-F(x,t)dS(x) = —A N - VudS(x).
Q 19) o9

Hence, by the divergence theorem

/ut(x,t)dX:—)\/V Vu(x,t)d :—)\/Auxt
Q

Since 2 C R™ was arbitrary, it follows u; + AA = 0.

2.3. Nonlinear Scalar Conservation Laws. Imagine a “flowing” substance V.

What if the infinitesimal flux F(x,¢) of ¥ in x at time ¢ depends on the concentration function
u in x at time ¢?

We assume there exists f : R — R™ such that F(x,t) = f o u(x, t).
Then

d
i /., u(x,t) = — - N(x) - fou(x,t)dS(x)

As before by the divergence theorem and differentiating under the integral we obtain

/Qut(x,t)dx:—/QV'foudx:—/Qf’(u)(x)~Vu(x)dx

£'(r) = (£1(r), ... £,(r)).
Ezample 2.2. Consider the 1D case (for instance traffic in a street). Let f(r) = 172,
Then f/(r) = r. The corresponding PDE

where

Uy + utty, =0
is the inviscid Burger’s equation.
2.4. Fundamental Theorem of Calculus of Variations.

Theorem 2.3 (Fundamental Theorem of Calculus of Variations). Consider f € C°(R"™). If

/f X)dx =0 Yo € COR™), ¢ >0 = [=0.
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Proof. Assume the contrary. We will derive a contradiction.

If f # 0, then there exists at least xo € R™ such that f(xg) # 0.

We can assume f(xg) > 0 (otherwise replace f with —f, this does not change [ fodx = 0).

In particular, there exist € > 0 such that f(x¢) — € > 0.

Since f is continuous, there exists § = §(e) > 0 such that

FHUB(f(x0) = fH{r €R: |f(x0) — 7] < €}) C{xX ER"™: |x — X0l < 6} =: Bs(x0)

where [x|s = />, (2:)2. In particular, if x € Bs(xo) then f(x) € B.(f(x0)). So f(x) > ¢ > 0.

We can choose ¢ € C2(R"), ¢(x) = 0 on R™\ Bs(x0) and ¢(x) = 1 for x € B; (z0). For instance

(%) min{l — 4[x|s, 1} for x € Bs(xo)

X) =

4 0 for x € R™\ B;(xo).
Then, it follows

0= [ reetax= [ PRCICEEY [ oix =
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Lecture 03.

3. FIRST ORDER PDES

3.1. Introduction to the Method of Characteristics. We found the general solution of au, +
bu, = 0. Solutions are constant on lines parallel to (a, b).

Now, we consider
Uy +yuy, =0 <= (1,y) - Vu=0 in R%
Instead of straight lines, now we looking for curves (z,y(z)) such that

@) = (Ly) & L=y

Hence y(x) = Ce”, and a solution u satisfies

d
and
u(z, y(z)) = u(0,y(0)) = u(0,0)
is independent of x.
Let g € C'(R). For every tuple (z,y) there exists a unique C(x, y) such that (x,y) = (z, C(x,y)e?).

Then u(z,y) := u(0,C(z,y)) = g(ye™*) satisfies
us +yuy = g'(ye ") (—ye ") +yg'(ye ")e™" = 0.
Therefore u(x,y) = g(ye™*) solves the PDE with auxiliary condition g(y) = u(0,y).

3.2. Method of characteristics for linear equations. We consider a general linear PDE of
order 1 with 2 independent variables x, y:

(8) a(z, y)us + bz, y)uy = c1(z, y)u + e2(w,y) in R?
We assume there is an auxiliary condition given as follows.
u(z,y) = g(x,y) for (z,y) eTand g: T - R

where I is a suitable 1 dimensional subset in R2, for instance the image of a curve v : R — RZ:
Im(y) =T.

We can rewrite (8) as follows
V(.’E,y) -Vu = Cl(ma y)u + 02(3372/)
for a vectorfield (z,y) — V(z,y) = (a(z,y),b(z,y)) € R?.

Let us also consider the case for n independent variables. A general linear PDE of order 1 then
takes the form

9) Z a;(X)ug, = c1(x)u + c2(x) in R"™
i=1

with auxiliary condition
u(x) =g(x)forxelTand g: T - R

where I' is a suitable n — 1 dimensional subset in R"”, for instance a n — 1 dimensional submanifold.

We can again write (9) as follows
V(x) - Vu = c1(x)u + ca(x).
for a vectorfield V(x) = (a1(x), ..., an(x)).
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We want to find the flow curves of V(x). That is, we have to solve the following ODE:

%%(@ = n(t) = V(x), 1x(0) =x.

We also want to choose the initial point x such that x € T'.
Recall that
0 . 4(1)
'VX(t) = s ) ﬁx(t) = £7x(t) =
Tx (£)
Now, we investigate how u evolves along a flow curve ~x:

L w0 () = Vullt)) - He() = Tull6)) - V(1)

4An(t)

On the other hand

Va((6) - V(t)) = 1 ((t) (1)) + e2(3x(0)).
This gives us an ODE for the composition u o v« (t) =: zx(t):
4, (t) = 2x(t) = c1 (9 (1)) 2x (1) + c2(72(1)), 2x(0) = uo(7x(0))-
3.3. Characteristics equations.

Definition 3.1. Consider linear PDE of order 1 with n independent variables in the form
V(x)Vu = c1(x)u+ c2(x) in R" and u(x) = up(x) on T
where I' is an n — 1 dimensional subset.
The corresponding characteristics equations are

{Wx(t) =V oy(t), 1%(0) =X,
£el) = e () 2x(1) + 203D, 2x(0) = o).
For the case of 2 independent variable the systems of equations becomes
&(t) = a(x(t),y(t)), z(0) = o,
y(t) = bx(t), y(t)), y(0) = wo,
Zzoo (B) = c1(x(t), (1)) Zmg 40 (t) + c2(x(t), y(t)), 2(0) = uo(xo, yo)-
Question 3.2. How can we obtain a solution for the PDE?
3.4. How to find a solution with the method of characteristics. To solve the PDE we need
to determine the value u(x) for every x € R™.

From the previous consideration, we know that the solution for the PDE (9) with the given
auxiliary condition must obey the characteristics equations.

Hence, if we can find a characteristic curve 7y, for some initial point x¢ € I such that v, (o) = x

for some to € [0, 00) then we can solve the characteristic equation for zx, = u 0 Yx,
Zxo () = €10 Yy (£) 2o (1) + €2 0 1, (1) With 2, (0) = uo(x0)

and set u(x) = w0 Yy, (to) = 2x, (to)-

Hence, if we can solve
(10) Yxo (to) =: (X0, t0) = X
uniquely for every x € R™ we have found a function v : R — R that will solve the PDE and
satisfies the auxiliary condition (by construction).

The map ®(y, s) is again the flow map of the vectorfield V : R® — R™ that is in C1(R"™, R").
Hence, solving (10) uniquely means for any x we find a unique flow curve ~x, such that v, (to) = x.
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A suitable auxiliary condition
u(x) = up(xg) Vxog € T
now must satisfy that any flow curve of V intersects I' exactly once.
Ezample 3.3. Let us consider (again)
(a,b) - Vu =0 in R? with u(z,0) = 5.
The characteristics equations are
(t) = a, z(0) = dy,
y(t) = b, y(0) = da,
Z224() =0,  23,(0) =ds.
We first see that
z(t) =at+dy, y(t) =0bt+ds.

How do we choose the constants d; and d2? We choose them such that (z(0),y(0)) € R x {0}.
Hence we set di = x € R and dy = 0.
3

The equation for z, , yields z, ,(t) = ds. But since 2, ,(0) = u(z(0), y(0)), we have z, ,(0) = z°.

The flow map for (z,0) € T is given by
O((2,0),t) = (at + z, bt)
Hence, for (&,7) € R? arbitrary, we set up the equation
at+x =3, bt =g
Hence to = /b and (x0,0) with z¢ = & — ato = & — $7 solves
®((20,0),t0) = (2,9)
And hence zy,,0(t0) = (& — 49)>.
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Lecture 04.
Last Lecture:
lines parallel to (a,b).

We found the general solution of au, + bu, = 0. Solutions are constant on

Example 3.4. As another example we consider
Uy +yu, =0 <= (1,y) - Vu=0 in R?

with the auxiliary condition u(0,y) = g(y) for g € C*(R).

Instead of straight lines, now we looking for curves (z,y(x)) such that

d d d

Hence y(z) = yoe® with y(0) = yo.
Moreover, a solution u of the PDE satisfies along the curve (z,y(x)):
d
i@ y(@)) =Vu- (1,y) = us +yuy =0
and u(z,y(x)) = u(0,y(0)) = u(0,yo) is independent of x.
Given a point (Z,7) € R? we want to find yg and y(-) with y(0) = yo and y(%) = .
Then, we know the value of u in (Z,g): Tt is
u(#, §) = u(Z, y(£)) = w(0,30) = g(yo)-
But by the formula for y(x), we can indeed find such yo: it is yo = Je~%. Therefore we can write
u(@,§) = g(ge~*).
This u satisfies the PDE with the given auxiliary condition. (let us drop *) Indeed
g +yuy, = g’ (ye ") (~ye ) +yg'(ye )e " = 0.
Therefore u(z,y) = g(ye™") solves the PDE with auxiliary condition g(y) = u(0,y).
3.5. Characteristics equations.
Definition 3.5. Consider linear PDE of order 1 with n independent variables in the form
V(x)Vu =c1(x)u+c2(x) in R" andu=wup onT
where I' is an n — 1 dimensional subset.

The corresponding characteristics equations are

{j/xo (t) =Vo Vxo (t) Vxo (O) = Xo,
Zxo (1) = €1 (Y0 (1)) 2o (1) + €2 (7 (1)) 20 (0) = o (x0)-

For the case of 2 independent variable the systems of equations becomes

#(t) = a(z(1),y(1)), 2(0) = o,
y(t) = blz(t), y(1), y(0) = yo,
2(t) = ex(z(t), y(0)2(t) + ca(z(t),y(t),  2(0) = uo(xo, yo)-

Question 3.6. How we obtain a solution for the PDE?
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3.6. Solving the PDE. We will determine the value u(x) for every x € R™ using the method of
characteristics.

From the previous consideration, we know that the solution for the PDE (9) must obey the
characteristics equations.

Our strategy is:

For x € R™ arbitrary we pick a characteristic vy, for an initial point x¢ € ' such that vy, (to) = x
for some ty € [0, ).

Then we can solve the characteristic equation for zx, = w0 yx,

2X0 (t) = C1 0 V¥x¢ (t)zxo (t) + €2 0%, (t) with Zxo (0) = Uo (XO)
and set

Zx0 (to) =uo ’yxo(to) = u(l‘)

Hence, if for every x € R™ we can find a unique x¢ € I' and ¢y > 0 such that
’YxO (to) = @(Xo,to) =X

we can define a function u : R™ — R that will solve the PDE and satisfies the auxiliary condition
(by construction). Indeed we have

Proposition 3.7. Assuming v : R™ — R defined above is a C* function, then it solves
Vu-V(x) =c1(x)u+ca(x) in R™ with u(x) = wup(x) for x €T.

Proof. Let x € R™, assume Xg is the unique point such that: 7y, solves dx, () = V o vx, (t) with

Vxo (to) =X
Then u(x) is defined as zx, (to).

First, if z € T, we pick xg = X, Vx, = 7x and tg = 0. Then u(x) = 2¢(0) = up(x).
For general x € R” we compute
) d
Vau(x) - V(x) = Vau(yxo (to)) - o (f0) = 7107, (f0).

Since zx, solves the last characteristic equation, the right hand side is equal to

c1(xo (t0))1 © Yo (f0) + c2(7x, (f0)) = c1(X)u(x) + c2(x).

Hence u indeed solves the equation. O

Remark 3.8. Let us summarize what we assumed here
e We need that any flow curve meets I' in exactly one point.
For any x there exists a unique flow curve 7y, such that ¢ € I and 7, (o) = x.
Then, we can solve the initial value problem for 2z, because the initial value is given by
u(xg) = uo(X0)-
In other words, we have to solve the equation

D4 |r(x0) = x

where ®,(y) = 7y (¢) is the flow map of V, and ®;|r is the restriction of ®; to I.
e We need that u € C*(R"™).
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3.6.1. Example. We find the solution for
T, + 2u, = 3u in R?, u(z,0) =sinz, [' =R x {0}.
The first two characteristics equations are
@(t) = z(t) #(0) = xo € R?,
y(t) =2 y(0) = yo € R%.
The general solutions are x(t) = zge! and y(t) = 2t.
Let (z,y) € R? be arbitrary. Consider the equation
(11) x(to) = xoe® =z, y(to) =2to =y
The equation (11) has a unique solution. This is to = % and (zo,y0) = (ze~%,0).
For this initial point (zo,y0) = (ze~%,0) and wug(zo,y0) = sin (xe_%), we consider the third
characteristics equation

The solution is

and at to = ¥ we get
z(tp) = sin (x(f%) e? = u(z,y).

3.7. Temporal Equations. Consider a linear PDE of order 2 of the form
n

(12) us + Z a;(X)uy, = c1(X)u + ca(x) in R™.
i=1

In this case the auxiliary condition is usually given as an initial condition at time ¢ = O:
up(x) = g(x) on R™.
The characteristics ODE for the ¢ variable is always %t(s) =1, t(0) =0. Thus t = s.
We have v(x,,0)(t) = (t,21(t),...,2,(t)) and denote (z1(t),...,2,(t)) =: 7x,(t) for the charac-
teristics.
If we set V(x) = (a1(x),...,a,(x)), the PDE becomes

ur + V(x) - Vu = c1(x)u + c2(x).
The curves 7x, so0lve Yx, (t) = V 0 vy, (t) with vx,(0) = ¢, hence are the flow curves of V.
If the flow map ®; of V is a diffeomorphism of R™ for every ¢ > 0, then for ¢ > and for every
x € R™ we can solve
Dy(x0) =x <= O, (z) =x0
uniquely. Hence, ®4(x¢) = x,(t) = x. In this case we can solve the characteristics equation for z

S alt) = 1w, (0)2(0) + a(,)

with initial value zx,(0) = g(zo) and define u(x) := 2, (t) = Z<I>t—1(x)(t) that is a solution for (13).
Note that w is indeed smooth enough. /
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Lecture 05.
The method of characteristics is a recipe to solve a linear PDE of order 1 in several
variables:

Vu-V(x) =c1(x)u+ca(x) in @ CR" & auxiliary condition: u(x) = ug(x) on T.
V(x) = (a1(x),...,a(x)) € CHQ,R"), c1,c0 € CH(R), and T is a n — 1 dimensional subset in Q.
The recipe goes as follows

e We note that the PDE is a statement about the directional derivatives of a C'!' solution w.
e Assuming the existence of a C'! solution, we deduced the characteristics equations:

{;Yxo (t) =Vo Txo (t) Txo (0) =xp €T,
Zxo (1) = €1 (Yo (1)) 2o (1) 4 C2(x0 (1)) 20 (0) = o (x0)-

This system of ODEs can be solved uniquely on a maximal intervall (ax,,wx,) 3 0 (General
Existence and Uniqueness Theorem for ODEs).

e The number 2y, (t) tells us the values of u at v, (t) for t € (ax,,wx,)-
The only result that this analysis actually proves is:

Proposition 3.9. If u € CY(Q) solves the PDE and 7x, : (0ix,,wx,) — R™ is a flow curve
of V with xg € T,
then u o Yy, @ (g, wWxy) = R with u o vy, (0) = ug(xg) must solve the ODE for zy, .

This gives us a method to “synthesize” an explicite solution via the following steps:

If we can find a unique solution (xg,%o) for the equation vy, (to) = x for every x € Q.
And (xg,t) depends in a sufficiently smooth way on x.

Remark 3.10. However, this might not be always possible:

There might exist x € Q for which there exists not solution of yx,(to) = = with xg € T’
and t € (g, Wxg )-

Temporal Equations, revisited. Given a linear PDE of order 2 of the form
(13) up Y ai(X)ug, = c1(X)u + ca(x) in R” x R
i=1

The initial condition at time ¢t = 0 is
u(x,0) = g(x) on R", g € C'(R").
The characteristics ODE for the ¢t variable is always d%t(s) =1, t(0) =0. Thus ¢t = s.
If we set V(x) = (a1(x),...,an(x)), the PDE becomes
us + V(x) - Vu = c1(x)u + c2(x).
The flow curves vx, of V' are 4x,(t) = V 0 7%, (t) with 7x,(0) = xq.
The characteristics of the PDE are

Yixa0) (1) = (vxf;t (t)) |

Applying our recipe means to solve vy, (t) = x uniquely for every x € R and every t € R.
If the flow map @;(x) = 7x(t) of V' is a diffeomorphism of R™ for every ¢ > 0, then
®; 1 (x) =x¢ solves ®;(xq) =x

uniquely. In this case we can define u(x) := 2y, (t) = 2o (x) (t) that is a solution for (13).
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Ezample 3.11 (Transport equation with constant coefficients). Consider
up + Zaiuri =0in R" x [0,00) with wu(x,0)=g(x) on R", g, f € C*(R™).
i=1
Define V(x) = (a1,...,a,) = v. The flow curves of V are
Txo (t) =Xo + tv
and the flow map ¢;(x0) = x¢ + tv is a diffeomorphism. Hence
X0 = ¢; 1(x) = x — tv uniquely solves ¢;(xg) = .

Solving the characteristics equation

Lot =0, 2, (0) = u(x0,0) = g(x0)
yields zx, (t) = g(x0). Hence u(x,t) = g(x — tv) is the solution for the PDE.
3.8. Semi-linear PDEs. Consider a semi-linear PDE of order 1
V(x) - Vu=c(x,u) in Q CR" with auxiliary condition u(x) = g(x) on I" C Q.
The methods of characteristics applies in the exact same way.
But the equation for zx, becomes a nonlinear equation in zx,:

G (1) = el (1), 220(1), 20(0) = gl0), X0 € T.

3.9. Quasi-linear PDEs. Consider a quasilinear PDE of order 1
Z a;(x, u)ug, = c(x,u) in Q CR™ with auxiliary condition u(x) = g(x) on I' C Q.
=1

Defining the vector field V (x,u) = (a1(x,u), ..., an(x,u)) the PDE becomes
V(x,u) - Vu = c(x, u).
Assuming a sufficiently smooth solution u we can write down the following equations

o (1) = V(0 (£) 5 1 0 7o (1))

k0 9 (1) = el (1), 403 1)
Not that in contrast to linear and semi-linear PDEs this is a coupled system of ODEs.
Provided the coefficients are a; and ¢ are C! the solution (vx, (t), 2x, (t)) exists and depends in
C! sense on (xq, ).
3.10. Transversality condition, Existence of local solutions. Consider again

aug +bu, =0 on R?*  with u(0,y) = g(y), g € C*(R).

We could construct a (unique) solution as long as a # 0. Or

det <Z (1)> #0.

Consider a general quasi-linear PDE of order 1 in two independent variables
a(z,y, w)u, + bz, y, u)u, = c(x,y,u) in Q C R? & auxiliary condition u(z,y) = g(z,y) on T

where I' = Imn and n : R — R?,n(¢) = (k(¢),1(t)), n € C*(J,R?) for an interval J C R. Assume I'
is a embedded sumanifold.
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The Transversality Condition for this problem is
ot (@R, 1(0), g(k(8), 1)) E(t)
et (S ko) 1)

Theorem 3.12. Consider the previous quasi-linear PDE and assume the transversality condition.
Then, for every so € J there exists 6 > 0 such that Bs(n(sg)) C Q and

a(x7 Y, u)um + b(fE, Y, U)“y = 6(1'7 Y, 'LL) in B5(’Y(t)) with u(m, y) = g(m, y) onI'N Bﬁ(t)
has a unique solution u.

Proof. We already mentioned that v, ,(t) =: ¢(xo,yo,t) dependes smoothly on (zg,yo,t) for
(70,%0,t) € R? x R.
We pick sg € J with 5(sg) = x¢ and define
U(s,t) = d(n(s),t), s€ (so— 08,80 +0) CJ,t € (—¢e),
where we choose § > 0 such that (—e¢, €) C (), wy(s)) for all s € (so — 6, 50 +0).
Then 1) : (sg — 6,80 + ) x (—€,€) — R is C1, since it is a composition of C'! maps.

We compute
0 d
% (57 t) |So,0 = % ‘tzoﬁﬁ(ﬁ(so)a t) = (a’(k(SO)v l(80)7 Zk(so),l(so))v b(k(30)7 l(50)7 Zk?(so),l(so)))
and

Lo, )] = 2 6n50).0) = Snlso) = (k(s0).i(50).

Now, the transversality condition implies that the differential of the map (s,t) — ¢(n(s),t) in
(80,0) is invertible.

80,0

Hence, by the inverse function theorem, there exists a smaller § > 0 such that P(s,t) is a
C!-diffeomorphism on (sg — 8, 89 + 6) x (—0,9).

Hence ((so — 8, s0 + 6) x (=0,0)) =: U C R? is an open domain in R2 and for all (z,y) € U
there exists a unique pair (s,t) such that ¢(n(s),t) = (z,y). O
Ezample 3.13 (Transport equation with nonlinear right hand side). Consider

Uy +u, =u® on Q C R?* with u(-,0) = g € C*(R).

Here the vector field is V(z) = (1,1) with the flow v(z,,0)(t) = (zo + ¢, 50 +1).

Hence for (z,y) € R? the point (z¢,0) = (x — to,0) and ty = y solves v(z,.0)(to) = (z,9).

The characteristics equation for z,, is

d
%Z(onyo) = (Z(zo-,yo))2 Z(zo,yg)(o) = 9(360)-

The solution of this ODE Is (5 y,)(t) = ———. S0 (2, y) = t(z,,0)(to) =

g(zg)
This yields the following contraint: g(x —y)y < 1. Hence, to find a solution it is necessary that
QC{(z,y) ER* 1 glz —y)y <1}

—_ 1
g@—u Y
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Lecture 06.

3.11. Burgers’ Equations. We studied the linear transport equation: u; +cu, = 0 in R x [0, 00),
u(z,0) = g(x).
The solution was given by u(z,t) = g(x — tc).

This is not a good model for describing natural phenomenas like waves, or street traffic.
A better equation is
Definition 3.14 (The inviscid Burgers’ equation).
uy +uu, = 01in R x [0,00), u(z,0) = g(x), g € C(R).

Because of the non-linearity uu, the equation is a quasi-linear equation.
A solution v moves with speed in x that is given by the value of u in x itself.

We can easily write down the characteristics equations:

d
%'V:ro (t) = 2205 Vao(0) =0 ER,
d
=0, 24,(0) = glao).
The solution of this system is
Zzo (1) = g(x0) for t > 0,

Yao (1) = tg(wo) + x0 for t > 0.

Hence the characteristic that starts in xo(= (z9,0)) is the straight line with slope g(z¢). If g is an
increasing function, then the corresponding characteristics will span out the space-time half plane
R % [0, 00).

However, if g is not increasing, then characteristics will collide.
Example 3.15.

us +uu, = 0in R x [0,00) & u(z,0) = g(x), g € C}(R)

with
1 if x <0,
g(x) = < decreasing if0<ax <1,
0 if x > 1.

For simplicity, we set g(z) =1 —z in z € (0,1) (although g is then not C1).

We can try to solve this equation with the characteristics method:

‘We observe

e Around (#,0) with & < 0, we have v,,(t) =t + x¢ and the solution u(x,t) =1,
e Around (#,0) with & > 1, we have v, (t) = zo and the solution is u(z,t) =0,
e For & € (0,1) the following happens:
If (x,t) satisfies t < 2 < 1, we solve vy, (t) = t(1 — ) + zog = : 20 = ¥=¢ € (0,1).

Then, the slope of 7., (t) is g(z9) = (1 — z¢) = +=%. That is also the value of u(z,t).
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3.12. Distributional solutions of scalar conservations laws. Let us consider a general

Definition 3.16 (Scalar Conversation Law).
(14) w4 (f(u)e = w + f/(W)ug = 0 in R x [0,00) & u(z,0) = g(x)
where g € C*(R) and f € C?(R) with f” > 0 (hence f is convex).

From the Burgers Equation we learned that C! solutions may be defined only up to some time
t*. Then a Shock has developed.

Shocks can have a physical meaning, so it is desirable to extend our concept of solution to
include functions u that are discontinuous and still satisfy the PDE in a generalized (or
weak) sense.

Definition 3.17. We say u(z,t), (z,t) € R x [0,00) is piecewise smooth if
e wu is O in all points (,t) except along a C! curve s(t),t € (a,0),
e 1 is discontinuous in s(t) for all ¢t € (a, 00).

In addition we assume that for every t € (a,00) the limits

ut (s(t),t) :== xlfs%u(w’t)’ u” (s(t),t) : m u(z,t) exist.

=1l

x1s(t)
Question 3.18. What is a good notion of solution for the conservation law (14) in the class of
piecewise smooth functions u?

Should we call a piecewise smooth function u already a solution if u solves the conversation law
in the classical sense in every (z,t) where u is a C function?

e Then answer to the second question is NO!
e When we derived the conversations law, we assumed a priori that a solution would be C*.
e But eventually the class of C'! function is to small to capture all physical meaningful events.

Recall we had the integral equation
| talu+ (@)l ds =0
for every connected domain with smooth boundary © C R.
This motivates the following definition.

Definition 3.19 (Distributional solutions). We say a piecewise smooth function w is a solution of
(14) in the distributional sense if

/00 /OO [udr + f(u)dy] dxdt = 0 for any ¢ € C°(R x (0,00)).
0 —00

Using integration by parts and the fundamental theorem of calculus we see that for every
(x,t) # (s(t),t) the function u satisfies us + (f(u)), = 0 classically.
Theorem 3.20 (Rankine-Hugoniot jump condition(s)). Let s(t),t > 0 is a C' curve in R x [0, 00)
(parametrized as graph). Assume u is piecewise smooth in the sense of the previous definition.

Then u is a solution of (14) in the sense of distributions if and only if u is a classical solution in
any point where u is C! and

S/(t) — f<u+) — f(u_)

g ° s(t) for every t € (0,00).

Proof. Consider u that is piecwise smooth in the previous sense.
Let ¢ be in C}(R x (0,00)) with compact support in B,((s(t),)).
We define
BT ={(z,t) € B:((s(to), t0)) : @ = s(t)} & B~ = {(x,1) € Bu((s(to), t0)) : & < s(t)}
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Assume u is a solution in distributional sense. Then

0= [ o+ swosddot= [ [ ot swonddsars [ [ ot o e

Now, here comes a trick. The identity

uds + f(u)py = ugs + f(u)dr + urd + (f(u))zd

holds on {(z,t) : x > s(t)} and {(z,t) : * < s(t)}. The right hand side in the previous identiy
becomes

udr + f(u)da + urd + (f(u)a = (ud)t + (f(u)@)e =V - (f (u)d, ug)
Inserting this back into the integral identy yields

// [ugy + f(u)ds] dedt = / - V- (f(u)o, up)dzdt

and the same for the integral over B~. By the divergenc theorem (for domains with corners)

/ V- (f)d ud)dadt = | N - (f(ut)é, ut¢)dS = / 6 (N - (f(u™),u™)) dS
B+ t),t):t>0}

OB+

/ /B gyt = [T o050, 1) ()t o (5(0,0)VTT SO
For the integral that involves B~ this is

[ [ v et and = [ o010, 1) (7)) o (0.0 TT S0P
It follows that

0= [ 60|50, 1) (Fluh)u) o (500,
0
+(s'(), —1) - (f(u),u")o (S(t)at)} V14 [s'(t)[dt.
We conclude that
0=—stut + flu")s't)u™ — flu™) — §(t)= o (s(t),1).

This is the jump condition. Now assuming v is a solution when it is C' together with jump
condition, we can reverse this chain of implications and obtain u is solution in distributional
sense. O

flu?) = fu”)

ut —u~

3.13. Non-uniquness of distributional solutions, Lax entropy condition. Since we know
that for certain initial conditions, shocks always develop, and since we have the concept of distri-
butional solution at hand, we consider the following PDE problem for the Burgers equation.

1 ifx <0
u +uug =0 in R x [0,00) & u(z,0) = g(z) = {0 ?fx;o’
1IIrx =~ U.

Let us apply the previous theorem. We want find a C! curve s(¢), t > 0 that satisfies the jump
condition. For the burgers equation we have f(z) = %132. Then the jump condition is
+\2 _ —\2 1
W) =) Loy = s,
2(ut —u™) 2
Therefore, distributional solutions of the previous PDE with initial condition are

1 f < 1
u(x,t){ or T = ot

0 for x > %t.
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and

(2,1) 0 forz< %t,
v(x,t) =
1 for x > %t.

We want to choose the solution that is physical meaninful. Which one is it?

21
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Lecture 07.
We consider the Burgers’ equation with discontinuous initial value:

1 ifx <0
uy +uu, =0in R x [0,00) & u(a:,O):g(a:):{O ?fx>0’
if z > 0.

Let us apply the previous theorem. We want find a C! curve s(¢), t > 0 that satisfies the jump
condition. For the burgers equation we have f(z) = %xQ. Then the jump condition is

+\2 _ —\2 1
W o 5(t) = 3 (u" +u”) os(t) = /(1)
Therefore, a distributional solutions of the previous PDE with this initial condition is

1 for x < lt,
u(x, t) = 2
0 for x > 3t.

On the other hand, consider

us +ut, =01in R x [0,00) & u(z,0) =g(z) =

0 if z <0,
1 if x > 0.

A distributional solution is

(2,1) 0 forax< %t,
v(x,t) =
1 for z > %t

but also
0 for x <0,

1
¥ for 0 <z < 5t,
1 for x > %t

w(z,t) =

is a solution that is even continuous. This solution is called the rarefaction wave.

For this problem there is no uniqueness.

Question 3.21. Which solution should we pick? Which solution is physically meaninful?
For the solution v characteristics emanate from the shock.
This is physically unreasonable.

Recall the characteristcs equation

dx ,
i = f'(u).

A sufficient condition such that characteristics do not emanate from the shock is
(15) fw) =8 > f'(u).
Since f is convex, 15 implies that u™ > u~.

Definition 3.22. Lax entropy a condition We say a piecewise smooth solution u(z,t) to a con-
servation law is an entropy solution if the Lax entropy condition (15) holds.

Note that a smooth solution is an entropy solution since there is no curve s that describes a
discontinuity.

Theorem 3.23. If an entropy solution exists, then it is the unique distributional solution for the
scalar conversation law.
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4. LINEAR HOMOGENEOUS SECOND ORDER PDES

4.1. Classification of linear second order PDEs. Consider linear second order PDE for n
independent variables has the form

(16) Z G jUg; z; T Z brty, +cu=d on .
3,j=1 k=1

We assume a; j, b, c,d € C°(Q2) and a;; = a;;. Hence

1.1 e ain
A= ... e is a symmetric matrix.
an,1 - An,n

Recall form linear algebra that there exists a symmetric matrix B such that

d 0 0

0 ds 0 0
BABT: e e ... ... e ::D

0o ... dn—1 O

0o ... 0 dn

with dy,...,d, € C°(Q). {d1(x),...,d,(x)} are the eigenvalues of A(x).
Definition 4.1. The PDE (16) is called

(1) Elliptic if all the eigenvalues di,...,d, are positive. That is equivalent to say that A is
positive definite,

(2) Parabolic if exactly one eigenvalue is 0 and the other eigenvalues have the same sign,

(3) Hyperbolic if exactly one eigenvalue is negative and the other eigenvalues are positive,

(4) Ultrahyperbolic if there are more thatn one negative eigenvalues and the other eigenval-
ues are positive.

Consider linear second order PDE for 2 independent variables has the form

(17) a1,1Ugy 3, + 201 2Usy gy + G2,2Ugy o + 01Uy, + boty, + cu = d.

Definition 4.2. The PDE (17) is

(1) Elliptic <= a11a22 —a?, >0,
(2) Parabolic <= a11a22 — aiz =0,
(3) Hyperbolic <= a1,1a22 — af , <O0.

Let B the n x n matrix such that
BAB" =D
We can introduce new coordinates (y1,...,y,) =y via Bx =Y.

Lemma 4.3. The PDE (16) writes w.r.t. the coordinates'y as

n
Z dity; o, + z brz, +cu =d.
i=1 k=1

1

After rescaling with i i y; for everyi=1,...,n as long as d; # 0 this becomes

Au+Vu-(by,...,bg) +cu=d.
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Proof. We compute

ou d(uo B~ o B) _ " Quo B!

Ug, (%) = £l P e Vy(uo B, (Bri-- s Bui) =) 87‘3 By.i
71X i x k=1 Yk x
—1
We set u(y) := uo B~y and uy, := %. Therefore
n n n n n

Uzj,xi = Z Uy, BriBi; = Z Ai»juwi,wj = Z Z Bk7iAi,ijT7l Uyp,yr = deuyk;yl'

k=1 i,j=1 kl=11,j=1 k=1

A0k,
O

Consider linear second order PDE for 2 independent variables has the form
(18) 11Uz, 21 + 201 2Uz, 2y + 02,2Ugy xp + D1Uz, + boUy, +cu=d on R.

Ezample 4.4. Consider the PDE (18) for 2 independent variables. Let d = ¢ = by = 0. Applying
the transformations of the previous lemma yields

(1) Elliptic: ug, 5, + Ugy 2y + b1z, = 0. If by = 0, we have the Laplace equation:
U, 2y + Uzy,ze = 0.
(2) Parabolic: Assume dp = 0 and set 21 =  and x3 =t. Then uy , +biug . If by =1 we
have the diffusion equation:
Ug o +ug = 0.
(3) Hyperbolic: Assume dy < 0. Then ug, — uy + biug. If by = 0 we have the wave
equation:
Ug,x — Utt = 0.
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Lecture 08.

4.2. Deriving the wave equation in 1D. Consider a flexible, elastic homogenous string or
thread of length [, that undergoes relatively small transverse vibrations.

We think of the string as the graph of function u(z,t) on [0,!] that depends also on ¢ € [0, 00).

Let T'(x,t) be the magnitude of the tension force that pulls in (z,u(x,t)) along the string at
time ¢. And let us assume T' does not depend on t. Moreover there are no other forces.

Because the string is perfect flexible the tension force is directed tangential to the string.

And let p(x) be the mass density of the string as distribution on [0,]. Since the string is
homogeneous, we assume p(x) = constant.

We consider an interval [xg, z1] C [0,1] that gives a section {(x, u(x)) : © € [xo, x1]} of the string.

We apply Newton’s law: the Force F' is given by mass times accelaration.
This yields the following two equations

T(z1) — T(=o) =0 for horizontal forces
V1tug(z1)?2 /14 ug(20)?
and
T(z1)ug(x1)  T(xo)us(wo) /w1
V1 ug(z1)? e

\/1 + Uy (x0)?

puy (z)dz  for vertical forces.
0

We assume the magnitude of the motion is small compared to 1. By that we mean that the slope
ug(x,t) of u(x,t) w.r.t. z at time ¢ is small compared to 1.

If Taylor expand the x + \/z around 1 we get

1= (1/2 ; 1
Vl—l—u%:(l—I—uiV:Z&(é)(uw) 1—|—§ui—|—....
1=
(Binomial series) where
(a> B a-(a=1)-...(a—i+1)
1

. forie Nand a € R,a > 0.
1.9 g
Hence, we make the assumption that Newton’s laws for the string reduces to

T(x1) —T(x9) =0 for horizontal forces.
and

7)o (1) — T(ao)u(o0) = | N

pug(x)dr for vertical forces.
Zo
The first equation says that T'(z) = T is constant along [0, [].

In the second equation we can apply the fundamental theorem of calculus.

Hence
1 1
T/ um,z(:c,t)dx:/ pug(x, t)de.
o T

Since this euqation holds for every z¢ < z; with 2 and z; close to each other, it follows Tu, , =

pu . Now, let us also assume the mass ditribution p(z) along the string is constant and set
T

c=./=

0

R

Definition 4.5 (Wave equation in 1D).

Uy = 02um on R x [0, 00)
for ¢ # 0.
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Remark 4.6 (Modifications). (1) If there is an air resistence r present, one has an extra term
proportional to the speed wu;:
Uy g — cQut’t +ru; =0 where r > 0.

(2) If there is transversal elastic force, we have an extra term proportional to the magnitude
of the displacement wu:

Ug,x — Czuw + ku =0 where k > 0.
(3) If there is an external force, an extra term f independent of u appears:
Upp — czut,t + f(x,t) =0 where f(x,t) is a time dependent function.

4.3. General solution of the wave equation in 1D. The wave equation in 1D factors nicely

in the following way:
0 9 0 0 0 0
Ytp = € Uze ot 8x ot 5‘x -

We recognize that this yields a coupled system of two first order equations:
Ut + CUg =V
vy — cvg = 0.
This idea allows us to prove the following
Theorem 4.7. The general C? solution of the wave equation u; ¢ — c®uy , = 0 on R is of the form
u(z,t) = f(z + ct) + gl — ct)
for arbitrary functions f,g € C*(R).
Proof. We first consider
(19) vs — cvy, =0 on R x [0, 00).
We know the general solution of (19):
v(x,t) = h(z + ct)
for h € C*(R) arbitrary where v satisfies v(z,0) = h(x). Then we can consider
(20) ug + cuy = h(z + ct) on R x [0,00) with u(z,0) = j(z), g € C*(R).
Lets solve this. The characterisitcs equations are

d

dt

It follows that x4, (t) = ct + xo. Hence for z € R and t > 0 we set zg = x — ct.
Moreover

Ty (t) = ¢ with x(0) =29 & %zzo (t) = h(s, () + ct) with z,,(0) = g(xo).

Zao () = /0 h(Z,(s) + cs)ds + g(zo) = /0 h(cs + xo + ¢s)ds + g(xo).

¢
Then the solution v in (z,t) is given by u(z,t) = / h(cs + o + ¢s)ds + g(xo).

Applying the substituion ruel ff foop(s)g'(s)ds = qu((:) s)ds with ¢(s) = zg + 2cs gives

xro+2ct 1 x+ct 1
u(z,t) = / 2—h(7’)d7’ +g(x —ct) = / 2—h(7)d7’ + g(z — ct).
T & r—ct c

Then the claim follows with f(s) := [ %h(7)7 and g(s) = fso £h(T)dr + §(s) where f,g €
C?(R). O
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An alternative proof (without characteristics). We can check that f(z + ct) for

1
= [ —h(r)d
1) = [ gehtryar
solves the equation u; + cu, = h(z + ct). Indeed

gf(x—l—ct) =fl(x+ct) = %h(w—l—ct).

(x+ct) = f'(z+ct)e= %h(x +ct), P

0
ot
Therefore

0 0
e (a:—&—ct)—i—ca—f(x—i—ct):h(a;—i—ct).
On the other hand g(x — ct) for g € C?(R) solves the homogeneous equation u; + cu, = 0.

But we learned before that the sum of a solution of the homogeneous equation and of a solution
of the inhomogeneous equation, still solves the inhomogeneous equation u; + cu, = h(x + ct).

Therefore, f(xz + ct) + g(z — ct) also solves the wave equation.

Remark 4.8. It seems we found two different expression for g (depending on the proof), but for
the first expression we fixed a initial condition § and found ¢ depending on g.

The Initial Value Problem for the wave equation in 1D. Now we consider

(21)
u(z,0) = ¢(z) & w(x,0)=¢(x) ¢ € C?*(R), v € CL(R).

Theorem 4.9 (D’Alembert’s formula). The unique solution of the initial value problem (21) is
given by

{utﬂf - C2Uac73: =0 on R x [O, OO)

z+ct

[O(x +ct) + p(x — ct)] + 21C / p(s)ds.

—ct

DN | =

u(z,t) =
Proof. From the formula for the general solution, we get

1
¢(z) = f@) +9(x) & —¢(z) = f'(x) = g'(x).
Differentiating ¢ yields ¢’ = f’ + ¢’. Adding and substracting these identities yields

ria) =3 (0@ + o) & g =3 (0~ Jut).

Integrating from
1 1 [*
== - A & - - As.

1) =3 (o)1 [“vs) + A & glo) = 3 (66— 1 [ utoras) + 4
Since ¢(z) = f(x) + g(x) we have A1 + Ay = 0.

. . 71 . 1 :v+ct . 1 r—ct p
flas ety oo == (oeren st [* vis) 45 (s~ 1 [ wisas)

+ A+ A

Now, we can write
1 1 m+ct 1 0
=3 (qb( +ct) + = C ) ( x — ct) + /mict w(s)ds)

1 1 x+ct
=—(¢(x + ct) + ¢p(z — ct)) %/

| =

[\)

This is what was to prove. O
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e Semigroup property: Define
W(t)(¢, ) = (u, w)
where v is the unique solution of the wave equation
(22) Upt = gy in R x [0,00) with ¢(x) = u(x,0), () = us(z,0)
given by d’Alembert’s formula.
Corollary 4.10. The following semi-group property holds

W(s +7)(¢,9) = W(s)(W(t)(4,1))

Proof. Let P;(z,y) = « be the projection map.

Then s > 0 — v(-,s) := Py o W(s+ 7)(¢,¢) is a solution of the wave equation with initial
conditions

v(z,0) =u(z,7) & vi(x,0) = w(x, 7)
By d’Alembert’s formula we have v(z,s) = W(s)(u(-, 7), us(-, 7))

W(s)(W(T)(0,4))- U

e Causality: For a point (z,t) € R x (0,00) the solution u given by d’Alembert’s formula
1 xr+ct

5 [o(x — ct) + ¢z + ct)] + % / Y(s)d

r—ct

u(z,t) =

depends only on the values of ¥ on [z — ct, x + ct] and the values of ¢ in  — ¢t and x + ct.
Moreover, for s € (0,t) we have by the semi-group property
W(t)(d,p) = W(t —s)(W(s)(¢, ).

So u(z,t) also only depends on the values of W (s)(¢, %) = (u(-,s),ur(-,8)) on [z — c(t —
s),x + c(t — s)].

Hence, the domain of dependence is space-time triangle in R x [0, 00).

Similar, the domain of influence for (z,t) € R x [0,00) is a space time triangle in
R x [0, 00).
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lecture9
Ezample 4.11 (Plucked String). Consider the initial value problem

9 . p— bl for |z| < a,
Uty = C Uy ID R X [0,00) & u(z,0)=¢(z) = @
’ ’ 0 for |x| > a.
The solution is
1
u(a, 1) = 3 [0z + ct) + bz — ct)].

We note that the initial condition is not C?-differentiable. Hence also the formula doesn’t give us
a C? solution. Nevertheless, this u is still a solution in a “weak” sense, similar like a distributional
solution for conservation laws.

For t = 5 the solution has the form

0 if [z > 32,
u(w,t) = 3190+ 20) o HeeCRo9)
5 [0(@ + 3a) + ¢(z — 3a)] if |z| < §
bolo — 3a) itre (3,%)
where for instance
1 1 1 b 1 3 b 3a  a
h Ca)= - b— et zal| == b+ 2o+ bl = b+ Lu 2 gy
2¢(x+2a) 5 {b x+2a|] 2[b—|— m+2b] 4b+2aa: orz € ( 5 2)
and
1 1 1 b 1 1 b 1 3 3a
iqﬁ(x—fa)fi [b|x2a|} =3 {bx+2a] = Zb—fz for z € (7,?)
and
1 1 1 1 1 1 b 1
1 b 1 1 b 1
2{ ax+2]+2{+ax 2}
For t = 37“ the solution has the form
0 if || > 4a,
(1) = 1o(z+ La) %f x € (—4a,—2a),
0 if |z| < 2a

$0(x — %a) if x € (2a,4a).

4.4. Preservation of Energy. Imagine an infinite string with uniform mass distribution p, uni-
form tension force T' given by the graph of u(z,t) for € R. The string behaves according to the
wave equation

puy = Ty o

with initial conditions ¢(x) = u(z,0) and ¢ (z) = us(x,0) on R. We set again ¢ = \/%.
The kinetic energy is defined as

KE = %/w p-(up)*(x)de

— 00
This integral and the following ones are evaluated from —oo to +oc.

To be sure that the integral converge we assume that ¢(z) = u(z,0) & ¥(r) = us(x,0) vanish
outside of [-R, R] for some R > 0.
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Then wu(x) vanishes outside of [-R — ct, R + ct] and

1 ) 1 R+tct
f/ plug)?dr = f/ p(ug)?da.

2 —oo 2 —R—ct

We differentiate the kinetic energy in t:

IKE 1 /°° d o0
—— ==p —(u)dx:p/ upty ¢ d.
20 ) dt PV

Here we apply that we can differentiate under the integral. At this point we use that u satisfies

: _ .2 .
the wave equation Upp = CUg ot
oo o0
— T/ U, Ug dT.

dKFE o
T = T/ Uy o dT = Tuguy,

The first term on the right hand side vanishes since u; vanishes outside [-R — ct, R + ct].

In the second term we can write u; zuy, = % ((u1)2)t Hence

dKE  d [1

it - 2
dt g | 27 (ua)dz.

We call § [ T(u,)?dz =: PE the potential energy.
We see that

d
— [KE+ PE] =0
5 [KE + PE]

and therefore

KE + PE = %/oo (p(we)® + T(uy)?) do = E

— 00

is constant. This is the law of preservation of enery.

Application: We can use the Preservation of Enery to show uniquness of solutions of the wave
equation.
Let u', u? be two solutions of
(23) purs =Tug, (& pugy —Tuy o, =0)
with the same initial conditions u(z,0) = ¢(x) and u.(z,0) = ¥ (z).
The wave equation (23) is a linear, homogeneous PDE.

1

Hence, the difference v = u! — u? is also solution with initial condition u(z,0) = 0 and wu(z,0).
1 2

The task is to show that v(z) = 0, then clearly we have u' = u*.

By Preservation of Energy it follows

0=3 | (oo 00 + TCesle,07) do =3 [ (o) + T(un(,0))?) di 0.

2/ oo

It follows

0=3 /Z (p(ve(w, £))? + T(vy(,1))?) da.

This is only possible if v; =0 and v, =0 (< Vv =0).

It follows that v = const on R x [0, 00). Since v(t,0) = 0, it follows v(z) = 0.
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4.5. The diffusion equation: Maximum principle and consequences. Recall the Diffusion
Equation

(24) up = kg 5.

First we study this equation without considering initial or boundary conditions.
Though similar to the wave equation, its mathematical properties are completely different.
The constant k > 0 is called the diffusion constant or volatility.

To solve this equation is harder than to solve the wave equation. Therefore we start by assuming
we have a solution and studying its properties.

Theorem 4.12 (Maximum Principle). Let u(x,t) be a C? solution of (24) on [0,1] x [0,T] C
R x [0,00). Then
(1) The mazimum of u(x,t) is assumed either on [0,1] x {0} or on {0} x [0, T]U{l} x [0,T):

u(z,t) = u(z,t).

max = max
(z,t)€[0,1]x[0,T] (z,t)€[0,1]x {0}U{0} x [0, T|U{l} x[0,T]

(Weak Mazimum Principle)
(2) If there exists (zg,to) € (0,1) x (0,T) such that

t) = to) =: M.
(m,t)er[r(%,alﬁ[o_q‘]u(x’ ) u(an 0)

Then u(x,t) = M on [0,1] x [0,T). (Strong Maximum Principle)
Theorem 4.13 (Maximum Principle, short). Let M := max(, ¢)ea((o.ix[0,7])\[0,1]x{T} U(T;1).
(1) u < M on (0,1) x (0,T).
(2) If there exists (zg,t0) € (0,1) x (0,T) then uw= M on [0,l] x [0,T).
In this formulation we can see the weak maximum principle as a geometric inequality, and the
strong maximum principle as the characterization of the equality case.

Physical Interpretation: Imagine a rod of length [ > 0 with no internal heat source. Then
then the weak maximum principle tells us that the hottest and the coldest spot can only occur at
th initial time ¢ = 0 or at one of the two ends of the rod.

On the other hand, by the strong maximum principle if the coldest or the hottest spot occur
inside of the rod away from the ends at some positive time ¢ > 0, then, the temperature distribution
must be constant along the rod.

Proof of the weak maximum principle. Here, we will only prove the weak maximum principle.
The proof of the strong maximum principle is much more difficult and requires tools that
currently are not at our disposal.

Idea for the proof of the weak maximum principle:

If there exists (zo,%0) € (0,1) x (0,T) such that u(xo,to) = maxyg o, then u; = u, = 0
and u, , < 0. If we would even know that u; , < 0, this would contradict the heat equation. For
a rigorous proof we need to work a little bit more.

The trick is to consider v(z,t) = u(z,t) + e32? for some € > 0. Then
Vgg = Ugz +€=kus + €= kv, + ¢
Hence, the Partial Differential Inequality
(25) Vg,w > KUy
Let M = max, ¢)ca((o,)x[0,T)\[0.1]x {1} W(¥,t). Then it is clear that
v(x,t) < M +el®> on 9([0,1] x [0, T\[0,1] x {T}
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Now suppose that there is (xg, %) € (0,1) x (0,T] such that u(zg,to) > M. Then

1
’U((E(],t(]) = ’LL(.’E(),t()) + €§x8 > M.

In particular, the maximum of v is occurs in a point (z1,%1) € (0,1) x (0, 7] and v(z1,t1) > M.

If (z1,t1) € (0,1) x (0,T) then v; = 0 and v, , > 0 (= kvg, > 0) what contradicts (25). If
(z1,t1) € (0,1) x {T'}, then we still have v, ,(x1,T) > 0.

However uy(z1,T) = 0 does eventually not hold.
But we now that v(z1,T — §) < v(z1,T). Hence

u(z1,T) = %im vla, T =9) —v(zy, 1)

> 0.
10 -0 -

So we have
(21, T) > vy p(21,T)

what again contradicts (25): vy, < kug s. O
Application: Uniqueness of solutions to the diffusion equation Dirichlet Problem for
the diffusion equation We consider the diffusion equation

ug = kug, on [0,1] x [0,T]
with the initial condition
u(z,0) = ¢(x) for x €[0,1] and ¢ € C2([0,1])

and boundary values

u(0,t) = g(t) & u(l,t) = h(t) for t € [0,T] and h,g € C*([0,T]).
Corollary 4.14. There exists at most one C? solution to the Dirichlet problem for the diffusion
equation.
Proof. The first step of the proof is similar to what we saw for the wave equation.

Assume u', u? are two solutions to the Dirichlet problem with ¢, g, h given as above. Then, by

linearity of the equation w = u! — 4?2 is a solution of the Dirichlet problem with ¢ = ¢ = h = 0.

We need to show that w = 0.
By the weak maximum principle w < 0. Since also —w solves the Dirichlet problem with

¢,g,h =0 we also have —w < 0. Hence w = 0. O

Alternative Proof of uniqueness via energy method: Let us investigate an alternative
method to prove uniqueness of solution of the diffusion equation. This method is similar to the
strategy that we applied for the corresponding statement for solutions of the wave equation.

Let u be a solution to the previous Dirichlet Problem with ¢ = h = 0 and consider

1
1
E(t) = / L (1))
0 2
Proposition 4.15. The qantity E(t) is positive and monotone decreasing in t € [0,00).

Proof. Let us compute the derivative in ¢.
dE l 1
— = | w(z,t)u(z,t)de :/ Uy 2 (2, t)u(z, t)de.
dt 0 0 ’

By integration by parts the right hand side becomes

l l
w1, tyul, £) — (0, £)u(0, 1) —/0 (s (2, 1)) 2z — —/O (s (2, 1)) 2z < 0.
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Now, if u', u? are two solution for the Dirichlet problem with ¢ € C2([0,1]) and g, h € C2([0, T)),

then u = u! — u! is a solution of the Dirichlet problem with ¢, g, h = 0.

Since E(0) = 0, the previous proposition implies E(t) = 0 for all ¢ > 0 and therefore u(z,t) =
0.

4.6. Stability. Stability was the third property for well-posedness of a PDE: “Small changes of
the date imply only small changes for the corresponding solutions”.

The energy method shows the following: If u' and u? are solutions of the Dirichlet problem
with the same g, h and but for ¢' and ¢ that are eventually different, then

[ 30 —nrar < [ Fot - o)
This is Stability in the square integral sense.
Alternative we can use the maximum principle again. Let u' and u? be solutions of the Dirichlet
problem with ¢!, g', h! and ¢2, g%, h? respectively. Set v = u' — u?. Then
ut — u? =< max{max(¢' — ¢?), max(g* — ¢*), max(h — h?)}.
But we also get
u? —u' < max{max(¢? — ¢'), max(g* — g'), max(h? — h')}.

Then

1

lu' — u?| < max{max|¢® — ¢'|, max |g* — g'|, max |h* — h'[}.

This is called stability in the uniform sense.
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4.7. Solving the Diffusion Equation on the real line. Consider the diffusion equation on the
real line

(26) Uy = kg on R x (0, 00)
More precisely, we look for u € C?(R x (0,00)) that solves the initial value problem

27) Ut = kg » on R x (0,00)
u(z,0) = ¢(x) for z € R.

¢ € C1(R) and k > 0.
The initial condition is understood in the sense that lim; o u(z,t) = ¢(x).

For ¢ we assume that ¢(x) — 0 if |z| = oo. The method to find a solution will be very
different from the previous techniques that we used.
Let us collect some general properties of solutions of the diffusion equation u; = kuy 5.
(a) Translation invariance: If u(z,t) solves (26), then also u(x — y,t) solves (26) for any
y € R.
(b) If u(w,t) is a smooth (C*) solution (26), any derivative (uy, Uz, s+, ect.) if it exists, solves
(26) as well.
(c) Superposition: Any linear combinations of solutions of (26) is again a solutions of (26):
u'(z,t), i =1,...,n solves (26) = Z)\iui(m,t) =: u(z,t) solves (26).
i=1
(d) An integral of a solution is again a solution: If u(z,t) solves (26) and ¢ € C°(R)
then

v(z,t) = /u(aj —y,t)d(y)dy solves (26).

Proof. We calculate

w(e,0) = [ Sute—y0owis= [ 5] sy
= [ 3 e~ )] 60y = v (1), D

(e) Scaling property: If u(x,t) is a solution of (26), so is u(y/az, at) for any a > 0.
Remark 4.16. Of course these transformations do not preserve the initial value problem
Let us consider the following special initial condition:

0 z<0
xTr) =
v(@) {1 z>0

and arbitrary value in z = 0.
We consider this 9 because it is scaling invariant: ¥ (az) = ¢(z) Va > 0.

We say u(z,t) in C?(R x (0,00)) solves the diffusion equation with initial condition v if
up = kg, R x (0,00)
and lim o u(z,t) = ¢¥(z) for all z € R.

If u(x,t) solves the diffusion equation on R x (0, 00) with initial condition (z), then by the
scaling property also u(y/ax, at) is a solution with the same initial condition ¢ (z).
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Moreover, we expect uniqueness of solutions for a given initial value function. Hence, it should
hold

u(z,t) = u(v/az,at).
From this we make the following Ansatz:
Q(z,t) = g(x/ V1)
Why do we choose this Q7
Because @ satisfies Q(v/at, a) = Q(z,t).
Lemma 4.17. Q(z,t) = g(z/\/t) solves (26) if and only if g satisfies g"(r) = —:1g'(r).
Proof. We calculate

awn=[s(5)], =3 (%)
=)l - ()
Quo(z,t) = _g (%)Ili y (\;;)

Hence
=3 [ ()= ()
127 \Vi vt) ]
Since ¢ > 0 and by substitution of %, it follows that g must satisfy
1
11 _
(28) g'(r) = =gprg (r)-

On the other hand, if ¢ satisfies (28), then Q(z,t) =g (%) satisfies the u; = kug 4. O

T 2
Lemma 4.18. The general solution of g (r) = firg'(r) isg(r) = cl/ e_<ﬁ> dr + cg, c1,¢9 €
R. "’
Proof. We set h = g’ and consider the ODE 1/ (r) = —5-rh(r).

We can easily solve this equation by standard techniques. The general solution is given by

T 2
h(r) = cle—r2, And therefore g(r) = 01/ e‘(ﬁ) dr + . O
0

x

Corollary 4.19. The function Q(z,t) = ¢; /ﬁ e_(
0
R x (0,00).

We want to choose the constants ¢y, co € R such that

lim Q(z,t) = {O r<0

-

~/47')d7'+02 is a solution of uy = kug, on

t10 1 x> 0.

We can compute the following limits

x

x>0, th(x t) —hmcl/ﬁe_(ﬁ)dT—f—cQ

10 0
Vi V4ak
:ﬂ%qu/4“f”m+@:q 2ﬂ+%
t 0
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Hence, we require

Here we used that fooo e T dr = @ Similar

-

Vi (=) Ak
T < 0, 11H1Q(1'7t) = hmcl/ e (\/Zk) dfr-|—02 =—C 7T
t10 t10  Jo

2

+ c2

and hence we require also

We can solve this system of two linear equations for ¢; and c¢; and obtain

1
c1 = and co = —.
! 4k 272
1 Vi _(L)Q 1
Corollary 4.20. Q(z,t) = T / e i) dr + 3 solves uy = kug 5 on R x (0,00) and
™Jo

0 x <0
li 1) = = ’
fip e t) = vle) {1 s>0.

Definition 4.21 (Fundamental solution of the diffusion equation on the real line).

) o 1 Vi o ()? (= )?
S(x,t):a—xQ(x,t):%\/m/o () ar = . ()"

Note that @ (and S) are C*° functions on R x (0,00) (because e” is C*°).
The function S(x,t) is called the fundamental solution of u; = kug , on the real line.

Theorem 4.22. The unique solution of the initial value problem (27) :

U = kg 4 on R x [0, 00)
u(z,0) = ¢(z) forz eR

where ¢ € CH(R) with ¢(x) — 0 if |x| — co and k > 0 is

) = [ " S -y )é(y)dy.

Proof. We already saw that u(z,t) is indeed a solution of u; = kug , on R x (0,00).

We only need to check the initial value condition. For that we compute the following;:

<9
u(amt):/ e

=—Qu-y0o)| "+ [ Q-8

o}

Q= )p(y)dy = — / 55 QG = 0] o)y

Z=r—y 00

Since ¢(x) — 0 for |x| — oo, it follows

utet) = [ T Q- )¢ )y, ¢ > 0.
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Moreover

%w@wz/lﬁQmme@@

— 0o

:/ mmm%ww@@:/“kﬂm@—mww@

= /_x o' (y)dy = ¢(x).

Uniqueness follows by the enery method. |
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Properties of the fundamental solution

o S(z,t) >0 for all (z,t) € R x (0,00).
e We compute that

0 00 Lo () 1 [ .o
_ = = — _— Vakt = — =
/ Sz —y,t)dy / S(y, t)dy ﬁ/—oo \/me k) dy ﬁ/e dr =1.

e The solution u(z,t) = [ S(z — y,t)¢(y) is in C=(R x (0, 0)).
o We have

L (ko)
max  S(z,t) < e i) — 0 when t | 0.
{zeR:|z|>6} (@,) Vakrt ‘

In particular S(z,t) — 0 for all z £ 0 as ¢ | 0.
e S(z,0) is not defined.

But we computed
oo
ltlﬁf)lu(l‘,t) = ltlfél /_OO Sz —y,t)o(y)dy = ¢(x).
Hence, we can interpret y — S(z — y,0) not as function but as a linear operators J, on
CY(R):
b2(0) = o(x).

The operator d,, is an example for a distribution, the Dirac 0, distribution.

4.8. Distributions. Distributions are generalized functions.

We define D = C°(R), the set of C* functions ¢ with ¢(z) = 0 for |z| > R for some R > 0.
We say ¢ has compact support.

Definition 4.23 (Distributions). A distribution is continuous linear map F : D — R.

What means continuous in this context?
Let us first define a notion of convergence on D. Consider ¢;,¢ € D, i € N.

We say ¢; — ¢ in D if
k
maﬁd@(x)— ¢(z)] — 0 and max (bz( ) — Z—qﬁ(gc) —0, VkeN.
e T

Then we say a linear map F : D — R is continuous if
F(pn) = F(¢) whenever ¢, — ¢ in D.

The concept of distribution allows us to make sense of S (x,0)” as the distribution dp.

Ezxamples.
(1) Let f: R — R be an integrable function. Then

- / f(@)é(x)de
is a distribution.

We see F is linear. Let’s check continuity of 7. Consider ¢,, — ¢ € D. Then
F(Gn) = F@)] < [ 17@)10n(0) ~ o)l de < maxlon(e) — 6(@)] [ |F(a)ldz 0.

Hence F is indeed a distribution.

The example shows that we can think of functions as distributions.
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6(o) = [ " @) (@)de

is a distribution. Continuity follows as in the previous example.

Now, if f € C1(R), then G(¢ / f(z

The function f’ represents the distribution G.

(2) Let f be as before. Then

The concept of distributions now allows us to define derivatives for functions that are not differ-
entiable in the classical sense.

4.8.1. Derivatives in distributional sense.

Definition 4.24. We say a locally integrable function f : R — R has a derivative in distributional
sense if there exists a distribution G : D — R such that

/ F(2)6/ (2)dz = G(6) V6 € D.

Ezxample 4.25. e Every C! function has a derivative in distributional sense:

[ 1@ @iz =~ [ 1@of)da

and the right hand side defines a distribution.
e The function f(z) =0 for x < 0 & f(z) = = for > 0 has a derivative in distributional
sense:

[ @@= [ woar = a0y - [ owis =~ [ vt
and derivative is represented by .

Question: Has the function

a distributional derivative? If yes, what is it?

We can compute the distributional derivative using the S(z,t):

/w dx—/ ¢ (x —hm/th x)dx —hm/Sa:t d(x)dx = ¢(0) = do(9)
So indeed 1) has a derivative in distributional sense but it cannot be represented as function!

Physical Intepretations of S(x,t). The fundamental solution S(z — y,t) describes the diffusion of
a substance.

For any time ¢ > 0 the total mass is 1.
Initally at time ¢ = 0 the substance completely concentrated in y.

We can see the convolution [ S(z — y,t)¢(y)dy also as follows. For ¢ > 0 we can approximate
the integral via a Riemann sum:

/S(x*y, dyNZSxfyu o(yi)Ay;

where {yo <y1 < - <y,} CRwithn € Nt oo and Ay; = y; — yi—1.
On the right hand side we have a sum that is the mean value in space of the family

S(x — y;,t) weighted with ¢(y;),i =1,...,n
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Consequently, we can interpret [ S(z — y,t)¢(y)dy as the limit of these mean values when we
let the number of points go to infinity.

Probabilistic interpretation of S(x,t). .
The fundamental solution is the transition probability density of Brownian motion in R.

What does that mean? If a particle in 0 at time ¢ = 0 follows a “random path” then

/a s (—y, t)dy
is the probability that we will find this particle at time ¢ > 0 in the interval [a, b].
4.9. Back to Uniqueness.
Lemma 4.26. Let ¢ € C*(R) with ¢(z) — 0 for |z| — co. We consider

u(z,t) = / S(x —y,t)o(y)dy.
Then, fort >0 fized, u(z,t) — 0 for |x| — oo.

Proof. We pick € > 0. Let R(e) > 0 such that |¢p(x)| < e for |z] > R for R > R(e). We fix such
an R > R(e). We pick R > R(e) such that

S(R,t):\/éllkﬁe_( i) <e

Consider a sequence (z,)neny With |2,] = 0o, and let N € N such that |z, | > 2R for n > N.
Let n > N. Then

Tn+R
w(in t) = / S(an — v)b(y)dy + / S(an — 9)b(y)dy.

n—R {yeR:|z,—y|>R}
We write {y € R : |z, —y| > R} = {|z», — y| > R} in the following. Hence

/ S(an — 9)b(y)dy .
{lzn—y|>R}

The second integral on the right hand side can be estimated as follows

1 ,( R )2
S(n — d < Vakt d
/{rny|>R} (‘T y)d)(y) Y /{|Iny|>R} 4/{37Tt6 |¢(y)| Y

: dy < dy.

If |z, — y| < R, then |y| > |z,| — |20 — y| > |2n]| — R > 2R — R = R. Therefore, the first integral
on the right hand side becomes

Tn+R Tn+R
[ S —wewin| <e [ Sy <e [ St -p.0d <

7L_R n_R
We can conclude that for n > N it follows that

(s 1)] < €+ ¢ / 16(y)ldy

Tn+R
u(in, )] < / S(an — w)b(y)dy| +

n—R

Therefore
limsup |u(zp, t)| < (1 + / |p(y)|dy) Ve >0 = limsup |u(z,,t)| <0 = ILm [u(zn, t)| = 0.
n—o00 n—oo n— oo

O
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Theorem 4.27 (Existence and Uniqueness). The initial value problem

(29) n = kugy, onRx(0,00)

u(z,0) = ¢(z) forz e R
for ¢ € CH(R) with ¢(x) — 0 if |z| — oo and k > 0 has a unique solution u(wz,t) with u(z,t) — 0
if |z| — oo.

Proof. Assume there are 2 solutions u'(z,t) and u?(z,t) with u!(z,t), u?(z,t) — 0 for |z| — oo.

Then we consider u = u' — u? and also u(z,t) — 0 if |z| — oco.

Now we apply the energy method
d 1
7 i[u(x, t)]2dx = /ut(l’, tu(z,t)de = /kux@(o:, tyu(z,t)dx.
Hence
d 1 9
p i[u(aj, t)]°de = kug(z, t)u(x,t)
It follows that

=00

_/(Ux(x,t))gdx <0.

T=—00

1

/§[u(x,t)]2dx < /%[u($76)]2 — 0.

Hence u = 0 and u! = u2. O
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lecture12
5. SECOND ORDER EQUATIONS: SOURCES AND REFLECTIONS
5.1. Diffusion equations with a source term. In the following we will study inhomogeneous,

linear second order PDEs

For instance, consider the initial value problem for diffusion equation with a source term: Dif-
fusion equation with a source term Let f € C°(R x (0, 00)).

ug —kug, = f(x,t) on R x(0,00)
u(z,0) = ¢(x) on R.

The physical interpretation of this equation is, for instance, the heat evolution of an infinitely
long rod with an initial temperatur ¢ and a source (or sink) of heat at later times.

Remark 5.1. If we define A = k-2, then A is linear operator that goes from CZ(R) to C°(R).

69:2 )

Then the inhomogeneous diffusion equation then takes the form
d
ﬁu(t) = Au(t) + f(t) t > 0 and u(0) = ¢ € C(R)
where u(t) = u(-,t) € C*(R) and f(t) = f(-,t) € C°(R).

5.1.1. Structural similarities with inhomogeneous ODEs. Recall the following ODE problem. Let
A e R,

d
—u(t) = Av(®) + (1), v(0) =

where t € [0,00) — v(t), f(t) € R".
For f =0 this is a homogeneous, linear ODE with constant coefficients.
The solution is given by ¢ € [0,00) = et“vy.

et is called the solution operator.

Recall: In case A = BDB™! for a diagonal matrix D = (di,...,d,) then
etd = B(etd, ... etdn )BT
More general, one can find the operator e!4 by means of the Jordan form for the matrix A.

The solution formula for the inhomogeneous problem with f # 0 is given by

¢
u(t) = ey +/ e=)Af(s5)ds.
0

5.1.2. Dunhamel’s principle. The solution formula for the inhomogeneous ODE is derived via Dun-
hamel’s principle.

Assume v(t) solves the inhomeogeneous problem. Assume S(—t) = e~'4 = [e!4] ! exists.

Then we can compute

S(-0)1(0) = S(~1) | §0(6) = Av(0)| = S(=) Fol6) = S(-)40(0) = S 1S(-1)u(0)].

The last equality is the product rule. Integrating from 0 to ¢t > 0 gives

| st=s)(6)s = S(=tyute)

Hence

v(t) = S(t)vo + S(t)/o S(—s)f(s)ds = S(t)vo + /0 S(t—s)f(s)ds.



MAT351 PARTIAL DIFFERENTIAL EQUATIONS - LECTURE NOTES - 43

We can then check that this v(¢) indeed satisfies the inhomogeneous ODE

d d d [
%U(t) = %S(t)vo + a/o S(t—s)f(s)ds

= AS(t)vo + S(0) f(t) + /0 AS(t —s)f(s)ds

t
=A [S(t)vo +/ S(t— s)f(s)ds} + f(t) = Av(t) + f(b).
0
The solution formula for ODEs gives us an idea how a solution formula for PDEs should look
like.

We saw a version of this formula before in the case of inhomogeneous first order PDEs of the
form

up — auy = f(z,t)
Here, the operator is given by A = aa%. Then the PDE takes the form
uy = Au+ f(x,t)
Recall the solution of the homogeneous equation was given by
oz +ta) = [S(1)¢] (x)

Dunhamel’s principle suggests the solution formula

t t
v(t) = S(t)p + / S(t—s)f(s)ds = ¢(x + at) + / flz+a(t—s),s)ds.
0 0
for the inhomogeneous problem.

This is exactly the formula that we already derived from the method of characteristics.

Back to the inhomogeneous diffusion equation The unique solution of the initial value
problem

Ut =kugy, onRx(0,00)
u(z,t) = 0, || = o0
u(z, 0) = ¢(x) on R.

was given by

/:X’ S(x —y,t)p(y)dy =: S(t)p(x) where S(z,t) = \/Zﬁe_< 4m)2.

We can see S(t) : C1(R) — C?(R) as a family of solution operators.

Now we consider the same problem but with a source term f € C°(R x (0, 00)):
up = kugy + f(z,t)  on R x (0,00).
We also write f(s) for f(-,s). We assume |f(x,t)] < C. We prove the following theorem.

Theorem 5.2. The unique solution ofthe inhomogeneous problem is given by the formula

t
v(x,t) = [S(t)¢] (x) + /0 [S(t = ) f(s)(x)ds.
Proof. We only check the existence stz;tement. .
First we compute v,= [S(t)¢], + % / S(t—s)f(s)ds =k [S(t)¢], . + %/ S(t — s)f(s)ds.
0 0

We consider the second term on the right hand side

% | [S(t— s)f(9)](x)ds :(;lt/o /0:0 S(x—y,t—s)f(y,s)dyds = jt/o g(s,t)ds.
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s € (—o0,t] — g(s,t) is continuous with

More precisely, we can compute

st [ " S -y t— ) f(y,s)dy

= /_OO S(ﬂlf—y,t—S)f(yﬂt)dyﬂL/_oo S(x—y,t —s)(f(y,s) — fy,1))dy

For the first term it follows by computation as we did before that

tim [ Syt = )00, 0y = 0,170)] = f(o.1).
For the second we get
oo z+é’
| Sl — foldy = [ Sta =t = )lF0.5) ~ 1.0y

b St = S s) S 0ldy
{y:lz—y|>C

Since f € C°(R x (0,00)), f is uniformily continuous on [z — C,z + C] x [t — n,t +n] for t > 0
and 1 > 0 sufficiently small such that ¢ —n > 0.
In particular, given € > 0 there exists 6(C,€) > 0 such |f(y,s) — f(y,t)| < € for |s —t| < 4.
Therefore, for the first term on the right hand side in the last formula we have

x+C
e < / Sz -yt —8)f (. s) — Flu By < e.
x—C

For the second term on the right hand side in the last formula we have
20K <[5 -yt = )1 (w:5) — fp.1)] < 20K

because |f(y,s) — f(y,t)] < C and S(z —y,t —s) < Ke=¢* on {y : |x —y| > C} for a constant
K > 0. So we can choose C such that 20Ke~© < e.

This considerations together imply that

ll_%g(s,t) = f(x,t) £ 2€

and since € > 0 was arbitrary, the limit is f(z,t).

Hence 7 € [0,00) — [; g(s,t)ds =[] [*o S(z —y,t —s)f(y,s)dyds is differentiable in ¢ with

T

% ) g(S,t)dSzg(t,t):f(.’ﬂ,t).

Therefore

d [* Lo J
pn ; g(s,t)dsff(x,t)ﬂ—/o ag(s,t) s

For the second term on the right hand side we calculate

t a t fe%s) a t (e%e] 62
/o &g(s,t)dtz/o [m aS(x—y,t—s)f(s)dyds :/0 [mk@S(x—y,t—s)f(s)dyds

82 t oS} t
= k@/o /_OO S(x—y,t —s)f(s)dyds =k [/0 [S(t —s)f(9)](z)ds -,
So we computed vy = f(x,t) + k [S(t)cﬁ + fg S(t— s)f(s)dsL K O
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5.2. Diffusion on the half line, Reflection method. We consider the Dirichlet problem for
the diffusion equation:

m = kuy, on (0,00) x (0,00)
(30) u(z,0) o(x) on [0, 00)
u(0, 1) 0

for t > 0.
To find a solution formula for this equation we apply the reflection method

Consider the odd extension of ¢ to the real line:

%mm»={“@ x>0

—¢(—z) x<0.
The corresponding initial value problem has the solution:

M%QZ/%SQ—%Q%M@Mu

Since @oqq is 0dd, also x — u(x,t) is odd, that is u(x,t) = —u(—=x,t) (Exercise).
Hence u(0,t) = 0 and the restriction v of u to [0,00) x [0, 00) solves the Dirichlet problem for
the diffusion equation with initial condition ¢.
A solution formula of v that only depends on ¢ is derived as follows

00 0
v(z,t) = /0 S(x —y,t)p(y)dy + /_ S(x — y,t)boaa(y)dy
= [ 18~ 00000 + Sta -+ e t)ona-)ldn = [

[S(z—y,t) = S(z +y,1)] (y)dy.
0
The solution of the problem (30) is given by the formula

vu¢w=Awww—y¢»—mx+%ww@My

Similar, we can consider the Neumann problem for the diffusion equation:

Ut = kuy, on [0,00) x (0,00)
u(z,0) = ¢(z) on [0, 00)
ug(0,t) = 0

for t > 0.
To derive a solution formula we apply the same strategy as for the Dirichlet problem.
We consider the following initial value problem for the diffusion equation on the real line:

Ut =

kuy,  on R x (0,00)

on R

¢p(z) x>0
o(—z) =<0

The solution of this initial value problem will be again even in z: u(z,t) = u(—z,1).

U(S(}, 0) = gbeven (-75)

where ¢eypen is the even extension of ¢ to R:

Geven (-73)
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5.2.1. Diffusion with source term on the half line. Now we consider

u — kug, = f(z,t) on (0,00) x (0,00)
u(z,0) = ¢(z) on [0, 00)

u(0,1) = h(t) for t > 0.
for a boundary source function h : [0,00) — R in C'*(]0, 00))

(31)

A strategy to solve this problem is the Substraction method:

We consider v(z,t) = u(x,t) — h(t). If u € C?((0,00)

x (0,00)) solves the previous problem,
then v € C?((0,00) x (0,00)) solves

v —kvge = f(z,t) =k (t) on[0,00) x (0,00)
@0 = 6@ —hO)  on[0,0)
u(0,t) = 0 for t > 0.

To solve this problem we can apply the reflection method as we did for the equation with f =0
Then one can check that v(z,t) + h(t) =: u(z,t) solves the problem (31).

5.3. Wave equation with a source term. Consider ¢ € C?(R), v € C*(R) and f € C(
(0,00)) and the inital value problem

Ut — ug, = f(z,t) on R x (0,00),
(32) u(z,0) = ¢(z) on R,
ut(z,0) = P(x) on R.

We can interpret f as an external force that acts on an infinitely long vibrating string
We will prove

Theorem 5.3. The unique solution of the initial value problem (32)

2)
x+ct
u(m,t):%W(x—l—ct)—i-cé(x—ct)}—i—%/ dy-i-f//fy, )dyds.

—ct

The double integral in the formula is on the characteristic space-time triangle A, ; corresponding
to the point (z,t) € R x (0,00). More precisely

;c+ct
// fly,s dde—f// [y, s)dyds.

5.3.1. Deriving the solution formual via the operator method. We follow the same ideas as for the
diffusion equation.

Defining the operator A = c% the PDE takes the form

4y — A% = f(t) onRx(0,00),
u(0) = ¢ on R,
%u(o) = % on R.

where u(t) = u(-,t) € C*(R) and f(t) = f(-,t) € C°(R) for t > 0.
This equation has again the structure of an ODE of the form
%u —a*u = f(t) on (0, 00),
(33) u(0) = ¢€R
u’(0) = ¢YekR
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where f € C°([0,0)). Let us first consider the case f = 0.
We consider the solutions u; and ug for problem with the following initial conditions

ul(O) = 0 UQ(O) = ¢
, and ;
ui(0) = ¢ uz(0) = 0
and the sum uy + ug = u is a solution of (33).
Precisely u1(t) = 11 sin(at), us(t) = ¢ cos(at)and u = L sin(at) + ¢ cos(at).  We can define
the solution operator

S(t)y = 1/% sin(at) = u1(t) and %[S(t)gb] = ¢ cos(at) = ua(t).

We note that S(0)¢ =0 and &| _ [S(t)¢] = .

By Dunhammel’s principle the general solution for the inhomogeneous ODE

%u — a2u = f(t) 7& 0 on R X (O, 00)7
(34) w0 = O0eR
W(0) = YeR

is given by the formula
t
ar(t) = Sty + / S(t—s)f(s)ds.
0

Indeed, since we can check that jﬂ [S(t)y] — a?S(t)y = 0 and

;L; /Ot S(t—s)f(s)ds = f(t) — a® Uot S(t— s)f(s)ds}

Now, by linearity
Uy + ug = 1/)+/St—s s)ds + S()(b v

solves the inhomogeneous problem with v(0) = ¢ and v'(0) = w. The same method works for
the wave equation with source. First we solve the IVP (32) with f = 0. By d’Alembert’s formula
the solution is

1 x+ct
wet) =50 [ oy = SO for o =0 and v € C'(R)
where [S(0)¢](x) = 0 and

ug(z,t) = = [p(x + ct) + ¢p(x — ct)] for ¢ € C*(R) and ¥ = 0.

1
2
Observe that us(z,t) = £S(t)¢(z) with %|t:0[S(t)¢](m) = ¢(x). Then
d
up +ug = %S(tw +S(t)y=u
solves the initial value problem for the homogeneous wave equation and

v(z,t) = %S(t)(b—l— S(t)y —I—/O S(t—s)f(s)(x)ds

is the “candidate” for a solution of the initial value problem of the inhomogeneous wave equation.

This is the formula that shows up in the theorem before. Indeed

t r+c(t+s
/ S(t—s) x)ds = / / s)dyds.
0 26 z—c(t—s)
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5.3.2. Proof of the theorem. By linearity of the PDE we only need to check that the function

z+c(t— s)
(z,t) € R x (0,00) »—)—// fly,s)dyds = — // y, 8)dyds
2c 0 Jz—c(t—s)

satisfies the inhomogeneous wave equatlon with initial conditions ¢ = 1) = 0.
We apply the coordinate change
fzx—i—ct, n=ux—ct.

First, we note that the operator 88:2 c? 3902 becomes 4c? 85 d . Indeed let g(&,7n) be defined by
g&,n) =g(x+ct,x —ct) = g(x,t). We compute

0

) ) B )
%g(m) g7 g(&m) + 35 (6 ), ag(m) :cafgé(é‘,n) —68779(6,?7)-

It is straightforward to confirm that

g(&,m).

2
gttt — C Gz = —

aga g

Using the transformation formula we compute the integral

1 1 ~
% //AT, f(y, s)dyds = % //AM fly + cs,y — es)dyds.

The Jacobian determinant of the transformation ®(z,t) = (z + ct,z — ct) is

| det D (z, £)] = |det (1 c)‘ 2.
1 —c
Hence
// fly,s dyds—42// foCI>y, )JP(y, s dyds_402/./1>(A“) (&, m)d&dn.
where
2 ], Feminie= g [ #emnae = [7 [ e mea
njanag = —— ynjanag = —— )1 1.
4c (A 4c? no Mo Ac? no J&
Hence
) 92 -1 o Mo _ 9 ~
4" ——— ,n)dédn = — ,n)dn = , = f(x,1).
e is | T =5 [ s man = fieo.m) = 0
Hence, we confirmed the PDE. O

5.3.3. Consequences: Wellposedness of the wave equation with a source term.

Existence follows from the solution formula.

Uniqueness Let u be a C? solution on R x [0, 00) for the wave equation with source and
initial values ¢ =1 = 0. Then

1 1
% //Aw f(y, s)dyds = % //A“[ut’t — Py ) dyds.

By the divergence theorem it follows

1 1
=5 s, N - (=c*ug,u;)dL = % /fm, t N - (=c*ug,uy)dL.
This line integral has 3 components: the bottome side

1 x+tc
3 / —cu(y,0)dy =0
x

—ct
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and the side formed by curve s € [0,¢] — x + c¢(t —s). Note that the normal vector on

this side is ﬁ(l, ¢) and line integral along this curve comes with a weight v/¢2 + 1.

1 t
% / cus(z + c(t — 8) — Cug(z + c(t — 5),8)ds
¢Jo

_ %/O %[u(x +e(t—s),s)]ds = %[u(m,t) —u(z + ct,0)] = %u(x,t).

Similar for the remaining term. Hence

u(z,t) = ;C//A” f(y, s)dyds.

Stability: We claim the wave equation with source is stable. That means small pertur-
bations of the data functions f,¢ and @ result in small perturbations of the solution wu.

How do we measure smallness?

Definition 5.4 (Maximums Norm on R and R x [0,00)). Let v € C°(R) and w € C°(R x
[0,00)). Define the Maximumnorms:

= = t
ol = maxfo(e)l. iy = max . )
From the solution formula we have the following a priori estimate for the solution u on
R x [0, T]:
1 1 x+ct
ue.8)] < 1ot + et) — ola — ct)| + 5

1
[ oty o [ 156 avas
60+ 191+ 72 7

IN

Hence
lully <lloll+ T 9lly + T (1 £l 7 -

If we have to solution u; and us with corresponding data ¢1, ¢o, 1, U2, f1, f2, then uy —us
is a solution with data ¢1 — ¢, 11 — 19, f1 — f2 by linearity of the problem.

Hence the estimate for the norm yields stabiltiy w.r.t. the Maximums Norm.
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5.4. Reflection method for wave equations. We will study the following Dirichlet problem
for the wave equation on the half-line:

Ut ¢ = szz,z on (0,00) xR
v(z,0) = ¢(@) on (0,00
(35) v(x,0) = (@) on  (0,00)
v(0,t) = 0 on R.

The reflexion method works the same way as for the diffusion equation.
We consider odd extensions ¢,qq and ¥,qq of ¢ and ¥ respectively.

Let u(x,t) be the solution of the initial value problem for the wave equation on R. We have the

formula
1 xr+ct
(Boda(@ + ct) + bodale — ct)] + — / oda(y)dy.
xr—ct

1
t) ==
u(@,t) = 3 5
Then u(z,t) is once again odd. In particular we have u(0,¢) = 0 for ¢t > 0 and we can define
the solution v on [0,00) X R of (35) by restriction of u to [0, 00).

We observe that for = > c|t| it follows that  — ct,z + ¢t > 0. Hence

z+ct
v(z,t) = = [p(z + ct) + d(x — ct)] + i/ Y(y)dy x> clt|.

2¢ —ct

DN | =

For 0 < x < c[t| we have ¢ogq(x — ct) = —¢p(—x + ct). Hence

0 1 x+ct

oo+t +o(-ot e+ 5 [ [olwldy o

v(z,t) =
’ r—ct 2c 0

Y(y)dy 0 <z <clt].

DN | =

We can apply a change of variable y — —y to the first integral term. We obtain

0

z+ct
ot +2) ot =)+ 5 [ wlwdy+ g [ vy

v(x,t) =
2c ct—x

N = N =

ct+x
[p(ct + ) — d(ct — )] + % /ct_w Y(y)dy 0 <z <clt

Remark 5.5. The complete solution is given by

2
v(z,t) = ¢ Jact

ct+x
% [o(ct + ) — d(ct — x)] + —/ Y(y)dy 0 <z <clt.

2¢c ct—x

x+ct
%W@+dﬂwu—dﬂ+—/) V(y)dy if 2 > clt]

5.4.1. Finite Interval. Similarly we can also study the problem

o = vy, on (0,1) xR

v(z,0) ¢(x) on (0,1
ve(, 0) Y(x) on (0,1)
v(0,t) =v(l,t) = on R.

(36)
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5.5. Diffusion equation with continuous initial data. Let us consider once more
Uy = kug, onRx(0,00)
limg o u(z,t) = ¢(z) on R
This time we assume ¢ € C°(R) and |¢(z)| < M Vr € R.

The convolution formula
2

¢>(y)dy

u(x,t) =

i

still makes sense. Indeed, since |¢(z)| < M the integral is finite and bounded from above by M:

B 1 o0 7(ﬁ)2 B
t)|—‘ e 7006 vart) d(x — z)dz| < TW

Remark 5.6. A refined satement is that for m < ¢(z) < M it follows

(\/W Mdz<M

m < / Sx—y,t)o(y)dy <M Vt>0 (Mazimum Principle).
Theorem 5.7. Let ¢(z) and u(z,t) be as above. Then u € C*(R x (0,00)) such that u; = kug »
on R x (0,00) and lim¢ g u(z,t) = ¢(x) for every x € R.

x

2
5.5.1. Proof of the theorem. We check that u is in C*(Rx (0,00)). Let S(x,t) = —- e_(v‘wct) .

Akt
We show that
5 [ Sta =00ty = [ 58 - p6w)d.

oSz, oly) = im 1 S +h—y.0) — S~ y,0] 6(0)

By the dominated convergence theorem for integrals we can pull this limit inside the integral if
the modulus of the limit is bounded by an integrable function. This is indeed the case

0 1 z—y _@w? M |z—y| _l=-u?
—S(x — ’t < |- e 1kt < e ikt
Ox (@ =9,t)(y) VArkt 2kt Varkt 2kt

The term on the right hand side has a finite integral on R. Hence

3 1= 8

All other derivatives of higher order in z and ¢ W111 work the same way: we always get an estimate
by function of the form

Recall that

Cly — z["eCv)
that has finite integral on R.

5.5.2. Checking the initial condition. We also know that u satisfies u; = ku, , because S(z,t) does.
Hence, we only need to prove that u satisfies the initial condition for ¢ | 0.

ue) = 0w) = [ S—psy— [ 56— yotdy
= [ 8t 3.00() - o)y

Since ¢ is continous in x, for € > 0 we can choose § > 0 such that

ly—z|<é = [o(x) —(y)| <€

Consider

Hence
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1 (@—y)?
uet) - 6(a)] < | L g(a) — o(w)] dy
{yeR:|z—y|>5} 4kt T
+f S(e — 3,0)[8(2) — 6| dy
{yeR:|lz—y|<o} ‘—{E—"
2M ey N B
< — e Tdz+e.
VAT J{zeRi|2> -
It follows that
limsup |u(z,t) — p(x)] <€
£10
Since € > 0 was arbitrary, it follows that limq o |u(z,t) — ¢(x)| = 0. O

5.5.3. Additional Remarks.

e Decay of the solution for ¢ — oco.
For ¢ € C°(R) with |¢| < M we have

o0 M  _@-w? M
u(x, t)] < S(x —y,t dy < / e” ARt dy < — 0.
e < [ S@-volowidy< = [ V< e

In particular, this means the backwards diffusion equation

up = —kuy , on R x (0,00)

is not well-posed because stability fails.
e About uniqueness again: Let ¢y, o € CO(R) with |¢1],|p2| < M.

We saw that in the class of solutions with u(z,¢) — 0 for |z| — oo we find a unique
solution.

But if we drop this assumption uniquness might fail: There are solutions of the heat
equation with u(z,t) — 0 for ¢ | 0 for all x € R.

See also exercise 10 on page 399 in Choksi’s Lecture Notes for an example that hints to
nonuniquness.
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Lecture 15

6. SEPARTION OF VARIABLES

6.1. Separation of Variables: Wave equation. Consider the wave equation on an interval
[0, 1]:
(37) Upt = Augy on (0,1) x R

W(@,0) = o(x)  w(@,0)=v(x) forze(0,0).

We assume Dirichlet boundary conditions
DC: u(0,t) =u(l,t)=0fort e R

Remark 6.1. Recall that the PDE is linear and homogeneous. Therefore, if u; and us are solutions
to (37), then also u; + uz = u is a solution to (37).
This is called superpositon principle.

We will build the general solution for (37) from special ones that are easier to find.
The easier solutions we want to find have the following structure:
u(z,t) = X(x) - T(t)
(Separation of variables).  Assuming this particular structure the PDE reduces to
X(2)T"(t) = X" (2)T(t)

This yields
T// X//
—_—— ==\
T X
for a constant A € R.

The last equation yields two separate differential equations for 7" and X:

T// X//
_027T =A and — 7 =\

For the moment let us assume A > 0.
Why can we do that?

If A = 0, we have that X" = 0. It follows that X (z) = C' + Dx.
By the boundary condition X (0) = X(I) =0 it follows X =0 and u = 0.
If A >0 we set 3=\ > 0:

T+ 82T =0 & X'+p5°X=0.
We can easily see that the last two equations have the following general solution
T(t) = Acos(Bct) + Bsin(fct) & X(x) = Ccos(Bz)+ Dsin(Bx).

for real constants A, B,C, D € R.

In particular, any v = T'- X with such T" and X solves u;; = cguw,w.

Now, we would like to choose the constants A, B, C, D accordingly to given initial and boundary
conditions.

For a given time ¢y € R a solution u(tg, ) = T(t9) X (x) must satify the boundary condition:

0=X(0)=C 0=X(l)= Dsin(8l)
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We are not interested in the trivial solution with D = C' = 0. Hence Bl = nw for n € N =
{1,2,3,...}, the roots of the sine function. Or equivalently
nmw

== ()"

Hence

X, (x) = sin (nllx) , meN,

is a family of distinct solutions where D = 1.

Note that each sine function may be multiplied with a function that is contant in = to obtain
another solution.

We obtain an infinite number of solutions of the form
nmw . /nT . /nm
up(z,t) = (An cos (Tct> + B, sin (TCt)> sin (T:c)
for constants A,,, B,, € R.
Moreover, any finite sum of these solutions is also a solution:

u(z,t) = zk: (Am cos (nzﬂct> + By, sin (%ct)) sin (ngﬂz) .

1=

Now, assume A < 0. We will rule out this case. We set 8 = v/—\.

Again we can easily see that the general solutions for 7" + AT = 0 and X" + AX = 0 are given

by
T(t) = Acosh(Bet) + Bsinh(Bct) & X(x) = C cosh(Bz) + D sinh(fx)

The boundary condition again implies 0 = X (1) = D sinh(fx).

This can only occur if D = 0.

A similar argument also rules out the case A € C\(0,00) x {0} (complex numbers).

Hence, the relevant numbers A in the problem are positive.

We note that we also could assume Neumann boundary conditions

NC: uz(t,0) = ug,(t,l) =0 on R.

for the PDE in the beginning.

Then the considerations for A\ are similar as for Dirichlet case. We can rule out that A < 0.

In the case A = 0, the equation for X becomes X” = 0. Again we have
X(z)=C+ Dz, C,DeR
Together with the Neumann boundary condition X,(0) = X, (I) = 0 we see that for any C € R
the constant function X (x) = C' is a solution. ~For A = 82 > 0 we have the solutions
X(x) = Ccos(fzr) + Dsin(fX)
The Neumann boundary condition imply that
0 = X.(0) = —=CPBsin(B0) + D cos(f0) = D
Hence D =0 and X, (1) = —CSsin(fl). Hence, we have again 5l = nm and we define a family of

solutions

X, (z) = cos (nl—ﬂx)

where we set C' = 1.
A family of solutions for the PDE with Neumann boundary conditions is then

un(x,t) = (A cos(?ct) + Bsin(?ct)) cos (?w)



MAT351 PARTIAL DIFFERENTIAL EQUATIONS - LECTURE NOTES - 55

And again finite sums of these solutions are also solultions
k
u(z,t) = Z (A cos(nzwct) + Bsin(anﬂctD cos (n}wx) .

i=1

Finally, we want to bring the inital conditions ¢ and % into play.
For this we go back to the Dirichlet condition.
The solution given by the previous formula solves the initial value problem if

o(x) = u(x,0) = zk: Ay, sin (%z)

and
n;mc

P(z) = ug(z,0) = i 7 B, sin (nzﬂx>

=1

Question 6.2. Can we approzimate any continuous function ¢ with ¢(0) = ¢(1) = 0 by trigono-
metric polynomials of the form

k
b(z) = Z Ay, sin (leix)
i=1
What does approximation mean in this context?

And do the solutions w.r.t. ¢ approximate the solution w.r.t. ¢p?

Or can we maybe write any continuous function ¢ as series of the form

g A,, sin (?w) .
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Last Lecture. The wave equation on [0, (]

Ut ¢ = cuz, on (0,])xR
(38) u(z,0) = ¢ox) on [0,1]
u(x,0) = P(x) on [0,]]

and with Dirichlet boundary conditions (DC)
u(0,t) =u(l,t) =0 VteR
or with Neumann boundary conditions (NC)
ug(0,t) = uz(l,t) =0 VteR.
Via separation of variable we found a family of special solutions.
For (38) with DC we found special solutions of the form u,(z,t) = T,,(¢t) X, (t), n € N, where
T,(t) = A, cos (?ct) + B, sin (?ct)

nim

and the functions X, (x) := sin (Tx) solve the following ODE boundary problem

2
X"+ (?) X, =0 with X,(0) = X.(l) =0, n€N.

6.2. Superposition principle. Any finite linear combination of w,, is also a solution of (38) with
DC:

u(z,t) = Z (Am cos (n

i=1

llwct> + B, sin (%ct)) sin (%m) where nq,...,n; € N,
u has initial conditions

k :
P(x) = u(z,0) = ;An sin (n;wx) L ) = u(2,0)= Y ?Bn “in (n;wx>

For (38) with NC we found that

U (2, 1) = T, () X, () Yn € NU{0}.

is a solution.

The functions X, () := cos ("l—”:n), n € N, solve the following ODE boundary problem

nm\ 2

X,’;+( ; ) X, =0 with (X,)2(0) = (X,)o(1) =0, neNU/J{0}.

where we set Xo(z) = 1.

Again we have that T),(¢) solves T" + (%)2 ¢T = 0. Therefore
T,.(t) = A, cos (nllct) + B, sin (nl—ﬁct) for n € N and for A,,, B, € R.

But also Ty(t) = %AO + %Bot for Ag, By € R.
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6.3. Eigenvalues and Eigenfunction. The constants \,, = (%)2 are called eigenvalues.

The functions X, (x) are called eigenfunctions of the the differential operator
62
L:V —C%0,1), Lo= —5zt forV= {o € C*([0,1]) : p(0) = ¢(I) = 0} .
The differential equality that determines X, has the form of an eigenvalue equation
Xn =X
Similar, the functions X, (z) are called eigenfunctions for the differential operator

2

L:V—c%0,1), Lp=— % for V.= {¢ € C%([0,1)) : ¢(0) = ¢,(I) =0} .

The terminology is motivated from Linear Algebra:
Consider a matrix A € R™ ™ we say A € R is an eigenvalue of A if there exists v # 0 such that

Av = v

Given an eigenvalue A for A the set of eigenvectors F is a vector space.
If we can find n different eigenvalue Aq,..., A, then

EAl@"'EBE/\n :Rn
Hence, for every vector w there are unique eigenvectors v; € E), such that

W=uv+ 4 uv,.

Let us go back to (38) with the Dirichlet Boundary Condition. Consider an infinite serie of the
form

(39) u(z,t) := lim Zun z,t) = i A, cos (Apet) + By sin (A, ct)) sin (A, z) .

N —o0
Remark 6.3. When does such a series converge uniformily?

Since
N

> u

n=1

N 00 o0
<D (Al +1Ba) < 37 [4ul + 30 1Bl
n=1 n=1 n=1

the series (39) converges uniformily provided Y 7 | [4,], 37" |Bn| < co. Indeed

N M M
max Up (2, 1) Up(z,t)| = max up(z,t)| < (|An| +1Bnl) — 0
2€[0.] Z n;l 0 wefod n:zN:Jrl 0 n§+l

if N < M — oo. Now also recall the following theorem about differentiation of series
Theorem 6.4. Let f,(x) a sequence of functions on [0,1] that are differentiable. Assume .~ | frn(z)
s converging uniformily.

If >0 fh(x) is uniformily convergent then it follows that f is differentiable on [0,1] and

"(2) =) f'(x)
n=1

Hence, the partial derivatives u, and u; exist and satisfy
oo

Uy (z,t) = Z An (A cos (Anct) + By sin (Apct)) cos (M)
=1

ug(z,t) = Z Anc(—A, sin (A\,ct) + By, cos (Apct)) sin (A,x)
n=1



58 MAT351 PARTIAL DIFFERENTIAL EQUATIONS - LECTURE NOTES -

provided > 7 | An|Au], D07 M| By < 0.
Similar, the second partial derivatives u, , and u;,; exist and satisfy

Uy (T, 1) = Z A2 (A, cos (Anct) + By sin (\,ct)) cos (Ap )

n=1
[eS)

ur(z,t) = 3 Anc® (—Apsin (Anct) + By cos (Anct)) sin (A,z)
n=1
provided Y7 A2|A,[, 307 A2|B,| < .
Consequently, since each function
Up = (Ay cos(Anct) + By sin(A,ct)) sin(A,x)
satisfies the PDE (uy)¢ = c? (tn)g,» With the Dirichlet boundary condition, the series u satisfies
the same PDE also with Dirichlet boundary condition w(0,¢) = u(l,t) = 0.

In the same way we can construct solutions to the PDE with the Neumann boundary condition.
We only have to replace B
Xn,n € N with X,,,n € NU{0}.

Moreover u satisfies the following initial condition

N e
(40) u(z,0) = ]\}E}noonz::l Ay, sin (nlix> = ;An sin (nTWm) =: ¢(x)
and
(41) ug(x,0) = ; ?Bn sin (nTﬂx) =: ()

Note that these series are converge uniformily and hence are well-defined because we assumed

S 1Al D IBals D AalAnl, Y AalBal, YN AR] > A Bn| < oo
n=1 n=1 n=1 n=1 n=1 n=1

Question 6.5. What kind of data pairs ¢, ¢ can be expanded as series for coefficients A, and B,
as above?

In the same way we can find solutions for the PDE with NC:

1 o0
u(z,t) = 5 (Ao + Bot) + Z (A, cos(Anct) + By, sin(Ayct)) cos(Apx).

n=1
The initial conditions are 3 Ao + Y - | A, cos(A\,z) and 3By + Y oo | BpAyccos(A,z).
Let us consider the analogous problem for diffusion on [0, ]:
Ut = kug, on (0,1) % (0,00)
u(z,0) = o(x) on (0,1)
with Dirichlet boundary conditions
u(0,t) =u(l,t) =0 VteR
or with Neumann boundary conditions
ugp(0,t) = ug(I,t) =0 VteR.
We can again apply the methode of Separation-of-Variables: We consider a solution of the form
u(z,t) = T(t) X ().
This leads to
T/ X//

T x N
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Again we see easily that A must be constant and T' and X solve

T+ T =0 & X"4+XX=0.

The general solution for X is the same as before. In particular, we can have \,, = (%)2 and the
set of solutions X,,(x) = sin (%Fx). The general solution for T" in this case is

T(t) = Ae=CF)H for A € R,
Hence, as before a family of special solutions of the diffuison equation with DC is given by
Up(x,t) = Ane_(%) kt gin (?m), n € Nand A4, € R.
———
=:X,(x)

where X,, are as before. Then
u(z,t) = Z ApeNnkt sin(A,x)
n=1

solves the diffusion equation with DC and inital data u(z,0) = Y " | A, sin(\,z) provided

ST D AalAul, Y A2 A < oo
n=1 n=1 n=1

For NC we consider A, = (%)2 with n € NU {0} and the corresponding solutions X, of

X! 4+ \X,, = 0. Precisely, we set X,,(z) = cos(\,z) and Xo(z) = 1.

Again we also have to consider A\g = 0. In particular, for T' we also consider the solutions of

1
T'=0 @TO(O):iAoeR

Then, a family of special solutions of the diffusion equation with NC is given by
naw \2
up(z,t) = Anef(T) kt cos (?z), n € Nand A4, € R.
5’_/
=:X,,(x)

andn ug(z,t) = $Ag. Again
1 oo
u(z,t) = §A0 + nz::l Ape bt cos(Anx)
is a solution to the diffusion equation with NC' for the initial data
(,0) =~ 4 +iA (\z)
u(z,0) = 540 n cos(Ax).

n=1

provided

ST Y AalAul, Y A% A, < oo
n=1 n=1 n=1
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7. FOURIER SERIES
We encouter the following question

Question 7.1. Given a function ¢ on [0,1] can we find a sequence (Ay,)nen such that

N
é(z) = lim Ay sin (A, ZA sin(Apz), z €10,0] 7
n=1

N—o00
n=1

(where A\, = (”TW)Z) We call the series on the right hand side the Fourier sine series.
Or can we find a sequence (By)nen such that

N o)
1 1
= — i = — 9
o(x) 2A0 —l—A}un 7;:1 Ay, cos (A\px) 2Ao + g Ay cos(Ayx),x € [0,1] 1

We call the series on the right hand side the Fourier cosine series.

7.1. How can we determine the coefficients A,,7 We perform the following forma calculations:

l | o 00 1
/ o(x) sin(Apz)de = / Z A, sin(A\,x) sin( A z)de = Z / A, sin(A\,x) sin( A\, x)dx
0 0 =10

Let consider a single term in the sum on the right hand side:
1

l
1
A, / sin(Anz) sinOn)de = Ay [ 3 (c0s((n = An)a) = cos(n + An)a)) da

0 0
Here we used the first of the following identities

cos(z + y) = cos(x) cos(y) — sin(z) sin(y), sin(z + y) = cos(x) sin(y) + sin(x) cos(y).
The first identity gives
cos(z 4+ y) — cos(x — y) = cos(x) cos(y) — sin(x) sin(y) — cos(z) cos(—y) + sin(x) sin(—y)
= —2sin(z) sin(y)

Then, if n # m, we compute

1 l _
An/ sin(A,2) sin(A,2)de = Ami / T cos Mm — cos (ntm)m dx

= 2Z7TA /07T (cos((n —m)z) — cos((n +m)x)) dz
!

L, [n_lm sin((n — m)z)

n+m

If n = m, then
: I [ l I [1 o
Am/ sin(Apz)?de = A, — / [1 — cos(2ma)]de = A= — App— { sin(QmI)} =_-A,
Hence

l . l = . .
/0¢(a:) sm()\mx)dm:/ ZAnsm()\nx)sm()\mac)dx

Onl

= Z A, / sin(Apx) sin(Ap,z)dr = éAm.

1
Remark 7.2. A, = / o(z) sin(A\pz)de = %/ o(x) sin (?m) dz.
0
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This is the Fourier sine coefficient for ¢.

By the same formal calculation we also compute the Fourier cosine coefficient for ¢
Precisely:

/d) cos(Amx dx—/ ZA cos(Apx) cos(Apx)dx

*ZA /cos x) cos(Apx)dx

n=1

Let us again consider a single term in the sum on the right hand side with n,m > 1

! !
-1 -
An/ cos(Apz) cos(Apx)dx = Ani/ cos (WI) + cos <(nlm)7rx> dx
0 0
e
=A,— / cos((n + m)x) + cos((n — m)x)dx
2T 0
For n # m the right hand side in the last term is

= Ani l:

For n = m we obtain

- 1 - I~
—/ cos(2mz) + 1] dx = 2—Am {2” sin(me)L + iAm = §Am.
A computation yields the same conclusion even when n =0 or m =0
We obtain that

sin((n — m)x)} "o

0

1

n—m

- sin((n 4+ m)z) +

! 1 !
Remark 7.3. Ay = %/ (z)dz, A, = %/ ¢(x) cos(A\pz)dr = %/ ¢(z) cos (?m) dz.
0 0 0

Definition 7.4. The Fourier sine series of ¢ is defined

oo

Z -? /Ol ¢(z) sin (?x) das- sin (nlil’) =:5(¢)

n=1

Similar the Fourier cosine series of ¢ is defined

nij:l _? /Ol @(x) cos (?m) dx: cos (?x) =:C(¢)

Finally the full Fourier coefficients are (we abuse notation at this point)

1 l
Remark 7.5. By, = 7/ ¢(x) cos <@x> dx.
1/ ]

Ag = }/_ll o(x)dx, A, = ;/_ll o(x) cos (?w) dz.

Definition 7.6. The Fourier series of ¢ is

fAO + Z {An sin( l x)dx + By, cos(nTwz)] = F(¢)

61
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7.2. Orthogonality and General Fourier Series. Consider two continuous functions f, g :
[a,b] — R that are square integrable:

b b
1F12 = / F@)Pde, lgl2 = / lg(a)2d < oo

We define the inner product between f and g as the integral of their product:

b
(42) (f.9) = / f(@)g(x)dz

The product g(x) f(x) is integrable because of the Cauchy-Schwartz inequality:

b b b
/ |f<x>g<x>|dx<\/ / (@) Pda / o) 2dz = || ], llgll, < oo.

We say that two square integrable functions f and g are orthogonal if (f, g) = 0.
Note that a real valued continuous function f is never orthogonal to itself unless f = 0.
Recall the case of an inner product (v, w) on R™, for instance viwy + - -+ + vy Wy,.
The number |jv]| = \/(v,v).
A basis vq,...,v, of V is orthonormal if ||v;|| =1,i=1,...,n, and (v;,v;) =0, i # j. Then

2
w=> (v, w; and [Jw|* =D |(v;,w)[*.
i=1

=1

For instance, v1,...,v, can be the eigenvectors of a symmetric operator A : R™ — R™. The
theory of Fourier series translates this idea to an infinite dimensional context.

Let [a,b] = [0,1]. Let us go back to the operator

02 )
Lf = —5f for f€C*(0.1).

We saw that
sin (?z) ,neN
was a set of eigenfunctions for the operator L with Dirichlet boundary conditions, and
1, cos (nl—ﬂx> , neN

was a set of eigenfunctions for the same operator with Neumann boundary conditions.

To determine Fourier sine coefficients we computed that

/lsin(nlﬂz)si (?x)dx:() for n#m € N.
0

Also we can compute that

/Olcos (Tllﬂx)-ldx:/olcos (?m)cos (?m) der =0 for n#m €N,

Hence, these eigenvectors are orthogonal w.r.t. (-,-).
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7.2.1. General Fourier series. Let us consider two eigenfunctions X; and Xs of L = —d—z on [a, b]

dz
for eigenvalues A1 # Ao.

We don’t specify boundary conditions yet. We can compute the following
(—X1Xo + X1 X0) = XV X5 + X1 X7

Integration over [a, b] yields

b
[ X @) Xa() + X)X (@] d = X 0) Xa(o) + X (@) X5(0)|

= —X{(b)X2(b) + X1(b) X5(b) + X{(a)X2(a) — X1(a)X3(a).
If the right hand side is 0 we have that

0=— /ab X1 (2)Xo(z)dx — /ab X1 (2) X5 (x)dr = (LX1, Xa) — (X1, LX2) = (A1 — A2) (X1, X)
Since A\1 # A2, (X1, X2) = 0. Hence X; and Xs are othogonal.
Remark 7.7. Question: When do we have
—X1(0)X5(b) + X1 (0) X5(b) + X1 (a)X2(a) = X1(a)X5(a) =0 7
Remark 7.8. For instance, for Dirichlet or Neumann boundary conditions on [0,!] = [a, b].

But also for periodic boundary conditions: f € C(R) satisfies a periodic boundary conditions
with period [ > 0 if f(z 4+ nl) = f(z) for all z € R. Hence

fla) = f(b) & f'(a) = f'(b).

In general, we could consider boundary conditions of the form
{alf(a) + Brf(0) +71f'(a) + 611 (b) = 0}
azf(a) + B2 f(b) +v2f'(a) + 02 f'(b) = 0

for 8 independent constants a, as, 51, B2, 71,72, 01,02 € R.

(43)

Definition 7.9. The set of boundary conditions (43) are called symmetric if

f'(@)g(x) — f(w)g'(x)[ = f'(b)g(b) — f(b)g'(b) — f'(a)g(a) + f(a)g'(a) =0
for any pair of functions that satisfy (43).

Hence, we proved the following theorem.

Theorem 7.10. Figenfunctions of—@‘{j—;2 with symmetric boundary conditions for eigenvalues A\ #
Ao are orthogonal.

By explicite compuations we saw that this is true for L with Dirichlet boundary conditions on
[0,1] where the eigenfunctions are sin (%*z), n € N.

Remark 7.11. If there are 2 eigenfunctions X; and X5 for the same eigenvalue A, then either X; =
cXs for some constant ¢, or they can be made orthogonal by the Gram-Schmidt orthogonalization
procedure.

Considering L = —88—; with periodic boundary conditions on [—I,]. There are eigenfunctions

sin (?m) , COS (?m)

for the same eigenvalue (%)2 that are orthogonal.
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But also any linear combination is again an eigenfunction for the same eigenvalue. In particular

. /nm nm . /nm
Sin (—x) , CoS (—a:) —+ sin (—x) .
l l l
But they are not orthogonal.
7.2.2. General Fourier coefficients. If a continuous and integrable function ¢ is given by an infinite

converging serie Zn 1 Ap X, for eigenfunctions X, of L = a -2 on [a, b] with symmetric boundary
conditions, then the coefficients are determined by the formula

1
Ap = X, @ ¢
HXm||2( )= f dx/

H’L

Indeed
—(ZAan,Xm> Z (Xns Xim) = A (Xoms Xin) = A | XI5 -
n=1 n=1

For instance, if we consider the set sin (”l—”x) of eigenfunctions L = 788722 with Dirichlet boundary
conditions, we computed

! l
) f(f (sin ("1117%5'))2 dz Jo ¢(z)sin (#m) dx where /0 (Sin (?m))z dr = é

For periodic boundary conditions on [—,[] the eigenfunctions are 1, cos (%x) ,sin (%x) and the
Fourier coefficients are

I !
A, = %/_l ¢(z) sin (%x) , meN, 4 = %/(ﬁ(&?)dm, A, = %/_l ¢(x) cos (nljx) dr, n e N.

Problem/Questions: In which sense does Y . | A, X,, converge? And why does the second equality
hold in the previous equation?

7.3. Notions of convergence.

Definition 7.12 (Pointwise and uniform convergence). We say an infinite series > -, f,(z) con-
verges pointwise to a function f in (a,b) if

N
‘f(w) -3 fulw)

—0 as N — oo for all z € (a,b).

We say the series converges uniformly to f in [a, b] if

N

flz) — Z fu()

n=1

max —0 as N =

z€Ja,b]

Note that for the notion of uniform convergence we include a and b.

Definition 7.13 (Mean square convergence). The serie | f,(z) converges in mean square (or

L?) sense to f in (a,b) if
b N
a n=1

Remark 7.14. We have: uniform convergence = pointwise and mean square convergence.

2

dr —0 as N — oo.

But in general not the other way.
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Ezample 7.15. Consider f,(z) = (1 —z)z" ! on [0,1]. Then
N N
an(m) = Z(m"fl —z")=1-2" -1las N — oo forallz€[0,1].
n=1 n=1

But the convergence is not uniform because

max |17(17:1:N)’ =1 forall NeN.
z€[0,1]

On the other hand, we still have mean square convergence because

1 1
1
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Definition 7.16 (Pointwise and uniform convergence). We say an infinite series Y-, f(x) con-
verges pointwise to a function f in (a,b) if

—0 as N — oo for all z € (a,b).

We say the series converges uniformly to f in [a,b] if

max —0 as N —

z€la,b]

N
F@) =" fal)

Note that for the notion of uniform convergence we include a and b.

Definition 7.17 (Mean square convergence). The serie - | f,(z) converges in mean square (or
L?) sense to f in (a,b) if
2

dr —0 as N — oo.

Remark 7.18. We have: uniform convergence = pointwise and mean square convergence.
But in general not the other way.
Ezample 7.19. Consider f,(z) = (1 —x)z"~! on [0,1]. Then
N N
an(x) :Z (2"t —2")=1-2" - 1as N - oo forallz € [0,1].
n=1 n=1
But the convergence is not uniform because

max |1—(1—xN) =1 forall N eN.
z€[0,1]

On the other hand, we still have mean square convergence because

1 1
1
1=(1=2Mde = 2N o = — N — 0.
/0’ (1—a™)|dx /Ox T=oN T 0 as 00

Consider
n n—1
n = - O,Z
In(@) 1+ n222 14 (n—1)222 on (0,0)
N
N 1 .
;fn(l‘): 1+N2x2:N[%+x2} —0 as N > o0 if x> 0.

So the series converges pointwise to 0.
On the other hand

l N2 Nl 1
2 _4e=N| ——_dy— oo wherey=N
/0 (1 n N2I2)2 X /O (1 n y2)2 Y oo where y X

— _dy— —__d
/o e R / 1+y22?

Hence the series does not converge in mean square sense to 0.

because

Also it does not converge uniformily because
N

—— =N
xrél(%ﬁ) 1+ N2g2 >0
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Recall we have an inner product

/ f(x)g(z)dz for f,g € C°([a,b])

67

and a norm given by || f|l, = v/(f, f). Convergence of ZnN=1 fn(z) to f(x) in L? sense means that

N 2
n=1 2

that is convergence w.r.t. the norm |-||,.

—0

Theorem 7.20 (Least Square Approximation). Let X,,, n € N, be a set of eigenfunctions for the

operator —83—;2 on [a,b] with symmetric boundary condition. In particular, we have

Let f : [a,b] — R be continuous and hence ||f||2 < o0 and let N € N be fized.
Among all possible choices of N constants ¢y, ¢, ...,cn € R the choice that minimizes
N 2 b N 2
Ey = En(c1,...,¢N) := ||chnX :/ (f(:z:)chXn(x)> dx
=1 2 a n=1

isci =Aq,...,cny = An where A, = X, HZ(fa )

Proof.
We expand E:

En :/ (f(x) — chXn(a:)> dx

:/ab|f(m)|2dx—2icn/abf(x) x)dx + Z cncm/ Xn( x)dx.

n,m=1
By orthogonality of the eigenfunctions the last term reduces to >, _; c; f | X, (2)|?dx. Hence
N N N
2 (fa Xn)2 (f; Xn)2
0<Exv=I/13-Y > =2 ealf. X +ch||X I3
n=1 HX ||2 n=1 HX ||2 n=1
N
)2 (f7 Xn) 2
= 1£I5 - 1%l ( —2cn 5
nzl ||X ||2 nzl 1Xnll3 [ Xnlly
N X,) 2
= ||f||§ 2 + [ n||2 < cn)
; ||X 2 nz: 1%l
The coefficients appear only in one place and we see that the right hand side is minimal if
1
Cn = 2(f7Xn):An'
[ X0l
N
Corollary 7.21 (Bessel’s Inequality). Z ||X ” ZA Xl < 115
n=1 2 n=1
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In particular, if ||f||§ = fab |f(x)|?dx is finite then the series

o) 0 b
Z A2 | X,)17 = Z An/ | X, (z)|?dz  converges absolutely.
n=1 a

n=1

By the theorem we have for any collection cq,...,cy € R:

N
n=1

If we can find a sequence of finite linear combinations

= EN(A17...,AN) S EN(Ch...,CN)

2

N;
gi = ZC;X” with N; — oo for i — oo

n=1

such that g; — f in L* sense, that is |lg; — f|| = En(ci,...,cly,) = 0, then

N oo
X,)?
ZAan — fin L? sense, and (ﬁil
n=1 HXn”Q

n=1
We say eigenfunctions X,,, n € N, are complete if this holds for every function f € C°([a,b]).

=" A2 X3 = II£15-

n=1

7.4. Pointwise convergence. We will prove pointwise convergence of the full Fourier series on
-1 = [-m, 7).

That is we consider the set of eigenfunctions sin(nz), 1, cos(nz) with periodic boundary con-
dition on [—, 7], that is the functions are periodic with period 27: X, (z) = X,,(z + 27) for all
xR

Given ¢ € C°(R) that is periodic with period 2, its full Fourier serie is
I N
§Ao + nz::l (An cos(nx) + A, sin(na:)) , & € [—m, 7]

with Fourier coefficients

A, = 1 o(z) sin(nzx)dz, Ay = 1 o(x)dx, A, = 1 o(x) cos(nx)dx, n € N.
e ™

—T —T —T

We denote
1 s
Sn(z) = §AO + nz::l (An cos(nz) + Ay, sin(nm)) , x €[-m,7], NeN

the Nth partial sum. We can rewrite this as

SN(/»L"):%/7r

—T

SN(x):%/ﬂ

—T

N
1+2 Z (cos(ny) cos(nx) + sin(ny) sin(nx))] o(y)dy

n=1

This simplifies as

N
142 cos(n(x — y))} é(y)dy

=:Kn(z—vy)

N
1 s

Lemma 7.22. — Kn(0)dd=1 and Kyn(B)=1+2 E cos(nf) =
27

—1T

sin [(N + %)9] .

= sin (%9)

Proof of the Lemma.
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i 1 1
K =— [ 1 - =1
B N(0)do = /_ﬂ d9+21 w/_ﬂ cos(nd)df
This proves the first claim.
N N o _ N
1+2 Z COS(TLQ) =1+ Z (emé‘ + efmb‘) — Z N0
n=1 n=1 n=—N

Now consider for some z € C
(xiN—&—x*(N*l)—|—~-~—|—1+~--—|—xN71—|—:EN) A—z)=aN4.. .2V - (a:*(Nfl)—&—...xNJrl).

Hence

-N N+1 -N-1 N+3
N —x x 2 —g' T2
x_N R -TN = = T 1
1—x Tz —x32
‘ i(N+3)0 _ —i(N+1)e sin((N + g
If we set x = e, it follows Ky (0) = ¢ _21 < — = = <( 1 2)6) O
eiab — =izt sin(56)

Theorem 7.23. If ¢ € C°(R) with periodic boundary condition with period 27, that is ¢(x+27) =
é(x) for all x € R and if ¢ is differentiable (not necessarily ¢ € C*(R)) then

7A0 + Z ( nsin(nz) + A, cos(nx)) = ¢(x) for all z € R.

Proof of pointwise convergence.
We want to show that Sy (z) — ¢(z) for all € R. We write

Sw(e) — o) = 5 [ Kty —2) (6(0) ~ o(a)) dy
U iy ] 8(0) - 9l2)
= 57 [+ D - Sy
LT L 6l ) — o)
=5 7Trsm((N+§)0) (1) do
.0 T oG

The functions Y,,, n € N, are eigenfunction for 73‘9—;2 on [0, 7] with mixed boundary conditions
Y,(0) = 0 and LY, () = 0. Mixed boundary conditions are symmetric. ~ Hence, Y,, are
orthogonal w.r.t. (-,-) on [0, ]:

/Y . (0)d6 = 0, /(Yn(a))“'de:g.
0

Since Y (—60) = =Y (6), they are also orthogonal on [—7,7]:

/ﬁ Y, (0)Y,,(0)d6 = 0, /ﬁ (Y,.(0))%d6 = .

Therefore
1

1 ¢(x +0) — ¢(x)
27

sin(%@) ’

C,, in fact the Fourier coefficient of g w.r.t. the set of orthogonal eigenfunctions Y,, on [—m, 7.

() = ole) = o= [ Yu0)9(0)d0 = 5, or g(0) =

If we can show that ["_|g(6)|2d0 = ||g|\§ < 00, then by the Bessel inequality the serie

oo
2
0< Y Ca |Vl < gl < o0

=1
n —r
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converges and hence C,, — 0. The claim is true, if ¢ is continuous on [—m,7]. For that we only
need continuity at = 0 of

¢ +0) —o(x) _ ¢z +0) - o(x)

4 /
9(6) = sin(%ﬁ) - 0 sin(%@) = 20'(0).

7.5. Uniform convergence.

Theorem 7.24. The full Fourier serie of ¢ € C1(R) periodic converges uniformily on [—m, 7.

Proof of uniform convergence.
Since we assume ¢ € C'(R) with periodic boundary condition, the function ¢’ is continuous and
periodic. Hence, the full Fourier coefficients A/, and A!, of ¢ are defined. By integration by parts

1T 1-
- de = = A
. + 0l 1/ (x) cos(nz)dx —An

A, = _ﬂ ¢(z) sin(nx)dr = —%qﬁ(x) cos(nz)

Similar A,, = —%A;.
On the other hand we know that ||¢||,, ||¢’|, < co because ¢ and ¢’ are continuous functions
on [—m,7]. In particular

S 2 A7 12
/ /
;(w +14,2) < o0

It follows that

oo N oo 1 o0 1 ~
> (1401 + 1401) = 3 -4 £3 M

n=1

o0

(Cauchy-Schwartz) < i % Z <|A§l\ + |/Ln|)2
n=1 n=1

(a+0b)?<24® +20 < f:i fj2(|A;LI2+|f%|2)

n2
n=1 n=1

Hence
n[nax | |f(z) — Sn(x)] < Z |A,, cos(nz) + Ay, sin(nz)| < Z |An| + |4, = 0as N — occ.
TE|—m,T
n=N-+1 n=N-+1

O

In fact the following stronger theorems is true

Theorem 7.25. For every f € C°(R) with periodic boundary conditions and period m its full
Fourier serie converges uniformily to f on [—m, 7.



MAT351 PARTIAL DIFFERENTIAL EQUATIONS - LECTURE NOTES - 71

Lecture 19
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Theorem 7.26. Let f € CY(R) be periodic with period 2.
Then the full Fourier serie of f

%Ao + ; [An sin(nz) 4+ A, COS(”@")}

converges on [—m, 7| uniformily to f. Recall that the coefficients are given by

A, :% ! f(x)sin(nz)dz, Ao :% ' f(z)dz, A, :% ' f(z) cos(nx)dx.
We also showed that
1ol # 32 (1l 1)
Note that
Ay = (£ X)), An=— (£, X,) forneN
1%l .

where X, (x) = sin(nz), X,(z) = cos(nz) and (f, g) = [T f(z)g(z)dx for f,g € C°(R) periodic.
But for Xo(z) = 1 the definition says
1 1 -

gho=1—m

7.6. Application to Fourier sine and cosine serie. Consider f € C'([0,7]) with Dirichlet
boundary conditions: f(0) = f(w) =0.
Let foqa be the odd periodic extension of f to R. Then f,qq € C(R) because
lim M = lim @ = lim —/f(h) = lim ded(h).

hi h hio h hi0 —h h10 h

We know that the full Fourier series of f,qqs has the form
Z Ay sin(nz) = F(f)
n=1

and converges uniformily on [—7, 71| to fodq.

Recall that

1 ™ 0
il ; i do = =
= foda(x) sin(nz)dx -

foad(z) sin(nzx)dx + % /07r f(x)sin(nx)dx = i/ow f(z) sin(nzx)dx.
—f(-=)

—T

Hence A,, = A" where A" is the Fourier sine coefficient.

Therefore, the full Fourier series F( foqq) coincides with the Fourier sine series S(f) of f on [0, 7]
and we have the following

Corollary 7.27. Let f € C'([0,7]) with f(0) = f(x) = 0.

Then, the Fourier sine series converges uniformily to f on [0, 7].
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For f € C*([0,n]) with Neumann boundary conditions (f’(0) = f/(7) = 0) we consider the even
periodic extension feyen-

Then agan feyen € C(R), the full Fourier serie converges uniformily to f and A, = AS°® where
ASo® are the coefficients of the Fourier cosine series.

‘We obtain

Corollary 7.28. For f € C1(|0,7]) with Neumann boundary conditions, the Fourier cosine series
of f converges uniformily to f on [0, 7).

Recall that more generally one has

Theorem 7.29. Let f € C°(R) be periodic with period 2.
Then the full Fourier serie of f converges uniformily on [—m,x] to f.

Corollary 7.30. Let f € C°([0,7]) with f(0) = f(m) = 0. Then, the Fourier sine series converges
uniformily to f on [0,7].

For f € C'([0,7]) with Neumann boundary conditions, the Fourier cosine series of f converges
uniformily to f on [0, 7].

7.7. Application: Heat equation with Dirichlet boundary conditions on [0,7]. Let f €
C1([0,7]) with Dirichlet boundary conditions and let f,qq be the odd periodic extenstion. Then
f has an expansion as Fourier sine serie:

Z Ay sin(nz) = f(z).
n=1
Theorem 7.31. The series

ZA e~ Fn’tsin (nx)

converges uniformily on [0, 7] x [0, 00).
We have u € C?([0, 7] x (0,00)) N C°([0, 7] x [0,00)) and u solves
up = kug , on [0,7] x (0,00)

u(z,0) = f(z) on [0,7]
u(0,t) = 0 and u(m,t) =0Vt > 0.

7.7.1. Proof of the theorem. First, we have for NM € Nand M > N

E Apekin® sin(na) E Apekn ! sin(nx)

max
(z,t)€[0,7] % [0,00)

n=1
M
= max Z Ane_k"2tsin(nx)
(z,t)€[0,7m] % [0,00) NNl
M
< Z \An|e_k"2t|sin(mc)|—>0.
n=N+1

We use that Y-, |4,| < co is finite, what was part of the proof of uniform convergence of the
Fourier serie for f € C'(R) periodic.

. N _kn?t s .
Therefore, the partial sums >, _; A,e ¥ sin(nz) are a Cauchy sequence w.r.t. to uniform
convergence, and hence, the uniform limit

(o)
g e~Fn” sin (nx)
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exists and u(z,t) is a continuous function on [0, 7] x [0,00) and wu(z,t) satisfies u(z,0) = f(x),
u(0,¢) = u(m, ) = 0. In particular, u is continuous on [0, 7] x [0, 00).

—ktn?

Moreover, each term A, e sin(nz), n € N, has partial derivatives w.r.t. ¢t and x:

—Aan2ke " sin(nz) and Apne ™" cos(nz)

and second derivatives w.r.t. xz: —A,n2e ktn’ sin(nz) and solves the heat equation by the

—ktn?

separation of variable method. Recall the serie >~ n%e converges absolutely whenever

t > 0 for all @ € N. Hence, it follows that the series

o0
— 2 .
E Apne 7 gin( n) E Apn2e M gin(nx)

converge uniformly on [0, 7] x [tg, 00) for g > 0. This follows because, for instance,

Anne " sin(nz)| < A, |ne~kton’
(x, t)E[O 7r]><[t0,oo) EN:-&-I ( ) n:zN:-&-l I |
(Cauchy-Schwartz inequality) < < Z A%) ( Z n26—2kt0"2>
n=N+1 n=N+1

It follows that we can compute the first and second order derivatives of u(x,t) w.r.t.  and ¢ by
computing the partial derivatives of the partial sums:

= ZAne_k n? ncos(nx), us(z,t) ZA fen2ektn® sin(nx)
on [0, 7] X [tg,o0) for tg > 0 and

kug »(x,t) fk:ZA n2e~kin’ sin(nx) = w(x,t) for (x,t) € [0,7] x (0, 00).

n=1

In particular, u € C?([0,7] x (0,00)) and solves the heat equation. O

7.8. Complex form of the full Fourier serie. Recall that

_ efin:r einz + efinw
- , cos(nzr) = ————
21 2

Let f € C°(R) be periodic. The full Fourier serie can be written in complex form

i Cneme =F(f)

n=—oo

inT
sin(nzx) = ¢

where

1 " .
Cn = %/_7, fx)e " dx.

To see this we introduce a Hermitien inner product.

(f,9) = f( )g(x)dx for f,g € C°(R,C) periodic

where g(x) = Reg(z)+Img(x) and g(x) = Reg(z)—Img(x) is the complex conjugate of the complex
number g(z).
Note that C°(R, C) is complex vector space. X, = e¢™"* n € Z, are orthogonal w.r.t. (-,-) and

H inx

™
ezn;z’ eznw) — / eznxe—znxdx — 27_[_

-7

2=
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In particular, the general Fourier coefficients take the form

1 ™ .
- U =5 [ @

T o o

Cn

We can interpret a 27 periodic function f on R as a function f on the 1D circle S! ¢ R? = C:
flz) =] ().
We interpret the heat equation
ur = kug , on R
u(z,0) = f(z) onR
u(z,t) = u(x + 2m,t) Ve € R
with f € C*(R) that is 27 periodic as heat equation on S'.
The solution is given by

oo

u(x,t): i Cne—kthGinw: i ﬂ-f(y) Z e—kthein(w—y)dy

n=—o0 n=—oco Y T n=—o0
where ¢, are the complex Fourier coefficients of f.
We can write this formula as

u(z,t)= | fK® (x -y t)dy
with
KSl (9, t) — Z efktn2 einQ

KS'(6,1) is called the fundamental solution for the heat equation or heat kernel on S!.
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Lecture 20

8. LAPLACE AND POISSON EQUATION, HARMONIC FUNCTIONS
Some Preliminaries Given u € C?(U) for an open subset U C R™.
e Recall that U C R” is open if and only if for all z € U we can find ¢, > 0 such that
{yeR": |z —yl2 <€} =B (r) CU
Also recall that U denote the closure of U, that is

U= {m €R": I(zp)neny C U st lim z,, = 33}

n—n

Then, we define U\U = 9U.
o A set W C R" is called connected if there don’t exist sets Uy, Us open and disjoint such
that UlﬂVV,UQHW;é(Z]andWC U, U Us.

Or in other words, W is connected if for any pair of open and disjoint sets U;, Us such
that W C Uy U U, it follows that either W NU; =0 or W NU; = 0.
e u € C?(U) if and only if all partial derivatives Uz, ;5 1,] = 1...n, exists and are continu-
ous.

Given u € C?(U) the Laplace operator is defined by

Zumz =: Au
i=1
A is a map between C?(U) and C°(U).
8.1. Laplace and Poisson Equation.

Remark 8.1. Laplace Equation u € C?(U) satisfies the Laplace equation in U if
Au=01in U.

A function u € C%(U) for some open connected set U with Au = 0 is called harmonic.

In one dimension the Laplace equation becomes

d2

and open, connected sets are intervals of the form (a,b) with a,b € R U {—00, 00}.

Hence, harmonic functions are linear functions

u(z) =Ax+ B, A,BeR.

Remark 8.2. Poisson Equation Given f € C°(U) the inhomogeneous version of the Laplace equa-
tion

Au= fonU
is called the Poisson equation.

If U is a domain with smooth boundary OU # (J, then we usually require suplementary boundary
conditions. For the Laplace equation this leads to the following boundary value problems.

Remark 8.3. Dirichlet Problem Let g € C%(9U), Does there exist u € C*(U) N C°(U) such that

Au=0 inU
u(z) = g(z) for x € OU.
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Smooth boundary: OU is a smooth (n — 1)-dimensional submanifold in R™.

In this case there is a unique tangent plan T,,0U for every x € OU and a unique smooth normal
vector field N : 9U — R™: (N(z),v) =0 for all v € T,,0U and for all z € 9U.

Recall u € Cl(U)Ncan be defined by saying there exists an open set U such that U ¢ U and
there exists @ € C'(U) such that |z = u.
Remark 8.4. Neumann Problem Let g € C°(9U), Does there exist u € C?(U) N C'(U) such that
Au=0 inU

0
ﬁu(aj) =g(z) forz € IU.

8.2. Physical interpretion. Physically, u € C?(U) with Au = 0 describes a distribution in
equilibrium in U.
We can think of u as steady state solution of the diffusion equation for higher dimensions:
Ut = kAu.

To see this imagine u(z,t) as the distribution of some quantity in equilibrium in U C R3, that is
there is no change over time. That is, for any subdomain V' C U we have

d
/ w(x,t)dx = — [ u(x,t)dx =0.
v dt Jy
On the other, % fv u(x,t)dx is equal to the total flux through the boundary of V'

[0, Nx)ax
av
where F(x,t) € R3, x € U, is the flux density. As in a previous lecture we assume Fick’s law.

Remark 8.5. The the flux — or directional change of u(zx,t) in a point = at time ¢ is proportional
to the gradient Vu(x,t)

F(x,t) = —kVu(x,1).

Hence, by the divergence theorem

u(x, t)dx = /ut(x,t)dx: k/ Axu(x,t)dx

v

0:& v

implying that 0 = w;(x,t) = kAgu(x,t). In particular u(x,t) = u(x) does not depend on t.
Other Interpretations
e Electrostatics.
Electric current is described by a vector field E in a domain U C R? that satisfies
Mazwell’s equations Curl(E) = <§;33 — g—z, g—z — g—z, g—i — gj;)) =0, DivE =4mp
where p is the charge density of U.
CurlE = 0 in R" is equivalent to

b
/XEowwnﬁ»ﬁ:o

for any closed curve v € C1([a, b],R™) (y(a) = v(b) and v/(a) = ' (b)).
We know that in this case there exists a potential ¢ € C?(R") such that E = V.
Hence, the vector field E is the gradient of a potential —¢ that satisfies the Poisson
equation:

E(x)=-Vo(x) = A¢=—4nd(x).
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e Classical Newtonian Gravity.

Let g be the gravitational force vector field in R? according to a mass distribution p.
Again one has the following laws

Curlg = 0 in R?® and Divg = —47Gp
G is the gravitational constant.
Hence, there exists a potential function ¢ such that V¢ = —g and A¢ = —4nGp.
e Fluid dynamics.

Recall the transport equation
up + (V, Vu)

for a vector field V € C'(R",R™). We studied this equation a some lectures ago and
assume that

DivV =0

which means the flow of V' is incompressible and there are no sources and sinks.

Now we also ssume V' describes an irrotational flow. That means again that
CurlV =0 in R™.
We know that in this case there exists a potential ¢ € C?(R") such that V = V¢.
Hence, ¢ satisfies the Laplace equation:
DivV = A¢ = 0.

8.3. Polar Coordinates in R?. In R? the Laplace operator is Au = u, , + Uy = 0.
Let us express A in polar coordinates

(z(r,0),y(r,0)) = (rcosf,rsinf) for (r,0) € (0,00) x [0, 2m).
The differential of the map (r,8) € (0,00) x (0,27) > (rcos@,rsinf) and its inverse is

Dlony) (x y) :( cos sma) o [D(%y)]_l:l(rcgsﬁ sma)_

To Yo —rsinf rcosf r \rsinf cos@
Consider u in the new coordinates, that is @ := u o (z,y). We compute
gr _ U sm: + uy cos 0 — D(z,y) ug
0 Uy cOs 0 + uy sin 0 Uy
Here u, and u, is short for u, o (x,y) and u, o (x,y) respectively. Hence
Uy _1 Ty cos 01, — L sin Oy (cos L — l sm9 7)1l
7 [D(x,y)] io ] = \sinba 1 0@ = % 1 .
y 0 sin 01, + - cos Ot (sinf 5. cos@ae)

Hence, the operator 3% transform under the coordinate change x = rcos#, y = rsin 6 into

. . 8 o a 1 8 .
and similar for 7y = sin 05, + - cosf55.  Therefore, it follows

0 1 0 o 1 0\ .
Upz 0 (T,y) = <60896r 5111980) (008087’ Sln989>

2

0? 0 1 . 1 0
= (cos Gﬁ—i— sm@cosH%—TschosHaaa —i-fsm 95

1. 02 1. 0 1 62 .
—;schosHm—&—r—zschosG% —sm 0@>
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and also

.0 1 0 .0 1 0\ .
Uyy o (T,y) = (smGar = cos 989) (sm&ar — €08 95‘0) a

= (Sln 9—2 - — sm@cos&2 1 sm@cos@ i + }cosg 06—
or2 2 00 000r r or
2 2
—i—%cos@sm@afag :2 cos@sin@aao—i——cos 9%)
It follows that
Ug,z 0 (2,y) +u o(xy):<82+18+182>ﬂ:ﬂ +1ﬂ +iﬂ99.
e ’ vy ’ or2  ror 12002 Tt 2

Corollary 8.6. The Laplace operator is invariant w.r.t. rotations of R? at the center.

Beweis. A rotation is linear transformation w.r.t. 6 in polar coordinates. O
8.4. Spherical Coordinates in R®. Let us compute the Laplace operator u, , FUuyy Uz, = Au
in R? in spherical coordintates

x =rsinfcos¢, y =rsinfsin g, z = rcosh.
For that we first consider cylindrical coordinates
T =scosp, y=ssing, z=z.

We set & = wo (z,y,z). Similar as for polar coordinates we obtain

Uy cos gils — + sin Piiy
Uy | = | singus + < cosPuy | and g + uyy = Uss + s + 2o
U U

In particular, we see u, = @, and u, . = U, ..
Then, we apply cylindrical coordinates a second time setting
z=rcosf, s=rsinb, ¢ = ¢,
and setting @ = wo (s, ¢, 2). As before we compute
. PR 1 .
Us = sin 0w, + — cos By
r
as well as
ﬂs,s + az,z = ar,r + 7127“ + *ﬂa,e = Uz,z = a’!‘,T + 77)7‘ + 7@970 - as,s
r 72 r r2

and in particular g = lg and g ¢ = Ug.¢. It follows

1

N 1, 1. 1 PN 1 N N
= Uy, + ;UT + ﬁUQ o+ m S 9ur + ; COS QUQ + mu(b,d;

i 2. n 1 /. n cost . n 1
= U —U — | U Uu u .
r,r r r r2 6,0 sin 4 sin2 9 b0

We can now look for special solutions of the Laplace equation in R? or in R? that only depend on
Vo2 +y2? or /22 +y2 + 22, that is 7 > 0 in polar or spherical coordinates.

In R? the Laplace equation for such functions reduces to

N 1. . _ - N
0=ty + -0 = 0=rlr, +U = (rdy), = c1 =rb,.
r
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Hence the solutions are @(r) = ¢1 logr + c2. In Euclidean coordinates

u(z,y) = 1 log (\/:U2 + y2> + co.

In R? the Laplace equation for such functions reduces to
N 2, N N .
0=1dp,+ -t = 0= rzum +2rt, = ¢ = r’h,.
r

Hence, the solutions are u(r) = —<* + co. In Euclidean coordinates
C1

u(x,y,z) = /7562 +y2 +22

8.4.1. Application to Newtonian Gravity. Imagine a star in an otherwise empty universe. We model
the star as the point 0 € R? with all its mass concentrated in 0.

+CQ.

What does Classical Newtonian Gravity tell us about the gravitational forces in the space
around the star? We can write Newton’s law as the following Poisson equation

A¢ = 41Gp in R¥\{0} = ﬁAqﬁ = pin R3\{0}

where p is the mass density in R3\{0}.
By assumption the universe is empty in R3\{0}. Hence, the mass density p is 0.
Moreover, we assume the Universe is fully isotrop and homogeneous. Hence, the gravitational
forces are the same independent of the direction and hend only depend on the distance r =
2 4+ 32 + 22 to the star at 0. Hence, the Poisson equation becomes

1 [- 2 -
R |:¢r,r + T¢T:| = 0.

A solution is

+ ¢o for constants m,co > 0.

We also assume that very far away from the star there is almost no gravitational pull. Hence
c2 = 0 and therefore

4rGm
d)(xa Y, Z) ==

\/W and g(x,y,z) = *V(b(l'vyaz)

where m describes the mass of the star.
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Lecture 21

8.5. Some Preliminaries about connected sets. A subset U C R" is open if and only if for
all z € U we can find €, > 0 such that

{yeR": |z —yla<e} = B (z) CU.
where B.(z) = {y € R" : |y — z|]a < €}.
Let U C R”™ be arbitrary, not necessarily open. The set
U°={zxeU:3e, >0s.t. B(x)CU}
is called open interior of U.

A subset A C R" is closed if

(zp)ney C A and lim z, =z = z € A.

n—oo

If U C R™ is again arbitrary,
U = {x eR": A(xp)neny C U st lim z, = x}

n—sn

denotes the closure of U. The closure U of U is closed.

Fact 8.7. A subset U C R™ is open if and only if R™\U is closed.
For U open we define U\U = 9U, the boundary of U.

Definition 8.8 (Connected Sets). A set W C R™ is called connected if there don’t exist sets
Ui, U open and disjoint such that Uy "W, Us "W # ) and W C Uy U Us.

Or equivalently, W is connected if for any pair of open and disjoint sets Uy, Uy C R™ such that
W C U; UUs it follows that either W NU; =0 or WNU, = 0.

Recall that w € C*(U) if and only if all partial derivatives ug, 4, i,j = 1...n, exists and are
continuous.

Given u € C?(U) the Laplace operator is defined by

n
E Ug, o = Au
i=1

A is a map from C?(U) to CO(U).

Definition 8.9 (Laplace Equation). u € C?(U) satisfies the Laplace equation in U if
Au=01in U.

A function u € C%(U) for some open set U with Au = 0 is called harmonic.

Remark 8.10. In 1 dimension the Laplace equation becomes %u(m) = 0 and open, connected sets

are intervals of the form (a,b) with a,b € RU {—00,00}. Hence, harmonic functions on open
intervals are linear functions

u(z) =Ax+ B, A,BeR.
8.6. Maximum Principle for harmonic functions.

Theorem 8.11. Let U C R™ be open and let u: U — R be a function such that u € C*(U)NCO(U)
be harmonic. Precisely, u € C°(U) and uly € C*(U).

e Weak Maximum Principle: The mazimum and the minimum value of u are attained
on U :

max u(z) = max u(z) and minu(zr) = min u(z)
zeU z€0U z€U z€dU
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e Strong Maximum Principle: If U is connected and there exists xog € U such that

u(xzg) = maxu(z) or u(xg) = minu(z)
zelU xzeU

then u = const = u(xg).

Remark 8.12. The strong maximum principle implies the weak one. But we will prove both
principles separately.
Proof of the weak maximum principle.

The proof is similar to the proof of the weak maximum principle for solutions of the diffusion
equation.

Define v(x) = u(x) + €5 |x|? for some € > 0. We have v € C*(U) N C°(U).
First, let us assume v attains its maximum value in zg € U.

Then, by the second derivative test in calculus the matrix D?v(x¢) is negative semi-definite.
Equivalently, all eigenvalues of A = D?v(xg) are non-positive.

It follows that the trace of the matrix A is also non-positive. Hence

n

tr(A) = tr(D*v(x0)) = Y _ Va, z, (%) = Av(x) < 0.

=1

On the other hand

1 €
Av=A Ale—Ix[?) = — 2V e =
o= Aut Al x?) =0+ -3 (@)am = €> 0

i=1
This is a contradiction.
Hence v € C°(U) attains its maximum value on U. We obtain the following chain of inequalities
u(x) < u(x)+ ei|x\2 < o(x) < max v(x) < max u(x) + ei max |x|3 Vr € U.
2n €U €U 2n z€dU

Since € > 0 was arbitrary, let ¢ — 0 and it follows

< U.
u(x) < max u(x) Vx e U

O

8.6.1. Mean Value property. The mean value property for harmonic functions states that the value
of a harmonic function at any point equals its average on a ball or on sphere (spherical mean)
centered at the given point. More precisely:

Theorem 8.13 (Mean Value Property). Let u € C*(U) be harmonic for U C R™ open. Then

1
u(xXg) = ———— u(x)dx Vxg € U and VB, (x¢) C U.
(xo) Vol(B,-(x0)) /BT(:EO) ) 0 (xo0)
and
1
u(xp) = ————— / w(x)dSy5 oy V0 € U and VB,(xo) C U.
Wy 1 7™ 9B, (x0) (%0

where wy,_1 is the (n—1)-dimensional surface of S~ ! = {x € R" : |x| = 1}. Sg;(m) is the surface
measure of OBy (Xo).
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8.6.2. Proof of the mean value property. Let xg € U and r > 0 such that B,.(z¢) C U. W.Lo.g. we
can assume zo = 0 by replacing u(x) with u(x — x¢). We set B, = B,(0). Consider

1
o) = s [ ax)ass)!
W11 JoB.(0) 0B,
We will show that ¢'(r) = 0. Then ¢(r) is constant. On the other hand
1
Tli_r% o1 /BBT u(x)dsg];j = u(0) by continuity of w.

Indeed, for Ve > 0 there is 6 > 0 such that ¥r € (0,6) it holds |u(0) — u(x)| < € if |x| = . Hence

s [ w0yt =) < lim ot | G — w5 < ot [ dsgs).

Let us show that ¢’(r) = 0. For that we first observe that

1 n— 1 n—1
W11 /am “(X)dSBB,}(X) = o1 /831 u(rx)dSyp, (x)
Then
d . e 1 X\ on—
%/ u(rx)dSaBll(x) :/ <Vu(7’x),x>dSaBll(x) = n—l/ <Vu(rx),f>dSaBrl(x)
8B 8B r 8B, r

We could exchange integration w.r.t. = and differentiation w.r.t. r, because r € [0, R) — u(rx) €
C([0,R)) (because u € C*(U)) as long as Br(0) C U.

By the divergence theorem the right hand side is equal to | B, Au(x)dx = 0.
Hence ¢/(r) =0 for r € [0, R) and R > 0 as before.

It follows that ¢(r) = const = c on [0, R) and since ¢(r) — u(0) for r — 0 we have ¢ = u(0). O
Proof of the strong maximum principle. see next lecture.
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Lecture 22.

Remark 8.14. Laplace Equation u € C?(U) satisfies the Laplace equation in U if
Au=01in U.
A function u € C%(U) for some open set U with Au = 0 is called harmonic.
Maximum Principle for harmonic functions

Theorem 8.15. Let U C R™ be open and let u : U — R be a function such that u € C2(U)NC°(U)
be harmonic.

e Weak Maximum Principle: The mazimum and the minimum value of u are attained
on OU :

a = ma d mi = mi
I;le%(u(l‘) féa}éu(x) an irél#u(x) zHél(l{)I(l]u(I)

e Strong Maximum Principle: If U is connected and there exists xo € U such that

u(xo) = maxu(x) or wu(rg) = minu(x)
zeU zeU

then u = const = u(xg).

Remark 8.16. Connected sets A subset W C R™ is connected if for any pair of open and disjoint
sets Uy, Us C R™ such that W C Uy U U, it follows that either WNU; =0 or W N U, = 0.

Theorem 8.17 (Mean Value Property). Let u € C%(U) be harmonic for U C R™ open. Then, it
holds

1
u(xXg) = ———— u(x)dx Vxg € U and VB, (xp) C U.
( 0) VOZ(BT(X())) /Br(zo) ( ) 0 ( 0)
and
1 n—
u(xo) = o1 /aBr(xo) u(x)dSaBTl(xO) Vzog € U and VB, (x¢) C U.

where wy,_1 is the (n — 1)-dimensional surface of 9B1(0) =S"~! = {x € R" : |x| = 1}.
8.7. Proof of the strong maximum principle. Let u € C%(U) N C°(U) be harmonic for a
connected and open subset U C R™.

Assume there exists xo € U such that u(xo) = max, .z u(x) =: M.

We define

V={xeU:ux)=M}#0.

as well W = U\V.

Claim: V is open.

Proof of the Claim. Pick x € V and r > 0 such that B, (x) C U. By the mean value property

1
M =u(x) = ) /OBT(X) u(y)dy < M.
Hence
1
0= | () = Mydy =0

Since u(y) — M <0, it follows u(y) = M on B,(x). Hence B,.(x) C V.
Claim: W =U\V is open.
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Proof of the Claim. If x € W, then |u(x) — M| > 0. Since u is continuous there exists ¢
such that |y — x| < § implies |u(y) — u(x)| < % Then it follows that |u(y) — M| >
lu(x) — M| — |u(y) — u(x)| > M > 0. Hence Bs(x) C W and therefore W is open.

Finally, since U is connected and since V and W are open, either V = () or W = ). But since
xg € V and therefore V # (), it follows W =@ and U = V. O

8.8. Poisson Formula. Our goal is to solve the Dirichlet problem on a disk B,(0) = {z € R?:
|z|2 < a} in R2.

Let B,(0) = {z € R?: |z]5 < a}, and 9B, (0) = B,(0)\B,(0).

Definition 8.18. Dirichlet Problem for the Laplace equation on B,(0) Let h € C°(9B,(0)).

Find u € C?(B,(0)) N C°(B,(0)) such that
Upz +Uyy =0 1in By(0)
u=nh in 0B,(0)

For that we first consider u, , + 1y, = 0 in polar cooardinates:
_ 1. 1.
0= Uy + —Ur + — U606
r r
where @(r,0) = u(rcosf,rsinf) and r > 0 and 0 € R.

Similar, we can rewrite the boundary data h as h(6) = h(acosf, asin®).
Note that B(@), 0 € R, is 2m-periodic. ~ We apply the method of separation of variables to the
Laplace equation in polar coordinates (compare with exercise): Assume @(r,6) = R(r)©(#). Then
1 1
R/(1)6(6) + - R (r)O(9) = ~ 5 R(r)" (9
Hence
r*R"(r) +rR'(r) _ ©"(6)

R(r) IO

= \ = const.
The general solution for © is
Acos(vVA) + Bsin(v/A0), A >0,
O(0) =< A+ Bz, A=0,
Acosh(v/—A0) + Bsinh(v—X), A<0

Since © is periodic, we only have to consider the cases A > 0 and A =0 for B = 0.

Moreover, by evaluation of the function for the points 0 and 27 we see that A = n?, n € NU{0}.

The equation for R becomes
r?R"(r) + rR (r) — n*R(r) = 0.

Solutions for n € N are v, =™ and Cr™ + Dr~" for C, D € R, and logr, C' and C + Dlogr for
n = 0.

Since we are looking for smooth solutions u on B,(0) that are continuous we can assume that
D =0.

Now we consider infinite sums of the form

(44) u(r,0) = %Ao + i r" (A, cos(nd) + By, sin(nh)) .

n=1
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Finally, let us bring the boundary condition into play. At r = a we require

- 1 >
(45) h(f) = §A0 + Z a™ (A, cos(nb) + By, sin(nh)) .
n=1
So, assuming that h € C'(R) (and 27-periodic) this is the full Fourier series that converges

uniformily and the Fourier coefficients are uniquely determined by the formulas

s

A== [ @)do, 4y = — [ h@)sintno)ds, By = —— [ i(¢)costno)do,

-7 - -

Uniform convergence of (45) implies uniform convergence of (44). By replacing A4,, and B,
with the Fourier coefficients of h we can rewrite the formula for u as

ﬂ(r,ﬁ);/:
:[

Recall cos ) = # and the formula > | 2" = % for z € C with |z| < 1. Hence

1+22< ) cos(n(0 — ¢)) —1—1-2() ’ﬂ(9—¢)+i(£)ne—in(9—¢)
n—=1

i (0—) re—i(0-9)
a — ret(0=9) + a — re=40—-¢)
ret0=9) (g — re=10=0)) — pe=i0=9) (g — rei(0=9))
(a —reil?=9))(a — re—i(0=9))
a2 — g2
a? —ar2cos(0 — @) + 12’

b3 (2)" st st oo o

2
n=1

14255 (2) st - o) 2

n=1

=1+

We get

Remark 8.19. Poisson solution formula for the Laplace equation on the disk

(T 9) 1 ‘/_7r h(¢)(a _T) d(b

21 . a? = 2arcos(0 — ¢) + 12

We can also write this formula again in Euclidean coordinates.

For that note that an infinitesimal length segement of the boundary 9B, (0) is given by ds = ad¢
where d¢ is the infinitesimal angle of the segment ds.

Also note that for x = (r,0) and y = (s, ¢) we have
Ix —y|? = r* + 5% — 2rscos(f — ¢)
by the cosine rule. It follows that

Proposition 8.20. Poisson formula, second version

<) = Lo u®) .
u(x) = /8 ds(y).

2ma B, (0) Ix —y|?

Theorem 8.21. Let h € C°(0B,(0)) be given in polar coordinates by h(acosf,asin) = h(6) for
h € C°(R) that it 27 periodic. Then the Poisson formula provides the unique harmonic function
on B,(0) for which

lim u(x) = h(xq) Vxg € B4 (0).

T—xT0
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Proof of the Theorem Uniqueness follows by the weak maximum principle.

Given the & as in the theorem the Poisson formula yields

T d T d
(16) i00)= [ Pro- 0k = [ Pr.oh6- )3
where P(r,6) = % is the Poisson kernel.

We have 3 important facts
e P(r,0) > 0 because 0 < r < a and a® — 2arcosf +r!' > a? — 2ar +r? = (a — r)*.
. f P(r 0)— =1 by piecewise integration of the previous series.
o P(r7 6) solve the Laplace equation on B,(0). Moreover P(r,0) € C%([0,a) x R).
The last fact allows us to differentiate under the integral in (46) and we can check that

1 T 92 10 1 02 do
urr+ ’U/r‘+ Uee—/_ﬂ |:87’2P(r79_¢>+T@’I”P(T79_¢)+T2692 ( 6 (b) ((ZS)QT(

=0
So @ is harmonic on B, (0). It remains to prove that a(r,0) — h(f) if (r,0) — (a,0).
For that let us consider r € [0,a) such that a —r < . We have
T d
u(r0) ~h(0) = [ P(r.0— 6)[h(6) — h(00)] 2
by the second fact.

But P(r,0) is concentrated in § = 0 in the sense that for 6 € (§/2,2m — §/2) we have

a? _ 2 a? — 2

(47) |P(r,0)| = a2 —2arcosO +12 (a—r1)2 +4arsin2(9/2) <e.
for some § > 0 and a — r small. (We used 1 — cos@ = cos(§ — &) — cos(§ + &) = —2sin*(%))
Now we break the integral into two pieces:
0o+ d(b d¢
|u(r, 8) — h(6o)| < / P(r,0 = ¢)[h(¢) — h(fo)l5 - + P(r,0 = ¢)[h(¢) = h(0o)l5
0o—0 ™ |p—0o|>6

Given € > 0 we can choose § > 0 small such that |h(¢) — h(6o)| < € for |¢p — | < 0.
Hence, the first integral can be estimated by

00+9
/ P(r,9—¢6—</ P(r,0 — ¢d¢
90—6

For the second integral we use (47) and that h is bounded on 9B, (0) by a constant M:

d
/ P(r,0 — ¢)2M—¢ <e2M
|¢—60|>6 2m

provided | — 6| < 2.

Application: Mean Value Property, 2n Proof. Let « be harmonic on U and let B,.(x¢) C U.
We replace u(x) with u(x—x¢) and B,(x¢) and U with B,.(0) with U —xy. By Poisson’s formula

ﬂy/’ u(y) r’ u(y) 1
u(0) = dsyz—/ dsyz—/ fy)ds(y).
(©) 2rmr - Jop, o) Iy — 0 ®) 211 Jos,0) T2 ¥) wir Jag, (o) ¥)ds(y)
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Lecture 23
Recall the notation

Ba(0) = {x = (z1,22) € R? : |x| < a} = By, Ba(0) = {x = (z1,22) € R? : |x| < a} = B,.
Moreover B,\B, =: 0B,.

Definition 8.22 (Dirichlet Problem for the Laplace equation on B,). Let h € C°(9B,).
Find u € C?(B,) N C°(B,) such that

(48) AU = Uy, 5 FUgp e, =0 in By, & u="h in 0B,.

Polar coordinates: (x1,22) = (rcosf,rsinf), r € (0,00),0 € R.

]?eﬁnition 8.23 (l?irichlet Pro]olem for the Laplace equation on B, in polar coordinates). Let
h(0) € CO(R) with h(f + 27) = h(0) (for isnstance we choose h(f) = h(acosf,asinf)).
Find @ € C%((0,a) x R) N C°((0,a] x R) such that
_ 1 1 -
(49) At = Uy + ~Uy + g =0 in (0,a) xR & a(a,0) =h(0) for 0 €R.
T T
and
a(r,0) = u(r,0 +2m) for r € (0,00),0 € R & limsup|i(r,8)] < co.

r—0

Theorem 8.24 (Poisson Formula in Polar coordinates). The unique solution of the Dirichlet
Problem (49) is given by the Poisson formula

@ i T e i ®
w(r,6) = 27 /o a? — 2ar cos(§ — ¢) + 12 49 = /0 P(r,0- (b)h((b)%

where

a? — 2

P =
(r,9) a? + r2 — 2ar cos(0)

1s called the Poisson kernel.

Theorem 8.25 (Poisson Formula in Euclidean coordinates). The unique solution u € C?(Bg) N

C°(B,) of (48) is given by
a® — |x|” h(y)
u) = 5 [ dsty).

In particular, we showed that

a(r,0) — h(fo) if (r,0) = (a,bp).

In fact, from the proof we can see that this convergence is uniform w.r.t. 6:

sup |a(r, 0p) — h(6)| = 0 if r — a.
0

0

8.9. Consequences of the Poisson formula in polar coordinates. Recall the L? or mean
square norm

7], = /O%(B(H))Qdﬁ.

for h € C°(R) that is 27-periodic.
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Theorem 8.26 (Mean square convergence of the Full Fourier series). Let he CO(R) that is 2m-
periodic. Then, the full Fourier serie of h converges in L% or mean square sense to h. More
precisely

HiL—SN”2—>Of07’N—>oo.

where SN are the partial sums of the full Fourier series of h.

Proof. In the proof of the Poisson formula we saw that

P(r,0 —¢)=1+2 Z ( ) (sin(n@) sin(ng) + cos(nh) cos(ne))

uniformily in ¢,0 € R and r € [¢,d] C (0,a).
We insert this back into Poisson’s formula. By uniform convergence we can exchange integration
w.r.t. ¢ and summation w.r.t. n € N. It follows
27

a0 = [ )@ Z((T)” ﬁ(qﬁ)cos(ngb)i?)cos(nﬁ)
n=1 0

0 2T a

=Ao(r) An(r)

(50) +§:1< 5 / () sin(ng) 5 >sm(n9)

=:B, ()

The right hand side is still a uniformily converging series in # € R. Hence, after multiplying with
sin(kd), k € N, cos(kf)), k € N or 1, and then integrating w.r.t. 6 over [0,27] we get that A, (r)
and B, (r) are the Fourier coefficients of 6 — @(r,6) and (50).

We denote the Fourier partial sums SV (r,6) = A (r) + zﬁf:l (A, (r) cos(nd) + By, (r) sin(nh)).

SN (r,-) converges uniformily to (r,-) if 0 < r < a. )
Note that A,,(a), Byr(a) become the Fourier coeflicients of h and that

An(r) = (5)" An(a), Bu(r) = (5)" Bu(a), n € N.

a

Hence SN (a,-) = SV(-) are the partial sums of the Fourier serie of .
But we don’t know if SV converges uniformily to h.

Recall
A, = / 7(0))2d0 < sup [1(6)).
0ER
It follows
0<|fp-s0)|, = [F-awo|, + ae) - SV, + ]ISV ) - S¥O,-
<supgenl()—a(ro)  SPoczBAZSTEAL<|(5)" —1|HSN<<>H2

Given n > 0 we pick r € (0, a) close to a such that
sup [h(8) — a(r.0)| <n & |(5) =1 <n
0

Moreover, by Bessel’s inequality, we have

NA|I2 — 42 = 2 2 7|12
[S¥ Ol = 48+ A2+ B2) < || -
n=1
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Hence
|h= Y0, < nt supfa(r.6) =S¥ 0)] +n |5
2 0cR 2
Therefore
lim sup Hil - SN()H < lim sup (7] +sup |a(r, 0) — SN (r,0)| +n Hfz” > <n(l+ HBH ).
N—oco 2 N— o0 0eR 2 2
Since n > 0 was arbitrary, limsupy_, Hiz — SN(~)H2 =limy_yo0 Hﬁ — SN(-)H2 =0.

More Consequences. Let ) C R? be open. u € C?(Q) harmonic if and only if Au =0 on .

Theorem 8.27. Mean value property Let u € C%(Q)) be harmonic. Then
1 1
w0 = g [ u)dsty) = oy [
270 Jo0 YY) T Wl B60) o
for any a > 0 such that By(x) C Q.

Theorem 8.28. Liouville theorem Let u € C?(R?) be harmonic and sup |u| < C < oco.
Then u(x) = const.

Theorem 8.29. Let ) C R? open and u € CY(2) such that the mean value property holds:

1
u(x) = — u(y)ds(y) for a > 0 whenever By(x) C Q.
2ra 8B, (x)

It follows u € C*°(Q) and u is harmonic.
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Let h € C°(R) 27-periodic. We showed that the full Fourier series of h converges in L2-sense
to h.

Remark 8.30. More generally, the following holds.

If h is a 27-periodic function that is integrable on [0, 27] (or on any interval of length 27) s.t
27

o (h(z))?dx < co then the full Fourier series of h converges in L?-sense to h.

This follows because we can approximate any 2m-periodic function that is integrable on [0, 27]
with fo x)2%dxr < oo in L%-sense by a sequence of 27 periodic, continuous functions. I will omit
details.

Corollary 8.31 (Parseval Identity).

27 27 2
( Ao / ldx + Z A2 / cos(nz)?dr + Z B? / sin(nz)?dx = / [h(z))?dz.
0 n=1 n=1 0 0
Proof. Follows directly from the Least Square Approximation Theorem. O

Application. Let h(x) be the periodic extension of x on [—m, 7]. Then

2m ™ 2
h(z)?*dx = / pidr = -7° < 00

0 -7 3
Moreover, since z is an odd function on [—7, 7], we compute that A, = 0 and

2m 2 4
B, = h(z)sin(nz)de = (-1)"T'=, B2 = —

o n "on2’

7_‘,2

Hence, by Parseval’s inequality it follows >~ | =5 = Z-.

Theorem 8.32 (Liouville Theorem). Let u € C?(R?) be harmonic s.t. |u(x)| < C < oo Vo € R
Then u = const.

Proof. We pick x =,y = € R%, 7 > 0 and set R = r+|x—yly where [z —yla = /327, (2 — y)2.
It follows B,(x) C Br(y).

Since w is harmonic and —C < u < C, @ = v+ C > 0 is harmonic as well.

Applying the mean value property for @ yields

U —é u(z)dz
“@mwmwﬂm)”d

(@20 <1A”)MAM=““&“mmw=“*“”y”%@w»mw

~ vol(B,(z)) vol(B,(z)) r2
Hence u(z) < u(y). Exchanging the role of z and y yields u(z) = u(y), and since = and y were
arbitrary we obtain the result. O

Theorem 8.33. Let Q C R? be open and u € C°(Q) satisfy the mean value property

(z) = v
)= S0l(B, (2))
Then u € C®(Q) and u is harmonic.

Proof. Pick ¢ € C5°(B1)s.t. [, d(a)da = [ ¢(z)dx = 1 where By = B1(0) = {z € R? : 2 + 23 < 1}
and radial ¢(z) = ¥(|z|).

Applying the transformation formula for polar coordinates we see

2m 1 1
1= /gb(z)da::/o /0 ¢(rcosd,rsinf)rdrdd = 277/0 ri(r)dr.

/ u(z)dz Yo € Q and Vr > 0 s.t. B.(x) C Q.
Br(z)
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We also define ¢(z) = L ¢(x/e). In particular ¢, € C§°(Be).
Let us pick y € Q and € > 0s. t. B(y) C Q. Then

/R2 u(z)¢e(z—y)dyZ/Be(y)u(z)@(z— )dz:/ w¢6( 2)dz

be =:f(2)
27
{f(r, ) := f(rcos@,rsin@ / / T, 0 Y(r/e)rdrdd
27 N 1
(51) :/0 ; f(r,0)rdd E—Qw(r/e)dr = u(y).

—_——
[ f(z)ds(z)=2mr £(0)

9By (0)

Since ¢, € C§°(B,), for the left hand side we compute

0 0
5o [ uot—win= [ a5

[0z —y)ldy, i =1,2.

Hence, all partial derivatives of u exist in y. The right hand side of (51) is continuous w.r.t. y
because y — a%i[‘be(' —y)] is continuous w.r.t. uniform convergence. Hence u € C'(2).

Similarly, we can compute all higher order partial derivatives and hence u € C*°((Q).
u s harmonic. x € Q). By the mean value property

L[ u@dsty) =

27
py— o5, 27r7“/0 u(rcosf,rsin@)rdd Vr > 0s.t. B.(xz) C Q.

u(z) =

We set u(y + z) = f(y). we compute

d [*" °r . cos 6
% f(rcosf,rsinf)do —/0 (Vf(rcosb,rsind), (sin 9)>d9
1 o , . 1 1
= 7/ (Vf(rcos@,rsin@), N(rcosf,rsinf))rdd = f/ (Vu, N)ds(z) = 7/ Audz.
™ Jo " JoB,(z) " JB.(x)
where N(rcosf,rsinf) = (2?; z> is the unite normal for B,.(0) in (r cos 6, rsinf). O

Remark 8.34. The previous results hold in any dimension n > 1.

9. GREEN IDENTITIES AND GREEN FUNCTION

9.1. Green Identities. Let 2 C R" be open with smooth boundary. Let u € C?(Q) and v €
C1(Q). One computes the following

V - (vVu) = Div(vVu) = Z 0

2 o, (v 5u) = (Vv,Vu) + vAu in Q.

al‘i
(1) First Green Identity. For u € C%(Q) and v € C*(Q) it holds

/(VU,Vu>dx—|—/vAu:/Div(vVu)dx:/ <N,vVu>ds:/ v(N, Vu)ds
Q Q Q o9 o9

where N is the unite normal vector field along the boundary of Q.
We used the divergence theorem for the second equality.
(2) Second Green Identity. If u,v € C?(Q), then

ou ov
vAudm—/uAvdx :/ U—ds—/ u——ds
/U ou ON ou ON

where 2 s (r) = (N(z), Vu(x)) and the same for v.
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9.2. Dirichlet Principle. Physical Idea: Among all functions u on ) that describe a possible
state of physical system, the prefered state is the one with minimal kinetic energy.

States of the system: u € C*(Q).
Boundary condition: u|gq = h, h € C1(Q).
Kinetic Energy: E(u) = 5/ |Vu|?dx (Dirichlet energy).
Q
Theorem 9.1. Let Q C R™ be open with smooth boundary Q. A function u € C?(Q) is the unique

harmonic function with u|sq = h if and only if it minimizes E w.r.t. allw € C1(Q) s.t. ulpg = h.
More precisely

E(u) < BE(w) Yw € {w € C*(Q) : w|pg = h} =: €.

Proof. Let u € € be harmonic and w € €. Set v := u — w. Then v|pg = 0. With Green’s first
identity we compute

E(w) = %/ﬂ IV (u —v)|*de = %/Q [[Vul? — 2(Vu, Vo) + [Vv|?] dz
= E(u) + E(v) —|—/ vAudx — / v%dx > E(u).
— Jo oo ON

>0

Now, assume u € £ minimizes the Dirichlet energy. Let ¢ € C1(Q). Then u + t¢ € £ Vt € R and
1
E(u+t¢) = E(u) + §t/ (Vu, Vo)dx + t*E(e).
Q

Hence t — E(u + t¢) is a Polynomial and continuously differentiable. Since u minimizes E, it
follows

d 1 1 ou
0=% Bt = /(Vu,ng)dac - /Q¢ wiz+ [ 65%ds o€ C2Q)
=0
The fundamental theorem of Calculus of Variations yields Au = 0 on (. O
Remark 9.2.

CEQ) = {¢ € C*(Q) : dloa =0}, CH(Q) = {qb cCHQ): Tz eQ:ox) Z0} C Q compact} .



MAT351 PARTIAL DIFFERENTIAL EQUATIONS - LECTURE NOTES - 93

lecture 25
9.3. Representation formula.

Theorem 9.3 (Representation formula). Let n = 3 and Q C R3 with smooth boundary. Let
u € C?(Q) and x € Q. Then

0= [ [z (57) + i mrow ) &

Proof. Recall ®(z) := —ﬁﬁ is harmonic on R3\{0}. Especially ®(y — z) =: v(y) is harmonic on
R3\{z}.

Pick € > 0 and such that B.(z) C Q and define Q. = Q\B.(z). Hence Q. is open and has
smooth boundary.

By Green’s second identity

Ju Ov
0= /QF (vAu — uAv) dx = /852‘ <v(’9]\7 — u8N> ds

7/ %7@d+/ Ou _ Ov,
- Yon " "aN )T oo \"aN T YN )

The first integral on the RHS is minus the RHS of the displayed equation in the theorem. For the
second term on the RHS we compute

2n term, RHS = /

1 Ou o 1
+x)+uly -+ ds = (%
835(0)[ 47T|y\\8N(y ) \(i,—lﬁl\“l ly d () = ()

= f(v) =:9(y)

Let us introduce spherical coordinates (r cosfsin ¢, rsin@sin¢,r cos¢) and define f(e, 0,¢) =
fecosBsin ¢, esinfsin ¢, e cos ¢) and similarly for g. Note that for inward point normal field

N on 0B.(0) one has 3%:71 Then

27 1 .
/ / - 476f 6) — e, 0,0) 2 —|_ (W> }62 sin pdedd
27 5 ~
= A A - rmf(ea 03 ¢) + 9(6,9, ¢) 47762

2m ™ 2m ™
=L [ [ ieooysmodsn+ s [ [ gle.0.00singdsas
4 0 0 4me? 0 0

} €2 sin ¢dpdo

= 027T Jo u(z) sin pdepdd = u(x)
We will show that the first integral tends to 0. First, we observe that
Ou
1f ()l = aN(y + )| = (N(y + ), Vu(y + )| < [Vu(y + z)|.
Since u € C%(Q), |Vu] is continuous. Hence, given C' > 0 we can pick ¢y > 0 such that
[Vu|(y + x) < |V|(z) + C Yy € 0B.(0) and € € (0, €).

Hence, for the first integral on the RHS we estimate

2m T o _
g/o /Of(e,ﬂ,ci))smqbdqﬁdﬁ‘ =), /O\f(e,0,¢)|s1n¢d¢d0

IN

IN

</ W/OW(|V(x)|+C)sin¢d¢d0:e(|Vu|(x)+C’).

So when € tends to 0, this proves the claim. O
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Representation formula in 2D. Let  C R? with smooth boundary and let u € C?*(Q)
harmonic. Then

U(x):/aﬂ[ u(y )8?Vlog|y—x| 10g\y—m|%(y)}d;f),

Definition 9.4 (Fundamental solution). The harmonic function

z € RM\{0} s &, (z) = {;ﬂ log [a],

B 1 1
n(n—2) vol(B1(0)) |z|™*—2

is called the fundamental solution for the Laplace equation.

Remark 9.5. Using @, (x) one derives a Representation formula for any n € N.

be

9.4. Green’s function. Goaol: Given ) C R" with smooth boundary, we want to modify ®,,

s.t. the second term in the Repres. Formula vanishes.

Definition 9.6 (Green’s function). Let Q@ C R™ be open with smooth boundary.

The Green’s function G(x) for the operator A and the domain €2 at a point zy €  is a function

G: O\{zo} = R s.t.
(i) G € C?(Q\{xo}) and AG =0 on Q\{xo}
(ii) Gloa =0 B
(iii) G(z) — ®p(x — x0) =: H(x) is finite at zo and H € C*(Q) with AH = 0 on Q.
Remark 9.7. Tt can be shown that the Green’s function always exists.
The idea is to solve the problem
AH* =0 on ,
Hm°|ag = —(I)n(- — 370) on 0f)
and define G* = H*(z) 4+ ®,,(x — o).
Notation: G™ (z) = G(z, o).

Theorem 9.8. Let Q C R" open with smooth boundary and let h € C*(0R). Let u € C*(Q) be a

solution of the Dirichlet problem
Au=0 on Q,
ulaq = h on 0.
Then

u(xg) = /zm h(x)%G(x,xo)dx.

Proof. We write G(x,x0) — H*(z) = ®,(x — x¢). Then, by the Repres. formula and Green’s

second identity applied for v and H*° we obtain

o) = [ [ul0) 337000 = a0) = @y~ 20) G ()] dsto)

9 o .. o L Ou
= [ pg G aaist) — [ [t g - 1) g as

0
= [ g Gleaaist) - [ [u A=) - 1) Au(w)]dy

=0
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Theorem 9.9. Let Q C R? open with smooth boundary, let f € CO(Q). Let u € C?*(Q) be a
solution of the Dirichlet problem

Au=f on(,
uloq = 0 on ON.

Then

u(xo):/QG(x,xo)f(:r)d:c.

Proof. Let € > 0 s.t. Bc(xo) C 2 and set Q\B(zg). Green’s second identity yields

/G 2,10) d:z:—/B (xO)G(x,xo)f(m)dx:/Qe Gz, 20) Au(z)dz

JREEED 3};< )~ )5
ul

(52) o o 7o) o (@) —

The first term on the RHS of the previous equality is 0. Since G(z,xo) = H**(x) + ®(x — x¢), the
second term on the RHS rewrites as
Ou 0

/{)Be(m) [0~ 20) g () = u(z) e | 2, w0)] e + /m(zo) (1702 2% (@)~ uia) 2|

The second term is 0 since H* and u are harmonic on B.(zg) and because of Green’s 2nd identity.
The first term converges to u(zg) as € — 0. This is exactly what we showed in the proof of the
Representation formula for the Laplace equation.

Finally, the second term on the LHS in (52) is

| Gaf@d= [ @)+ B @)@
Be(wo)

Be(zo)

IG(-, :1:0)} dx

x)a%’mG(-,xo)} dx.

(- )} dz.

Since H**(z) and f are continuous in x¢, there exists g > 0 and C' > 0 such that
|H* (z) f(z)] < Cif | — 2] < € and € € (0, €).

Hence, for € € (0, )

/ H (2) f(2)dz| < / Cdz < Cvol(B.(z9)) — 0.
Be(m()) B (:Eo)
Moreover
2m
/ O(x — xg) f(z)dz| < sup |/ |dm<M/ / / —frzdrsmgzﬁdgzbdf)
Be(zo) TEB. (:vo 4 r
=M1ie2—0

We used that n = 3 to compute the integral.
In particular, it follows that the inetral [, G(z,z¢)f(x)dx is welldefined. Hence, when ¢ — 0,
(52) yields the result. O

Theorem 9.10 (Symmetry of Green’s function). Let £ as before. Then, the corresponding Green’s
function satisfies G(a,b) = G(b,a) Va,b € Q.

Proof. We assume again n = 3.
Set v(z) = G(z,b) and u(xz) = G(z,a). Let € > 0 s.t. Be(a), Be(b) C Q and B(a) N B(b) = 0.
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Set Q\Be(a) U B.(b). With Green’s 2nd identity we compute

0= / (vAu — uAv) dz
Q

€

ou (%) / /
= V—— —U—— | ds+ ..)ds + ...)ds
/asz< ON ON BBé(a)( ) BBé(b)( )

=0

Consider

ou v B OP(- —a) Jv OH® . Ov
/EiBe(a) <03N - u5N> s = /836(@ (U ON 2(—a) 5N> ds /836@1) (v ON " 5N> s

:fBE(M('uAHafHQAv)d:L’:O

The first term on the RHS in the last equation converges to v(a), exactly as in the proof of the
Representation formula.
In the same way, one proves that [, (b)(...)ds — —u(b). Tt folllows

G(a,b) = v(a) = u(b) = G(b,a).
O

9.5. Green’s function for the upper half space. Let H = {# € R* : z3 > 0}. For a point
y = (y1,Y2,y3) € H one define its refrection at OH as y* = (y1,y2, —¥3)-

Theorem 9.11. The function HY(x) = m is in C%(H and solves
AHY =0 on H,
HY[om = —|om.

Hence, the Green function of H is G(x,y) = —47r|;7y‘ + 47r|m17y*|.

Proof. (1) HY € C>(H),
(2) AHY =0o0n H.,
(3) If x = (x1,22,0) € OH then HY(x) L

_ __ 1
T Arla—y*| T Anfz—yl”
Hence G(z,y) := — ( L #> is the Green function of H. O

dm \Je—yl — Jo—y*]
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9.6. Green function for the ball B,(0). Recall

Ba:Ba(O):{x€R3:\/x%+x§+x§<a} &0Ba:{x€R3:\/x%+m§+m§:a}

and for z € B, we define
z* = Wﬂ?
It follows that |2*||z| = a®.
Theorem 9.12. The function HY(x) = ﬁﬁﬁ is in C%(B,) and solves

AHY =0 on B,,

1 1
HY = - —y)=—— 0B,.
o9, = =0l@—1) = = om
Hence, the Green function of B, is
1 1 1 a 1

Glany) = ¢l —y) + H'@) = o= o+ i

Proof. (1) HY € C=(B,),
(2) AHY =0 on B,,
(3) Let x € OBy, that is || = a. Claim. %LT -y =z —yl
It follows HY =—¢(z —vy).
ollows o5, oz —y)
Corollary 9.13 (Poisson formual in 3D). Let u € C?(B,) be a solution of
Au=0 on B,,
ulop, =h on OB,

@B [ b
u(z) = /a ds(y).

dma B, |z —y?

then

Proof. Recall
G( ) Jf)

u(@) = [ hy) T dsly).
( -~ W) —5N ,
We compute for = € 9B,
11 1 a 1
Se],=v (L L Lo 1)
COL=V\T = m =y e
1 1 1 a? y|? y? .,
:*4iﬂww—*ﬁffﬁ¢g—%*)
4 |z —y| dm [yPlz —y*[* " a a

_ 1 1 1 jy?
‘4w<|x—y|3(x V- aogpla Y

1 1 a? N 1 1 |y|2
= —-— xTr — — —=X = - r——F5
arle—yP \" YV TR T am e — P a2

Now, we have that the unit normal vector in z is 7. Hence

1 1 T _w< x>):a2—|y|2 1

x
(5o a ‘a dra |z —y|3

N . - o
(N.VGCy) = (G

97



98 MAT351 PARTIAL DIFFERENTIAL EQUATIONS - LECTURE NOTES -

Remark 9.14. The Green function for B, C R" is

Glay) = -1 ( 1 a1 >
T =2 vl B) \fo =y Iyl ey
The Poisson formula for B, C R™, n > 3, is

nvol"(Bi)a Jop, |x —y|"

Theorem 9.15. Let h € C°(0B,) with B, C R™. Let

a?—|o? h(y)
u(z) = {nvol"(Bl)a Jos. \x_zwds(y) x € B,

h(x) x € 0B,.
Then u € C?*(B,) N C°(B,) and u is the unique solution of Au =0 on B, and u|pp, = h.
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Lecture 28

9.7. Consequences.

Corollary 9.16 (Harnack inequality). Let Br(zo) C R™ and z¢ # x € Br(xo) with |x — xo| = 7.

Let u € C?(Bgr(z0)), u >0 and Au =0 on Br(zg). Then
1_r 1_r
ﬁu(mo) <wu(z) < ﬁu(a&o).
(1+ %) (1+%)
In particular, if r € (0, &) then s-u(zo) < u(z) < 2"u(zo).

R2_r2
nvol(B1)R

Proof. Recall the Poisson formula u(y) = I5 Br(zo) %ds(y) and observe

R—r=lzg—y|l—|z—zo| <|ly—2z| <|zo—a|+ |z —20| =R—r

Hence
(R+r)(R—1) < R? — 2 < (R+1)(R-1)
(BR+r)r 7 ly—a = (R—1)"
Then u > 0 together with the mean value property imply the statement. (|

Corollary 9.17. Let Q C R™ open and connected, u € C*(Q) and Au = 0. Assume there exists
V C R" open s.t. V.C R™ and there exists R > 0 and 1,...,z, € V with V C Ufil Bprya(z;) and
Br(x;)) CQ fori=1,...,N. Then

u(y) < 22"Nu(x) Vo £y € Q.

In particular 3C > 0 s.t. supy u < C'infy u.

Proof. Given x,y € V. Since V is connected, we can find zg, 21, ..., 2;_1, 2y with [ < N such that
2o =z and z; = y and {zx_1, 21} C Brya(w;,) for all k € {1,...,1}. This can be seen by induction
as follows. Pick 4y s.t. & € Bpr/ao(w;,). Since V is connected there exists io € {1,..., N}\{i1}
such that Bg/s(zs,) N Brya(xi,) # 0. Hence we pick z1 € Bgya(2i,) N Brya(4,). Similar, there
exists i3 € {1,...,N} such that Br/o(zs,) N Bryo(#s,) N Brya(xi,) # 0 and we can pick 2o €
Bprya(wi,) N Brya(xi,) or 22 € Brya(wi,) N Brya(xs,). We continue inductively til we find ; for
I < N such that y € Bg/s(zs,).
With the Harnack inequality, it follows

u(z) < 2%u(z;,) < 2%u(z,) < 2%u(xy,) < --- < 22Mu(y).
O
Some more Remarks on the Green functions. Let ) C R" be open, bounded with smooth

Q. The Green function was given by G(z,y) = ®,(x —y) + HY(z) where HY € C?(Q) and HY
solves

AHY =0 on QCR"

HY| =-0,( - .
a0 (-9 o0
e If Q is not connected, that is @ = Oy UQy and Q1 N Qs = and y € Q4, then G(-,y) =0
on .
This follows, since —®(- — y) solves AHY = 0 on 2 with HY € C?(Q) and HY|pq, =
—Pn (- — y)loq,-

o If O is connected, it follows by the strong Maximum principle that G(z,y) < 0 for z,y € Q
(Exercise).
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o % = K, (z) for x € 0Q is called Poisson kernel of Q.
It follows K, (x) > 0, since G(x,y) = 0, z € Q and y € Q, and since G(z,y) < 0 for all
z,y € L.

Theorem 9.18. If Q open, bounded with smooth 0SY and connected, then K, < 0 everywhere on
o90.

Proof. Let x € 092 and let N be the unit normal vector in z. Since 02 is smooth there exists
ho < 0 such that for xg = = + hoN we have that By, |(z0) C Q\{y} and 0B, |(w0) N 02 = {x}.
If —h € (—hg,0), then z = x + AN and |zg — z| = |hg — h| = —ho + h = |hg| — |h|. From the
Harnack inequality, it follows
|ho|—1h]

G(z+hN,y) —G(x+hN) +55 1 11
I (1+ \ho|*|h|) || [hol
[hol
Hence % = limpqo W > 0. O
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Lecture 29

Let 2 C R™ be open and bounded with 02 smooth.

Theorem 9.19 (Boundary Maximum Principle). Assume Q is connected. Let u € C?(S2) be
harmonic. If v € 0 s.t. u(x) = maxgu = M, then g—}\‘,(:t) >0 oru=M. (N is the unit normal

vectorfield of 0Q2.)
Proof. Exercise U

Theorem 9.20 (Local estimates). Let Q be open and let u € C%(Q) be harmonic. If zg € Q such
that By (z9) C Q. Then

C
Vul(x S—/ u(x)|dx
Vullao) < o [ )

for some constant C = C(n) > 0.

Remark 9.21. e The local gradient estimate generalizes the mean value property. Indeed
1 / C(n)
1 w@)der = |u(zo)| < / lu(z)|da.
vol(B;(20)) JB, (z0) ™ J B, (z0)
———

LCm)
/V‘TL

MVP: u(zg) =

e Similarly, one can derive higher estimates of the form

C(n)/
VEul(z < u(z)|dx
Vhulieo) < G [ )

Proof. Since u is harmonic on £, u € C*°(2). Hence 0 = (Au),, = A(ug,) and ug, is harmonic
Vi=1,...,n.
By the mean value property it follows
1

Ug, (1)) = ———— Uy, (x)dx
(70) = o108, 2 (a0)) /B,,ﬁ(zo) )

Note that u,, =V -V where V = (0,...,0, u ,0,...,0). Hence
~

K3

= / uzi(x)dm:/ (V,N}dSZ/ ulN;ds
B,./2(z0) 8B, /2(x0) 9B, /2(x0)

where N; ith component of the unit normal vector field N along 0B, /5(x¢). In particular [ulN;| <
|u|. It follows

1

1 [(OB,
7/ Uasl(m)d.'l,‘ < < UO( /2(5(:0)) sup |’U,‘
VOI(B»,«/Q(:L'O)) B,./2(z0)

__ () |da < 22802r/2(20))
vol(B,/2(o)) /<33,,/2(x0) vol(B,2(20) 0B, )y (x0)
(R ——

2n
-

|tz (20)| =

At the same time we know that 0B, 5(z) C B,(xo) and therefore by the mean value property
again

o " (2/r)" " an < 20" "
ful=)l < vol(B,2()) /Br(.r)| W)ldy < vol(Bi) /Br(m)| Wiy = aBr/zl()ﬁo)| < vol(Bi) /Br(z)| Wldy-

The previous estimates together yield
n 2 n+1 /
Uz, (T0)| £ —5—= | — u(y)ldy Vi =1,...,n.
o 201 < ey () peten) )

Since |Vu| = /> (ug, )2 -

Corollary 9.22 (Liouville Theorem). Let u € C?(R") s.t. Au=0 with |[u| < C = u = const.
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Proof. For any € R™ and any R > 0, it holds Br(z) C R". = |Vul(z) < % — 0. O

9.8. Direct Method of Calculus of Variations. Let 2 C R" be open, bounded, connected
with smooth boundary. Let w € C1(2) and let h = w|aq (the restriction of w to 9Q). To find a
solution u for the equation

Au=0 on Q,
ulog = h on 0N

one can apply the Dirichlet principle: Find a minimizer of the energy
1 _
E(v) = 5/ IVo|2dz, ve {veCHQ): v|pg =h} =&
Q

E>0oné&,.
Hence, an infinimum I = inf,cg F(v) exists and a sequence v, € £ such that E(v,) — I.
Claim. ¥, = v, —w is a Cauchy sequence w.r.t. the norm [[v[|, , =/ [, v2dz + E(v).
Indeed

B — ) = E(wn — v) = E(vn) + E(vm) — /Q<va, Vo, )de

1
< 2E(vy) + 2E(vm) — 4E(§(vn + Um))
< 2E(vy) 4+ 2E(vy) —41 — 0 as n,m — oo.
With the Poincaré inequality [, v?dz < Cq [, |Vv[?dz for v € & = {v € C*(Q) : v|pn = 0} it

follows |7, — ¥y |, 5 — 0. Hence 9y, is a Cauchy sequence w.r.t. [|-||; , in &.

Let € = HY?(Q) be the completion of & w.r.t. |-ll; o- Then there exists v € £ such that v, — v
w.r.t. |||l 5

Questions: What is the space £7 Can we define F on £? Is it true that E(v,) — E(v)? Is v
harmonic?

we write u € L*(Q) if |u|? is integrable on Q.

Definition 9.23. A function f: Q — R in L2(Q) has a weak derivative f, : @ — R w.r.t. @, if

/ fg,dz = — / fo.pdz Yo € CLQ).
Q Q

If f has a weak derivative w.r.t. a; for all i« = 1,...,n and f,, is in L?(2), then we write
fewWh2(Q).

In particular, if f € W2(Q), the weak gradient Vf = (fu,,..., fu,) satisfies [V f| € L2(Q),
and we can define E(f) = 3 [, [V f[*dx.

Ezample 9.24. e For f € C1(Q) the weak derivatives exists and coincide with the classical
derivatives. This follows directly by the product rule for partial derivatives. In particular
f e Wh2(Q). Also the energy E w.r.t. V is the same as w.r.t. V.
e Define

f(z) = {g zig = f#CY[-1,1]) but f € W"*(Q) (Check!)

We cite the following result.

Theorem 9.25. H,>(2) € WH2(Q) is a closed subset w.rt. 1115 2-

Since E > 0 on Hy*(Q), we can define I = inf E(v) > 0 where v € W2(Q) s.t. v—w € Hy*(R)
where w € C1(Q) is as before.
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Dirichlet principle (revisited). Let v € W12(Q) s.t. E(v) = I, and let ¢ € CA(Q). Then
0= 7’ E(v + tg) :/(%,V@dx
t=0 Q

Definition 9.26. v € W"?(Q) is a weak solution of the Laplace equation with boundary value
h = w|sq for w € Cl(Q) if
/ (Vo, Vé)dr = 0 Vo € CF(Q)
Q
v—w e Hy* ().

Theorem 9.27 (Weyl Lemma). If u is a weak solution of the Laplace equation then u € C*(Q)
and Au =0 in Q.

More precisely, for every ball B C Q that is sufficiently small, there exists v € C*°(B) such that
Av =0 and [g|v—uldr =0.
Proof. Let ¢ € C°(B1(0)) with 1 = fBl(O) ¢(z)dz and ¢(z) = ¢(—x), and set ¢(x) = L p(x/e).
Then ¢, € C°(B.(0)) and 1 = fBe(O) ¢e(x)dx

We define Q, = {z € Q: |z —y| > r Yy € 9Q}. Then B.(x) C Q Yz € Q, and € € (0,7/2).

We define uc(z) = [,y u —z)dy, x € Q.

Claim. wu. € C*®(8,).
We compute

Oue, . ue(x+h) —uc(x)
ox; ¥ = flzlg%) h
¢5(y—x—h)—¢€(y—x) / 0¢e
= 1 = —
Lim b u(y) Y i u(y) o2, (xz —y)dy
unifﬂ;'m'ilyu(y) gI: (yfib)

Similarly, we can also compute all higher derivatives. Hence u. € C*(1Q,.).
Morover, since ¢.(- — z) € C}(£), it follows by the definition of weak derivatives and since u is
a weak solution of the Laplace equation

Bue) = [ uwdoy -y = [ (Gu.Voly-0)ds =0
Be(z) Be(z)
This proves the claim.

The local gradient estimate yields

Yl < S [ ety <€) [l

< C(n,r) //|u )| be(z — y)dzdy
=) [ @) [ oz =paydz < Cur) [ oz = ¢
o

By the mean value theorem for differentiable functions in n dimensions we see that u. is C-Lipschitz
for all € > 0.

Now, we cite the following classical theorem.
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Theorem 9.28 (Arzela-Ascoli). Let K C R™ be compact and let (u;)ien C C°(K). Then (u;) has
uniformily converging subsequence if and only if

(1) IM > 0: |u(x)] < M Vxe K,VieN

(2) Ve > 0,30 >0 s.t. |ui(z) —ui(y)| < e Yo,y € K with |x —y| < ¢ and Vi € N.

We apply the theorem to a sequence wu.,
B CQ,.

7 =: u; for ¢, = 0 and an arbitrary ball B such that

Property 1. and 2. in the Arzela-Ascoli theorem for wu; follow since w. is C-Lipschitz for C
independent of e.

Hence, there exists v € C%(B) such that u; — v uniformily. At the same time u; is harmonic
on B C €2, and hence satisfies the mean value property

1
ui(z) = m /B,,(m) ui(y)dy, By(x) C B.

Uniform convergenc implies that the right and the left hand side of this identity converges to
1
o) = g [ v
vol(By(z)) Jp, (2)
Hence v € C*°(B) and v is harmonic.

Now, we claim without proof that [, |uc, —u|dz — 0. This implies [, |v—u|dz =0 on B C Q.
Since r > 0 was arbitrary, we obtain the statement. O
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lecture 30

10. WAVE EQUATION IN 3D AND HIGHER DIMENSIONS
We consider the higer dimensional wave equation
(53) ug ¢ = 2Au on R" x [0,00) where ¢ > 0.
Recall that Au= Y"1 | Uy, o, = D iy %
Let u € C?(R™ x [0,00)) be a solution of (53).

10.1. Principle of Causality. Let u € C?(R" x [0,00) be a solution of (53). Assume u(z,0) =
é(x) and ug(w,0) =1, x € R, for ¢,1p € C*(R™).

Theorem 10.1. Let (Z,t) € R™ x (0,00) and u a before. Then u(Z,t) is completely determined by
the values of ¢ and ¢ in the ball B (Z).

Remark 10.2. e The ball B ¢z(Z) in the 0 time slice is more precisely given by
B.i(z) x {0} = {(x,t) € R" x [0,00) : | — Z| < c|t — t|} NR™ N {0}.
C(z,T)

e Recall that for n = 1 the solution u is represented by D’Alambert’s formula

u(Z, 1) = 5 [¢(Z + ct) + d(Z — ct)] +

DO =

1 T+ct
% /Eicti Y(s)ds
=T B @ B V()
Hence, for n = 1 we have already observed that the theorem is correct.
Proof. First, we have
0= (ugs — A Au)u; = Up Uy —V (u; Vu) + (Vuy, V)
~— —_——

v =V,
1 2 1 2 -
B (2u? + szu|2) ~ DIV (uy V) = <2“? * 02|V“|2> +3 <_ut

Hence, the last equation takes the following form

t

0 = Div"V
—uy S%Ll
for a vectore field V defined on R"*! by V = u D
Yoz

buf + 5| Vul?
Now, we apply the divergence theorem in R"*! to V on the frustum
F={(z,t) eR" x[0,00) : |z —Z| < c|t —t| and ¢ € [0, 5]}

where s € (0,1).
Note that we need a version of the divergence theorem that allows regular corner and edges.
The boundary OF of F' has three parts:

T={(z,s) e R" x [0,00) : |z — Z| < c|s — |}
B ={(z,0) e R" x [0,00) : |z — | < ct}
K ={(z,t) eR" x [0,00) : |x —Z| =ct —¢| & t € [0, 5]}
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0:/8F<N,V)dS=/B+/T+/K

where S denotes the n-dimensional surface measure on OF (that is B, T and K respectively) and
N is the corresponding uni normal vector field.

For T one has N = (0,...,0,1), and for B one has N = (0,...,0,—1). Hence, taking the formula
for V into account, it follows

1, c 2 1, ¢ 2
/ sup + —|Vu| dS+/(N,V>dS§/ —u; + —|Vul|® | dS
o+ \2 2 X« s \2 2
Claim. [,.(N,V)dS > 0.

To prove the claim we compute the unit normal vectore field N along K. Consider the function
O(z1,...,xn,t) = > i (x; — T;)* — *(t — ). Then, since
{(z,t) e R" x [0,00) : |z — z|> = |t — 1]*} = dC(z,1) =: C
and C' = ®~1(0), it follows K C ®~1(0).
The unit normal vector field along the level set of smooth function ® is given by N = <. We

The divergence theorem yields

Vel
therefore compute

r1 — 71 5131(;97?1

1 1 c
——Vo(x1,...,2,,t) = 2 - = n—Zn
V| ( wf) 2\/2?,1(3?1‘ — 7)) =t —1)? Tn — Tp vV1—c %
= 2 i—1
—c(t - 1) =

where we have set Y| (z; — %;)* =:r? = (t — ). Since t € (0,7), —(t — 1) = [t — 1]
For z € K it follows

n - 2
Ti — T; c
NV ) = = 32 P P i+ 9l
cue Py H g,
T — I1
Setting 7 = |zii\ (x—z)=1 we get that
Tn — i'n
T, — T N ou
; , Uy, = <T7vu> = oF Uy
Hence
1, c? 9
(N, V)(z) = —curu, + Ut + 5|Vu|
1 c? c?
= i(cur —ug)? + <2|Vu|2 - 2ug>
| —
>0

By the Cauchy-Schwarz inequality one has
up = (7, Vu) < |F] - |Vu| = |Vul
Hence, % (|Vul? = u2) > 0 and therefore (N, K)(z) > 0 for z € K.

We can conclude that

1 2 1 2
/T (2u§ + C2|Vu2> ds < /B <2u§ + C2Vu|2) ds
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Now, we assume there is a solution u of the wave equation such that ¢ and ¢ vanish on B. Then

o</ 1u2+§|w|2 dS</ lu2+i|w|2 dS—/ 1¢2+£|V¢|2 dS =0
= Jp\2t "2 —Js\2t 2 /g \2 2 o

Hence, all the previous inequalities become equalities, and since %(ut)2 + §|Vu\2 > 0, it follows
that Luf + C; |Vul? = 0.

Then, since u7 > 0 and |Vul? > 0, it follows u; = 0 and |[Vu|*> = 0 (= Vu = 0) on T =

C(z,1) NR™ x {s} for s € (0,t0).

Since s € (0,t) was arbitrary, u; = 0 and Vu = 0 on C(z,7). It follows that V"*'u = 0 on
C(z,0)\0C(z,1). So u = constant on C(z,f). Since ¢ = u(x,0) = 0 and since u is continuous, it
follows u = 0 on C(z, ).

Hence u(z,t) = 0.

If v and v are two solutions that coincide on B, we consider u — v that is also a solution by
linearity of the wave equation. Then u — v vanishes on B, this implies u(z,?) = v(Z,1). O

Remark 10.3. e ((z,1) is also called the domain of dependence of (Z,f).
e One can see that the initial data ¢ and % in a point (&,0) can influence the solution only
in the light cone
{(z,t) € R" x [0,00) : |z — &| < et} =: CT(&,0).
Indeed, assume there are solutions u and v such that u(Z,0) # v(&,0) but u(-,0) = v(-,0)
on C(z,t) NR™ x {0} = B for a point (Z,t) such that (z,f) ¢ C*(#,0). In particular
C(z,tyNnC*(z,0) = 0.
Assume the chance in Z from u to v causes a change of the value of the solutions in
(%,t). This means u(Z,t) # v(Z,t). But this contradicts u = v on B.
Conservation of Energy. Let u € C?(R" x [0,00)) be a solution of the wave equation. Assume
¢ = u(-,0) € C2(R"), then u(-,t) € C?(R") for all t > 0.
To see this assume ¢(x) = 0 for x # Br(0) for some R > 0. Then, for y ¢ Bri(0) it follows
that u(y,t) = 0 because of the causality principle.

Corollary 10.4. Letu € C?*(R" xR) be a solution of the wave equation with u(-,0) = ¢ € C?(R").

Then, the total energy
1, c? 9
E(’LL) = §Ut +§|VU| d(xl,...,l'n)

Proof. We saw before that

1s constant.

1
0= <2 24 |Vu|2> AV - (u Vu)
t

Integration over a ball Br(0) such that u(-,¢) = 0 outside of Br(0) yields

1 2
0= / (uf + CVu|2) d(x1,...,2n) — 02/ (N, Vu)ueds
n \ 2 2 ' 9BRr(0)

where we applied the divergence theorem for V' = u;Vu on the ball Bg(0). Since u = 0 on 0Br(0),
the last integral vanishes.
Morover

0:/ (; 2 C |Vu2> (xl,...,xn):%/ (; §+|Vu|2> Arr, . 2n) = Bl 1)

where we could pull the derivative w.r.t. ¢ out of the integral because u(:,t) are compactly sup-
ported and smooth in ¢. O
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Remark 10.5. The integral fR" %ufdm is called the total kinetic energy of u at time ¢, and the
integral [, §|Vu|2dx is the total potential energy at time t.

Kirchhoff’s formula in 3D (see also subsecton 10.3)

Theorem 10.6. Let u € C?(R? x [0,00) be solution of u;; = ¢*Au with initial condition ¢ and
Y. Then, for (z,t) € R3 x (0,00), it holds

1 0 1
= [, s ¢<x>ds<x>]

Remark 10.7. Hence, u(Z,t) does not depend on B.z(z) but only dB.;(Z).

This is also known as Huygen’s principle. Any solution of the 3D wave equation propagates
exactly at the speed (of light, or sound) c¢. At any time f a listener (or observer) hears (or sees)
exactly what has occured at the time ¢t — d/c where d is the distance to the source.

u(z,t)
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Lecture 32

10.2. Deriving the wave equation (for sound waves in 3D). We start with the equations of
motions of a compressible fluid/gas.
The compressible Euler equations:

d 1
(54) QTH'U'VU——;V(JCOP)
0 .
(55) i + Div(pu) =0
where

o u(x,y,2,t) € R3 the velocity of a particle in (z,y, z) € R? and at time t € R,
e p(x,y,2,t) € R density of particle in (x,y, z) and at ¢.
The function f : [0,00) — R models the internal pressure that is a function of p (for an ideal gas)
One also assumes that f is an increasing function w.r.t. p, that is f” > 0.
v
Remark 10.8. For air one assume that f(p) = po (p%) where
e v is the adeabatic intex (— 1.4),
e pg sea level atmospheric pressure,
e po density w.r.t. a reference temperature.

Assumptions 10.9. The absolute value of py — p and the absolute value of its derivatives are small

(~€). Also the absolute value of u and its derivatives are small (~ ¢).

Then, in the following, we neglect all terms of orrder ~ €2.

(55):
0 = pt + Div(pu)
=pt+ Div((p — po)u) +po Divu
(V(p = po),w) +(p— po) Divu
o2 e

Hence, we replace (55) with
0= pt + po Divu
(54): u-Vu ~ € and

V(fop)= i@ V(p—po)

F/(po)+1"(po) (p — po) +0(|p — pol)
2 2

1 1 1
—=——=—(p—po)+ollp—pol)
PP P —_—

~Ee

~E

Hence, we replace %V(f o p) with %V(p — po), and therefore replace (54) with

up = —Mv(p —po) = —MW
Po Po

Now, we can compute

f'(Po) DivVp f’(po)Ap.

Po Po

Setting ¢ = \/% > 0 then p satisfies the wave equation.

prt = —po(Divu), = —po Div(uy) =
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10.3. Kirchhoff’s formula.

Theorem 10.10. Let u € C*(R3 x [0,00) be solution of ut+ = c>Au with initial condition ¢ and
Y. Then, for (z,t) € R® x (0,00), it holds

_ 1 0 1
@) = o | oy B+ [Wt / . ¢<x>ds<m>]

Remark 10.11. Hence, u(Z,t) does not depend on B.z(Z) but only dB.;(Z).
We first prove the following Lemma

Lemma 10.12 (Euler-Poisson-Darboux equation). Let u € C?(R™ x [0,00)) be a solution of u;; =
2 Au on R™ %[0, 00) with initial conditions ¢ and 1. Define u(r,t) = m Jon () u(z, t)ds(x).

Then @ € C?((0,00) x [0,00)) and @ solves the Euler-Poisson-Darbouz equation

_ o - n—1_
Ut,t, = C Uy — r Uy

’[L(T, 0) = (;_5(7“), ﬂt(rﬂ 0) = "/_}(T)

where ¢(r) = m faBr(o) pds(x) and P(r) = m faBr(o) P(z)ds(z).
Remark 10.13. Recall that

@ n-td
dr? r dr

is the radial part of the Laplace operator in polar coordinates.

Proof of the lemma. We observe

T -t u(zx 51:770”71 u(rz,t)ds(z
Ut = @B, (0) /aB,.((D (= )ds(2) = 68, (0) /BBI@ (re, t)ds(z)
=:C(n)

where the constant C'(n) > 0 only depends on n.
We also have u(rz,t) <  max  wu(z,t) and %u(m,t) = (Vu(re,t),z) <  max  |Vu|(z,t)
Barg (0)x{t} Bar, (0)x{t}
for all » € (0,rg). Hence

d 0
:—ﬁr,t:C’n/ —u(ra,t)ds(x
= [ Sutranist

Similarly for higher derivatives w.r.t. 7 and derivatives w.r.t. . Hence 4 € C?((0,00) x [0,00)).
Now

d = n u(rx),x)ds(x
G =co [ (Fu(re). 2)dstz)
1 T
~ vol(9B,(0)) /a&(o)wu(x)’\ﬁjds(x)
=:N

T 1 /
- Au(x) ds(z
n VOI(BT(O)) 9B,.(0) J )
————r 1

a(n)rm
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Hence
d 1 d 1 d
S\t t)d
dar (7’ dru(ra )> na(n) / © ut,t(x, ) S(:L‘)
o,
Uz, t)ds(z)
~na(n) Jopo)
1
n-1__ - Nd _ el .
vol(0B,-(0)) /t’?BT(O) ug (@, t)ds(w) = r"" " (U)ge(r, 1)
It follows
(,n _ 1)Tn_2(ﬂ)r + Tn_l(a)r,r = 1at,t
Deviding by "~ ! gives the desired equation. 0

Proof. Proof of the theorem Recall we have n = 3. The previous lemma implies

2
’at,t = C2 <ur,’r - ur)
r
Let us define v(r,t) = ra(r,t). Then

Vp = U~ TUp
1 1

= Upyp = Uy +Up +TUrp = Cjut,t = gﬁt,t
Since u is continuous in 0, it follows that @(r,t) = 2= [, ©) u(z)ds(z) = u(0) for r — 0.
= v(r,t) >0asr—0

Hence v solves the half line problem

vy = CQUW on (0,00) x [0,00)
lim v(r,t) =0 for t > 0
r—0

v(r;0) = rd(r) = ¢*(r), ve(r,0) = rip(r) = *(r) for r > 0

The solution for this problem is given by the following formula

9 Lo (et +7) — ¢*(ct — )] + £ [T g*(s)ds  for 0 <7 < clt],
v(r,t) =
Lo (r+et) — ¢*(r—ct) + & [T y(s)ds  for v > clt].

Therefore

1 1 ct+r
= Thi% o [ (ct +71)— @"(ct —71)] + %/ - w*(s)ds)

d, - : d - _
= 2 (r6() |, +tu(et) = 2 (t6(ct) + t(ct).

That is the desired formula for x = 0. The case x # 0 is derived easily since a translation of u
satisfies the wave equation as well. O
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10.4. Formula in 2D (Poisson formula). Let v € C?(R? x [0,00)) s.t.
ug s = c*Au on R? x [0, 00)
u(z,y,0) = ¢(z,y) and u(z,y,0) = (z,y)

Define v(x, y, z,t) = u(x,y,t). Then v solves the wave equation in 3D and we can apply Kirchhoff’s
formula:

_ 1
T 4ne?t

IU('T07 Yo, Oa t)
———

=0

/ P(x,y, t)ds(z,y,2) +....
OB (0)

We use this formula to derive a formula that only involves integral in R2. This is also called
Hadamard’s method of decent.

Note that 9B (o) = STUS™ with (z,y, 2) € ST ifand only if 2 = £1/c22 — (z — 20)2 — (y — y0)%.

Hence ST (and S™) respectively are parametrized by the graph of z = z(x,y). Hence, we can
compute a surface integral over S* using the transformation ds(z,y, 2) = /1 + (22)2(2, y) + (24)%(, y)dzdy.

: /
Pz, y)\/ 1+ (22)% + (2y)?dzdy.
AT J () (o —0)? + (y—o)?<c12) \/ Y

= v(o,t) =

Note that
242

s (2 ()

2t2

Hence
v(o,t) :L/ ¥(@,y) dxdy
21 J{(w):(a—20)*+(y—vo)?<c22} /P2 — (& — 20)2 — (Y — y0)?
d 1 o(z,y)
dt 27¢ J{ (2 p):(2—w0)>+ (v-v0)2<e22} /€22 — (2 — 20)% = (y — yo)?
This is Poisson’s formula for solutions of the wave equation in 2D.

dxdy.

Remark 10.14. In particular, we see that Huygen’s principle does not hold for the case of two space
dimensions.
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Lecture 33

Remark 10.15. An alternative form of Kirchhoff’s formula is deduced as follows. Let u € C?(R? x
[0,00)) a solution of the wave equation with initial conditions ¢ and ¢. Set

Bt = odst) and Gt =f  wl)dsly).
OBct(x) OBt (x)
Then Kirchhoff’s formula takes the form

(e, 1) = 40 (e, 1) + 5 (16, 1)

We compute

0, - 0 1
E(W(%t» =% (M /83“(%) ¢(y)d3(y)>

o ¢ -
T ot <4m2t2 /aBl(O) Pl ety)t ds(y))

1 t 0
= — o(x + cty)ds(y +—/ —o¢(x + cty)ds(y
17 o A e i [ otk etas(y)

1 tc
= [ o anas) + 1S [ (Vo) sty
47TC t 631(0) 4’]T 831(0)

S _te y—a
= o [, s+ s [ o), Lot

- ][ (6() + (V(y),y — z)) ds(y).
cht(w)

Hence
u(a, 1) = ]g o O+ (F9(0).y ) dsty)

Similar for n = 2 the formula can be written as
1 () +oy) +t(Ve(y),y — )
u(z,t) = 7][ = ~
Bt () V2 =y —

5 ds(y).

10.5. Solution of the wave equation in 3D.

Theorem 10.16 (Solution to the wave equation in 3D). Let n = 3. ¢, € C?(R?). Define u by
Kirchhoff’s formula. Then u € C%(R3 x [0,00)) and u solves

up s = cAu on R? x (0,00)

lim  wu(z,t) = é(x), lim  w(z,t) =¢(z) forx € R

(w,t)=(0,0) (z,t)—(0,0)

Proof. For simplicity we assume ¢ = 0. Then

u(a, ) = t(a, ) = t][ by)ds(y) = t-— /8 o V0 L))

OB () 4

By techniques we used before we immediately get that C?(R? x [0, 0)).
Now observe for (z,t) € R3 x (0,00)

U(x,t) + t(, t)

U (1) = (x, 1) + (@, t) + thy o (z, 1) =

ug(z,t)

o~ | =
&‘g‘

- (£ (, 1))
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Consder vy (z,t):
— 1
Gt = e [ (Voo +ety))ds(y
T JoB,(0)

c y—x c
S Viy), dsyz—/ A(y)dy
e AL L = o 200

=N

where N is the normal vectore along 9B (z). Hence

d (o
pn (P e(z,1)) == 47Tc/ /831(06) (r,2)ds(2)r*dr
1

1
= —-c Au ct, z)ct%ds / AY(z + y)cPt2ds(y
=g [ Bt s = [ Avte s )eas)

Therefore
1

tar

1
:—A/ V(x4 y)Pt3ds(y
27 Lo o) (z +y) ()

1
2
= c*At d
g [ oy
= A (th(z, ) .
Let us check the initial conditions. We have u;(z,t) = 1 (x,t) + tib;(x,t). Now we compute

B t) = — / (e + tey)ds(y) — (o) for (z,t) = (20,0).
4 0B1(0)

d o
p (e () =

o~ | =

/ Avp(x + y)c*tids(y)
9B1(0)

Here we could move the limit inside the integral because f(y) := ¥ (z + cty) — ¥(y) ast — 0
uniformily on 0B;(0). Because of the same reason we have

- t
o) = |1 [ (Fule+ ten).)ds(y)
T JoB1(0)
1
<t— [Vl(x + tey)ds(y) — 0 as (x,t) — (g, 0).
AT JaB, (0)
—=|V|(z)
Moreover
th(z,t) = 0 as (x,t) — (z0,0).

Hence, the initial conditions are satisfied. O

Remark 10.17 (Kirchhoff’s formula for n = 2k +1 > 3).

C1a[f1aNT [,
o) = -5 [(tat) (t J/cht@)‘z)(y)dy)

where 4, =1-3-5-+--(n —2).

LONT (s

Remark 10.18. The solution of the wave equation involves derivatives of ¢. This suggests that for
n > 3 the solution need not to be as smooth as the initial condition, it may be less regular.
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Lecture 34

10.6. Wave equations with a source term. We consider
upy — 2 Au = f(x,t)
u(z,0) = 0,0u(z,0)

For ¢, the solution of the homogeneous problem is

_ d -
u(z,t) = t(z,t) + 7 (tqﬁ(:m t))

L(t)(x) %ﬁ(tv)rﬁ(f)

By Dunhamel’s principle the solution for the inhomogeneous problem is

v(x,t)z/o E(t—s)f(x,s)dSZ/O (t —s)f(x,t —s,8)ds

K 1
:/0 (t— 8)4”02(75—5)/636(t5> [y, s)ds(y)ds

Since |y — x| = ¢(t — 5) for x € OB ;—s) (), it follows that

R .t~ |y — zl/¢) Y FEt— €~ xl/e)
o t) = /0 /8 o ds(y)ds /B » ¢

ly — x| e |€ — 2|
This formul has a very similar structure as the solution formula for the Laplace equation on a ball.
10.7. Relativistic geometry. A light ray is the path of a particle moving along x(t) = xg + vot.
Note that x(t) € R®. The speed of z(t) is

d
ax(t) =w € R® with |vo| =¢

Characteristic surfaces. Let S C R* be any 3D surface in R* and set for ¢t € R fixed
Sy =Sn{(x,t): 2 € R*} CR® 2D surface.

Definition 10.19. A surface S C R* is called characteristic surface if it is a union of light rays of
which each is orthogonal to S in R3.

Consider g(z),z € R® and f(x,t) =t — g(z) and set S = {(z,t) € R*: f(z,t) = k} for k € R.

Theorem 10.20. A surface S = {(x,t) € R*: f(x,t) = k} = S is a characteristic surface Vk € R
if and only if g satisfies the eikonal equation |Vg| = %

Proof. Assume S is characteristic (fo all k € R). Let o € R3 and consider (z9,0) € R*. Set
ko = f(x0,0) = g(z0) and consider S = {(x,t) € R*: f(x,t) = ko}.

By assumption 3(z(t),t) € R* a light ray such that z(0) = zo and (z(t),t) € S Vt and Lx(t) =
vo L Sy for all t € R.

Since t = g(z(t)) = ko

=0=1—(Vg(z(t)),vo) = (Vg(xg),vo) = 1.

The gradient of g is orthogonal to its level sets. Hence Vg(zo) L So = {z € R3 : g(z) = ko}.
On the other vy is orthogonal to Sy by assumption. Therefore Vg(xg) and vy are parallel. It
follows that

1= (Vg(x0),v0) = [Vg(zo)|[vo| = c|Vg(wo)l.

since xg was arbitrary, we have one direction.
The other direction is left as an exercise. O
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ay/c
Ezample 10.21. Consider g(x) = Zle %g; with af + a3 + a3 = 1. Then Vg(z) = | az/c
as/c
Hence |Vg|? = % and S = {(x,t) € R* : t — g(z) = b/c} is a characteristic surface with
Sp={zreR®: 3% am; =b+ct}.
Definition 10.22. (1) If (v,t) € R? satisfies t > c|v], (v, ) is called timelike
(2) If t < clv|, (v,t) is called spacelike, and
(3) If t = clv|, (v,t) is called null.
R* equipped with the bilinear form {((v,t), (w, s)); = CZ?:l v;w; — ts is called Minkowski space
time.
Lemma 10.23. S = {(z,t) € R*: t — g(x) = k} C R?* is a characteristic surface if and only if a
normal vector field N along S is a null vector field.

Proof. The normal vectors along S are given by V f = <—1Vg>' Then

Vfisnul & ¢|Vgl=1
This proves the lemma by the previous theorem. O
Definition 10.24. A surface F' = {(z,t) € R*: f(x,t) =t — g(x) = k} is spacelike if [Vg| < 1 on

S. That is normal vectors along S are timelike.
For instance, if g = const then f(x,t) = ¢ — const on S, then |Vg| =0 < %

Theorem 10.25 (without proof). Let S = {(z,t) : t — g(x) = k} C R* be spacelike for a smooth
function g : R® — R. Then there exists a unique solution u € C*(R*) of

ou

AAu = ury with uw = ¢ and N P on S
where ¢, € C?(R3) and N is the unit normal vector field along S.
. —Vg . .
_ 1
Since N = NOZEE ( 1 ) the second initial condition becomes

ou 1 (—Vg) —1 R 1

X (v, - (V*u, V) + ————u,.

N N Y T R T
Hence u; — <V]Rsu, Vg) = VIVl +1¢.

Ezample 10.26. In 1D we have u;; = c®uy . S = {(z,t) : y(z) =t} for v : R — R smooth.
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Singularities.

Theorem 10.27 (without proof). Singularities of a a solution of u; s = c*Au can only be carried
on characteristic surfaces.

Example 10.28. Recall the plucked string solution of the wave equation.

Ezample 10.29. Assume we have a solution in R? of the form

@ t-g@)?  ifg) <t
)= {0 if g(x) > t.

for g € C?(R) and v € C%(R x R).
Let us compute the partial derivatives:

ug = v(t —g(z)) + 1Ut(t — g(x))?

2
1
up = —v(t = g(2)) + va(t = 9(2))?
We see that v € C*'(R?). Moreover
1
Uy = v+ 20t — g) + §Ut,t(t -9)?

1
Ug,x = 7)992; - vgw,w(t —9) — 29,0 (t — g) + 5“9«*@“ - 9)2

Since u solves the wave equation on g(x) < ¢, we have on {(z,t) : g(x) < t}

2
0=1ust — C Uz x

1
— i(t — g)2(fut7t — czvx,z) +o(l — ‘3293) + (t—g) (2vt + czvgm,z + (322gm’uz)

On g(x) > t the wave equation holds trivially. Hence for u being a solution across the surface
{g(z) = t} the right hand side in the previous equation has to be 0 on {g(x) = t}.

1
= |g.| = - = S ={g(x) =t} is a characteristic surface.

Moreover, given g that satisfies the eikonal equation, deviding by (¢ — g) it follows

1
75(75 - g)(vt,t - CQUr,z) = 2(v¢ + govs) + v - Jz,xz O {9(x) =t}

Consequently v has to satisfy the following transport equation v; + c2g,v, = —%vgmym .
the information contained in v is transported along characteristic surfaces.

11. SCHROEDINGER EQUATIONS AND STATIONARY SCHROEDINGER EQUATIONS

A quantum mechanical system is described by the Schroedinger equation
—iuy = %kAu +Vu onR® xR
(56) u(z,t) — 0 if |z| — oo
u(z,0) = ¢(z) on R3
where V : R? — R is a potential function that describes an external force. Instead of the boundary
condition u(z,t) — 0, x| — 0o , we also can could assume [p, u(z,t)*dz < co.

We consider the following choices for V:

(1) V =0: the free Schroedinger equation.
(2) V(x) = —|z|*: the harmonic oscilator.
(3) V(z) = % the hydrogen atom (on R3\{0} x R).

||
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Separation of variables for (56) yields (u(x,t) =T ()X (z)):
(t)  LkAX(z)+V(z)X(2)
t) X(z)

(a)

=-A\

] e

—1

We assume A € R. Then
(a) T(t) = e~ = cos(At) + isin(\t) that is 7' behaves like a wave.
(b)
1
(57) —§1<;AX ~VX =)X onR?
=:LX
This is an eigenvalue equatin for the operator L : C?(R?) — {v : R* — R} with “boundary
conditions at infinity”

X(x) =0 for |z] = 0 or / | X (x)2dz < o0.
R3

If V.= 0, (57) has no solution. Hence, the method of separation of variables is not
applicable.
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Lecture 36

11.1. Diffusion equation on R". Before we study the case V = 0, we consider the diffusion
equation

us = kAu on R" & u(z,t) — 0 if |2] = 00
(58) u(z,0) = ¢(z), ¢ € C)(R")
for higher space dimensions.

Theorem 11.1. The solution of (58) is given by

1 lz—y|?
t) = ——= — 4tk dy.
u(z,t) T /Rne y
Remark 11.2. Define
1 2 1 5
Sn(z,t) = 7n€_|$‘ /atk — I e~ (@) /4tk
L ! Virtk
=S(z,t)

where S(z,t) is the fundamental solution of the heat equation in one space dimension. Then
u(et) = [ Sule =000y =102y [ Sai = i )01(0:) s
n R

Proof. One can check that
. %Sn(x,t) = kAS,(z,t) for x € R™ and ¢ > 0.
e u € C?’(R" x (0,00)) and u; = kAu on R™ x (0,00). (Because of the exponential decay

of S,, for |x| — 0, we can exchange differentiation and integration for z € R™ and ¢ > 0,
exactly as in the 1D case.)
o uc COR" x [0,00)) and u(z,0) = ¢(x) (Exercise).
O

Remark 11.3. The solution formula still holds if ¥ = Re(k) + iIm(k) € C with Re(k) > 0. A hint
to see this is that Re(4) > 0 and

’ef|w\2/4kt‘ _ ‘efRe(l/k)|x|2/4t67i1m(1/k)\z|2/4t < o~ Re(/k)|z|?/4t

But will not give a proof.
If we consider k =i + ¢ and let € — 0 one gets
Theorem 11.4. The solution of the free Schrédinger equation on R? for u(x,0) = ¢(z) € CO(R™)
is given by
1 / —|o—yl?2ikt
rorwme il I o(y)dy
(27kit)? Jrs )

11.2. Time independent Schroedinger equation. Separation of variables for the Schroedinger
equation (56) yields T (¢) € C that satisfies A = %Eg and

u(zx,t) =

AX+V-X+XX=0 on R

(59) X(2) = 0, o] - oo

This equation is also called the time independent Schroedinger equation.
If (59) is solvable for A, X is called an energy level of the QM system described by the operator
L=-A-V.
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Goal: Find energy levels \; and corresponding eigenfunctions vy that solve (59). If the system vy,
is complete, then a general solution of the Schrédinger equation (56) is given by

=Y T (Hve(x)
k=0

Harmonic oscillator: V(z) = —|z|?. Assume first n = 1 (space dimension). Equation (59)
implies
V" — 2+ A = 0.

For A\ = 1 a solution is e=*"/2 and it satisfies the boundary condition at infinity e="/2 5 0 for

|z| = oo.
2 . .
—2°/2 and derive an equation for w as follows

—z2/2

For X\ # 1, we assume v(z) = w(z)e

1 —x%/2

v =uw'e —x - we

v = w" —z2/2 1 —x?)2 1 —x?)2 —z2/2 —x2/2

w'e —zTwe Tw'e —we Jr:vzwe

Then
(22 — Nwe /2 = (W — 220’ — w + 22w)e * /2
= 0=w"—2z2w + (A — Dw

The last equation is known as Hermite’s differential equation. To find solutions we apply the
power series method.

Assume w(z) =Y ,7 apx® and pluck it into Hermite’s differential equation.

O—Zakk‘ -1z Za;ﬂxkx’“l—i—z —1akm

=527, ank(k—1)zh—2

Replacing k with k 4 2 in the first sum yields

O*Zakw k+2)(k+1:£ fZakaa: +Z flakx

k=0 = k=0

Since the coefficients of a power series determine the power series uniquely, it follows that
0=agr2(k+2)(k+1) —ar2k+ar(A—1) = agq2(k+2)(k+1)=2k+1—Nayg
From this recursive formula for the coefficients we deduce first that
ap=0 = ar,=0Vk=2/4,...
a1 =0 = a,=0Vk=3,5,...
Moreover, if A = 2k 4+ 1 we get that 0 = agyo; for all i € N. Hence
Ifag #0, a; =0and A =2k + 1 for k even = w is a even polynom of degree k.
Ifap =0, a1 #0 and A =2k + 1 for Kk odd = w is an odd polynom of degree k.

In particular
H(](if)zl A=1 a():l a1:0
Hi(z) =2z A=3 a=0 a =2
Hy(z)=42> -2 A=5 ap=-2 ag=0 = ap=="2F(-2)=4

The set of polynomials Hj, is called Hermite polynomials. It follows that solutions of (59) are

vg(z) = Hk(ar:)e_acz/2 for A\, = 2k + 1 and Vk € NU {0}
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Remark 11.5. (1) v satisfies the boundary conditon at infinity because P(glc)e*"‘/’2/2 — 0 as
|2| — oo for any polynomial P.
(2) If X # 2k + 1, no power series solution satisfies the condition at infinity.

(3) the following formual holds
d _
Hi(z) = (-1)%%2@@ v

(4) vi(z) = Hk(x)e’g”Q/2 are mutually orthogonal:
/ Hio(@)Hy(2)e~"dz = 0 if k # L.
R

(5) The set v is complete: Vf : R — R such that [ |f|*dz < oo it holds f = Y7 ) Agvy in
L? sense (mean square sense) where Ay, = (vy, f)/(vk, vx) and (u,v) = [u - vdz.
— “the spectrum of —A + |z|? is \g, k € NU {0}.
Higher dimensions. The LHS of the equation
Av — |z|?v = Av on R"

factorizes as
n

Z(vxi,mi - 1’?’0) = v

i=1
This allows us to apply the separation of variables method w.r.t. to z1,...,x, and solutions are
given by

vk(x) = H Hy, (z;)e "/
j=1

for A = 32701 Ak, = D051 (2k; +1) and k = (ky,..., k,) € N™..

1

11.3. Energy levels of the hydrogen atom: V(z) = R Assume k = 1:

2
—Av— —v — v =0on R

||

After a transformation with spherical coordinates the equation becmes

2 1 2
—Tpp — ;17,. - T—z( partial derivatives of ¢ and 6 ) — ;17 — X0 =0r¢€(0,00),¢ € (0,2m),0 € (0,7)

where 9(r, ¢,0) = v(r cos ¢ cos 0, rsin ¢ cos 0, rsin 6).

Assume that A < 0. That is only study the negative part of the specturem of the operator
L=-A-2

mCE

Assume also that v is spherical symmetric. Then partial derivatives w.r.t. ¢ and 6 in the
equation above vanish and it reduces to
2 2
=R'+-R +AR+-R=0
r T
this equation is known as Laguerre’s differential equality. We have the following boundary condi-
tions

R(0) < oo and R(r) — 0 asr — oc.

The assymptotic behaviour of Laguerre’s equations is R” + AR = 0 with solution R(r) = A"
for B = v/—A\. Therefore, taking into account the boundary condition at infinity, we make the
following ansatz

R(r) = w(r)efﬂr
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As for the harmonic oscillator we can deduce an ODE for w:
1 1
—w" +2(8 — ;)w'—i—Z(ﬁ 1) w=0

This yields
1

irw" —Brw' +w + (- 1w =0

The power series methode yields for this equation that

Zak - Dk rk=1 ﬁZkakr —Q—Zkakr}“ 1 —6)iakrk
k=0

If relabel k to k — 1 in the second and fourth series. we obtaln

072% k= 1Dk +k)r* ™ 4> ap 1 (1 8) = Bk —1))r*!

k=1
Consequently
k(k+1)
2

If g = % for some k € N then ax4; = 0 Vi € N. Hence wy, is a polynomial of degree k. We also
define

ag = (ﬁ]{i - 1)ak_1 Vk e N

wi(r)e P = Ry (r) = O (r)
A special family of spherical symmetric solutions of the Schroedinger equation is therefore given
by

= Ze*”"“tvk(x) with Ay = 82 = e

The set {—k%}keN are the energy levels of the hydrogen atom as experimentally observed by Bohr.

Remark 11.6. (1) The functions vy are not complet. There are two reasons for that. First, we
assumed spherical symmetry (no angular momentum of the the atom). Second, Besides
Ak < 0 the specturm of the operator —A — ﬁ has a positive and continuous part that is
[0,00) (free electrons).
(2) If p # %7 then w is an infinite power series. For large k the coefficients behave assymptot-
ically as follows

k(k+1) _ 2 L2
Tak—(ﬁk—l)ak_lélmk— (ﬁk+1—k+1)ak=>ak—ﬁkak_1

for large k. Hence w ~ 2" that does not satisfy the boundary condition at infinity.
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12. FOURIER METHOD
12.1. introducton. We have considered different types of equations

1
(1) —iuy = ikAqu Vu on R”

|
—Lu

(2) ug = kA on Q C R" or R”
<~
—Lu
(3) ugr = ZAu on Q C R” or R™.
7 L
We assume the factor in front of A is always 1.

Seperation of Variables: Assume u(x,t) = T(¢)X (z). This yields equations for T' (for instance
T+ AT =0 in case of (2)) and

(60) for X(z): LX =XX on Q CR" or R" together with a boundary condition.
for a constant A\ and with solutions T and X.

Goal: If possible, find Ag, k € N, and solutions vy of (60) s.t. ¢(z) = Y ;o Apvr(z) in L2-
sense or stronger for many initial conditions ¢(z) = u(z,0).

= u(x,t) = ZT,\k(t)Aka(x) solves problem (1) and (2)
k=0

for the initial condition ¢.

In case of (3) one has a pair of initial conditions ¢ = > Apvg and ¥ = 3 By and Ty(t) =
A cos(At) + Bsin(At).
= u(z,t) = Z(Ak cos(At) + By sin(\t))vy.
k=0

In general: The existence of solutions of (60) depends on V and €.

12.2. Orthogonality of eigenfunctions. Assume (2 is bounded and 0f) is smooth, and that
g, [ Q C R — C continuous. An inner product between f and g is defined by

/Q f3dz = (f,9)

where ¢ is complex conjugate of ¢ € C. Hence g = Re(g) + iIm(g) = Re(g) — iIm(g).

In particular || f||*> = (f, ) = [,,(Re(f)? + Im(f)?)dz.

Remark 12.1. The PDEs make sense for C value v: Av = ARe(v) + iAIm(v) = (Re(\) +
iIm(N))(Re(v) + iIm(v)).

Assume from now on that V = 0. If u,v are R-valued Green’s identity yields

ov ou
uLvdx—/vLudx:/uAvd:E—/vAudx:/ (u+v) dx
/Q Q Q Q oo \ ON ON

One can check: homogeneous Dirichlet, Neumann or Robin conditions imply (u, Lv) = (v, Lu).
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If u,v are C valued, note that
Au -7 = (ARe(u) + iAIm(u))(Re(v) — iIm(v))
= ARe(u)Re(v) + AIm(u)Im(v) + iAIm(u)Re(v) — iARe(u)Im(u).

Hence, it is straightforward to see that Green’s identity again shows that (Lu,v) = (u, Lu) provided
one has Dirichlet, Neumann or Robin boundary conditions (for the Real and Imaginary part of u

respectively).
We say L = —A on  with the corresponding boundary condition is a symmetric
operator.
Corollary 12.2. o If u,v are eigenfcts for real eigenvalues Ay # Ay then 0 = (u, Lv) —
(v, Lu) = (A2 — A\1)(u,v). Hence u and v are orthogonal.
——
=A2—A1 .
e Ifu is an eigenfunction for an eigenvalue \ € C, then 0 = (A — \) (u, u).
0
>

Hence A = X\ and therefore \ € R.

In particular, since Au = ARe(u) + iAIm(u), Re(u) and Im(u) are R valued eigen-
functions for the real EV .

Remark 12.3 (Eigenvalues with multiplicity). If there are 2 linear independent eigenfunctions
u, v for the same eigenvalue A, the Gram-Schmidt algorithm finds @ s.t. (u,9) = 0 and u, ¥ span
the same linear space as v and v.

Theorem 12.4. If ¢(z) = > po, Axvr (in L? sense or stronger) for orthogonal functions vy, then
Ay = (¢,vk)

T (vk,vk)

Proof. We have

(¢, vn) = / ov,dx = / <Z Akvkvn> dr = ZAk/ VEUndx = Ak (Un, V)
Q 2 \k=0 k=0 Q

where L? converges allows to pull the sum outside of the integral. (]

Completeness. Consider L = —A with hom. Dirichlet, Neumman or Robin bdy conditions on
J9. Then there exist infinitely many eigenfcts vy, k € Ny and

b= ZAkvk in L2-sense V¢ € C°(Q) < or V¢ with / P’ < oo) .
Q

k=0
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Let © C R"™ be bouned with 92 smooth.

Theorem 12.5. If L = —A (that is V = 0) on Q with hom. Dirichlet bdy conditions, then all
etgenvalues are positive.
For hom. Neumann or hom. Robin bdy conditions all eigenvalues are non-negative.

Proof. For the Dirichlet case: Let u # 0 be an eigenfct. Green’s first identity yields

)\(u,u):/uAudx:/ \Vu\Qd;v—/(...)dx:/ |Vu|?dz >0
Q Q Q Q

If fQ |Vu|?dz = 0, then Vu = 0, Hence u is constant on every connected component of  and by
the homogeneous Dirichlet bdy condition is must be 0. g

Ezample 12.6. Let Q = Q = [0, 71]™. We want to find a complete set of eigenfunctions for —A on
@ with homog. Dirichlet BC. Note that

n n
1D
—Av:—g ugjim:—g A u(o gy ).
i=1 i=1

For the 1D problem we found eigenfunctions vy = sin(kx), k € N, with EV k2. Then a complete
set of eigenfunctions for the n-dimensional problem is given by

(w1, jwn) = [ [ or (2:), k= (k1 ..., kn) € N" for the EV > k7.
i=1 i=1
12.3. Vibration of 2D disk. We study the following problem
Upy = 2Au on Q
(61) u(-t) = 0 on 9
u(,0) = o(x) w(x,0) =)
where Q = B,(0).

Separation of Variables yields the following eigenvalue equation (compare with previous lecture):
(62) —c?Av=Xon Qfor A\>0 wv(-,t) =0 on O9.
——
=:Lv

The symmetry of the domain 2 suggests to introduce polar coordinates: o(r,8) = v(r cos @, rsin6).
Then

1 1

AV = v + —vp + — 0,0
r r

Another separation of variables equation yields for o(r,8) = R(r)©(0)
1 1
(R” + =R+ AR) 0= <—2@”> R
T r

R”—I—%RI—F)\R_ @//_ cR
IR e '™

It follows

The equation for © is
0" + X0 = 0 together with periodic boundary condition ©(f + 27) = ©(0).

We saw before that the general solution is given by ©(6) = A cos(nf) + Bsin(nf) and necessarily
~ =n? for n € N. Hence the equation for R is

1 2
R" + ;R—I— ()\ - Z) R =0 on [0,a] with R(0) < oo and R(a) = 0.
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Observe that because the eigenvalue equation comes with Dirichlet boundary condition, we have
A > 0 (see previous lecture).
Hence we can introduce a new variable p = v/ Ar and R(p) = R(p/V\). Tt follows

VA

DI D/ n2 D DI 1 D/ n2 D
AR'+ 2R+ (A~ = |R=0=>R'+-R +(1-—= |R=0
r r? p p?

The last equation is known as Bessel’s differential equation.

Remark 12.7. The coefficients of this ODE are singular at p = 0. But p = 0 is a so-called regular
singular point. This implies that R ~ Cp® for p — 0 for some a € R.

Therefore we make the following ansatz. We assume that
o0
R(p) = w(p)p® where w is given as a power series: w(p) = Z arp”.
k=0
Here we will not derive an equation for w, but we will write
o0
R(p) = axp® ™™
k=0
and plug it into the differential equation for R:

0=p“ i ar(a+ k) (a+k — Darp" 2 + (a + k)arpp™ 2 4+ app® — nlapp™2.
k=0
= k=0: (a(a—1)+a—n)ay =0,
k=1: (a(a+1)+a+1-n?*)a; =0,
k>2: ((a+k)(a+k—1) 4 (a+k)—n®)ar = —ap_2
Hence
first equ. : = a==n, ag € R. Assume n > 0,
second equ. : = ((a+1)>—n®)a; =0 = a; =0,
ap—2 Af—2 ap—2

third equ. : = - =- = ‘
ird equ. : = ay (a+k)?—n? (a+k—n)a+k+n) k(2n + k)

In particular, it follows that ai = 0 for k € N odd.
Hence, it follows that

L - T
2j - 2(n+j)

if ag =1 then (—1)

a5 =
i 1
G122 (n+1)---(n+j)’

11 . 1
if g = — — DAY
ifao = 27 n! then (1) j122i+n (n + j)!

[e'e] n+2j
= RO =30 (30) =)

Jn(p) is called the Bessel function of order n.

Remark 12.8. (1) The solutions for « = —n look like p~™ for p — 0 or they look like log p.
Hence, since we require R(0) < oo we dismiss them.
(2) The series above converges on [0, c0) and hence J,,(p) solves the Bessel equation. = R(r) =
cJn (v Ar) for some ¢ € R.
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(3) It holds J,(p) ~ Cp* for C' = const for p — 0 and

2 1
Jn(p) ~ Mﬂ—pcos(p— % - %) +O(W) for p — oo.

For the homogeneous Dirichlet boundary condition we require Jn(ﬁa) = 0. The function
X = J,,(v/Aa) has infinitely many, countably many roots 0 < A < Apa2<....

Theorem 12.9. Solutions for the eigenvalue equation (62) are given by

O (1,0) = Jn(\/ An,mT) - cos(nh), Wy m(r,0) = Jn(y/An,m?) - sin(nd)
This is a complete orthonormal system of eigenfunctions for the operator L = —A on B,(0) (An.m,

(n,m) € N2 are the eigenvalues of L with multiplicity 2)

Together with Fourier method from the previous lecture we can solve (61). Lets do this for a
particular case.

Ezample 12.10. We want to find the solution @ with @(r, 8,0) and . (r, 0,0) = ¥ (r) (1) only depends
on the radius variable r). If we expand ¢ with the eigenfunction, we found, then we get

1;(7’) = Z ﬁO,mOO,mJO(/BO,mT)

m=1

where 8y = /Ao,3. Hence

a(r,0,t) = Z Co,mJo,m(Bo,m) sin(Bo,mt)

m=1

where
Bo.mCom = / B(r) o (Bo.mr)rdr/ / (Jo(Bo.mr))?rdr.
0 0

Remark 12.11. Note that ¥y, s, Wy, m is indeed an orthornormal set. For instance we can compute

27 a 27 a
/ / Opm g rdrdd = / cos(nd) cos(kd)do - / In(Bn,mT) Ik (Breir)rdr
o Jo 0 0

where the first integral is 0 if and only if m # k and the second integral is 0 if and only if
(n,m) # (k,1).
12.4. Vibrations of a 3D ball. Consider the eigenvalue problem

-Av = X on

(63) v = 0 on 0N

where Q = B,(0) C R3.
By Spherical coordinates the PDE becomes

2 1 1 1
0 = A )\ - ~'r r 7~r ) . .
v AU =, +rv +7°2 (51n0)2v¢’¢+sm9

where 0(r, ¢,0) = v(r cos ¢sin b, rsin¢sin b, r cosf), r € [0,al, ¢ € [0,27],0 € [0, 7].
With another separation of variables o(r, ¢,0) = R(r)Y (¢, 0) we get

(sin gy | + Ao

R" + %R/ + (M- %)R =0 for v € R and with R(0) < co and R(a) = 0.

and

1 1 .
729}/¢7¢ + ﬁ (Sln 0Y9)9 +'YY = 0

—A9B1 ()Y
with boundary conditions Y (¢ 4 27,0) = Y (¢,0) and Y (¢,0),Y (¢, 7) < 0.
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Remark 12.12. A981(0) is the Laplace operator on 0B (0) in spherical coordinates.
Defininng /rR(r) = w(r), then w satisfies

1 + i
w”+rw’+(/\—’yr24>w=0.

Then a change of variable R(p) = w(p/v/\) yields that R satisfies again Bessel differential equality.
Hence w(r) = Jm(\f)\r) and R(r) = #Jm(\[\r) with boundary conditions R(0) finite

and R(a) = 0.

Angular funciton Y (¢,0). We assume one more time separated variables: Y (¢,0) = q(¢)p(0).

It follows

g (O0) + < (im0 (0) ) +10(0)(®) = 0
= (8 = _ s 0(sin 6p')" v(sinf)? =: —a € R.
q p

Recall the periodic boundary condition for Y in the variable ¢. Hence, we know that
a =m? with m € Ny and q(¢) = A cos(me) + Bsin(mae).
(sin6p')’ m?
_ = 0
Y 7 (sin 6)2 b

with boundary conditions p(0), p(7) < occ.
Another variable change s = cos (— sinf = /1 — s?) yields

d dp m?
~ (1= — —
ds (( s)ds>+<7 1—S2>p 0

with p(—1), p(1) finite. This equation is known as (asssociated) Legendre equation. Its eigenvalues
are [(l +1) for I € N, [ > m with eigenfunctions

" —_1)m m dl—i—m
P = S - )8

This are the associated Legendre functions.
Conclusion: The function

B5(r,0,0) = ROV(O)p(0) = Iy (V)3 (Acos(mg) + B sin(me) P (cos )

l
dlerm [52 - 1]

solves the eigenvalue equation (63) where [ > m,y = [(I +1). It follows /Il + 1)+ 1 =1+

One can also replace the sin and cos term with e?™? for m € Z.
Moreover, let Ay ; be the roots of Ji, 1 (v/Xa). Then
1 m - )
Otymi(r, 0,0) = ﬁ‘]l-i-%(\/XT)Pll ‘(cos 0)e™ m € Z,1 > |m|,i € N.

is a complete set of orthogonal eigenfunctions with EV A;; that has multiplicity 2/ 4+ 1 because
there 20 + 1 m’s such that [ > |m)|.

N[
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Lecture 39

12.5. Bessel’s differential equation. Bessel’s differential equation is

1 1/ 82
vt -ut (14— u=0 for 2> 0.
z z

For s € N and 4(0) < oo we derived by the power series method that

In(z) = i(_]’)jm (§)2j+n

§=0
where the coefficients ay are defined recursively with ag = ﬁ .
Now let s € (0,00) and let I'(s) = [~ t*~te~"dt is the Gamma function. T satisfies

e I'(n+1)=n!VYneN.
e I'(s+1)=sT'(s)=s(s—1)-...,(s=n)['(s—n) ¥Yn e N withn > s.

Setting ag = the previous recursion formula for the coefficients yields

Sz
I (2) _;F(j+l)l“(j+s+1) (5)

1
25T (s+1)

This is the Bessel function of order s > 0 and it solves Bessel’s differential equation.
Further extension to s € (—1,0) is possible. Then J; and J_g are linear independent solutions
for Bessl’s differential equation, but J_;(z) — oo for z — 0.

e Assymptotic behavior:

2 sTom _3
Js(z) ~ \/Ecos(z— -5 = Z)—l—a(z 2)

e Recursion formula:
s
Js:l:l = ;Js + J;(Z)
In particular, for s = § +n — 1 one has

Tyl = VAL (@) = (e () ()

e For s =z, v(z) = ﬁJ% (z) solves v" 4+ v = 0 with v(0) = 0. Hence v(z) = ¢-sinz and

(2) = \/Z sin(2)

Similar J_1 (z) = 1/ cos(z). Therefore, we obtain the following nice formula

)= oy 2t (2 )" (222),

12.6. Legendre functions. Eigenfunction of —A on B, (0) C R? with Dirichlet BC are
1 m ; : .
Vtym,j(r, ,0) = TJ%.H(\/)\MT)PZ‘ |(cos 0)e'™? with m € Z,1 € Ng s.t. 1 > |m| and j € N.
r

The corresponding eigenvalue is \; ; where (); j);jen are the roots of the function A — J%H(ﬁa).

1
2

J

N|=

Tt

Remark 12.13. The functions P/"(s) for m,l € N with [ > m are the associated Legndre functions
_ym m d™
given by P/"(s) = %(1 —s?)% 7 F( 2 —1)! where ¢/ are Polynomials of degree [ — m.
: s™ ds

=:q
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e P(s) solves the associated Legendre equation ((1 — s%))P’)' + (Z(l +1) — %) P=0.

° %j—;(l — 52)! are called Legndre polynomials and they solve the Legendre differential

equation
(1 +s*)) +1(1+1)v = 0.
Orthogonality

a 2m T
(ﬁl7m,j7 ’Dk:,mt) = / / / 'Dl,m’j (T7 ¢7 G)ﬂkm,t (’I", ¢7 9) sin 9T2de¢d9
0 0 0
a 2m 2
:/ J%H(\/)\l’jr)J%+k(\/)\k7jT)rdr/ ei(m*")¢d¢/ Blml(COSQ)PILn‘(COSQ) sin 0d6
0 0 0

=0 if (1,5)#(k,t) =0 if m#n =0 if (m,))#(n,k)

Spherical Harmonics The set of functions Y;"(¢,0) = Pllml(cos 0)ei™® m € Z, | € N with
[ > |m| is a complete orthogonal set of eigenfunctions for the Laplace operator on the sphere
0B1(0) =: S? C R3. In spherical coordinates the Laplace operator on the sphere is

1 1 .
- 0Y¢’¢ + g (sin0Yp), .

Example: Laplace equation with non-homogeneous Dirichlet BC
Au =0 on B,(0)
u =g on 0B,(0)
Expand g = 32723,y A7"Y/"™(6,0).
Assuming a(r, ¢,0) = R(r)Y (¢, 0) the equation becomes
2
R'+ R +-LR=0
r r

with v =1[(l + 1) for [ > m and spherical harmonic Y =Y.
The equation for R is not a Bessel equation of the form we saw before but of Euler type:

uv’—{—ﬂv’—l——v—O

Then: If s and ¢ are the roots of z(z — 1) + Bz + v = 0, solutions are given by v(t) = Ct" + Dt5.
In our case 3 = 2 and the quadratic equation 2® + z +I(l + 1) = (x — I)(z + (I + 1)) = 0 has
exactly 2 roots. The positive root is [ and a solution for our Euler type Equation is R(r) = r! or
(r/a)"
Hence u(r, ¢,0) = >°, Zm__l AP (f) Y™ (¢, 0) is a solution of the problem.
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12.7. Hydrogen atom revisited. Consider Schroedinger’s equation
1
uy = —§Au—|—V-u

for a radial potential function V = V(r) with 72 = 2} + 23 + 23 and u = u(z,y,2,t) € C. We
assume the global boundary condition

/ lu(,t)|?dr < cc.
R3

—iAt/2

A separation of variables yields solutions of the form u(x1,x9, x3,t) = v(x1, 22, x3)e where

—Av+2V-v= XM

Let assume that A € R and v(z1, 22, 23) € R.

After introducing spherical coordinates another separation of variables yields solutions of the
eigenvalue equation of the form o(r, ¢,0) = R(r) - Y (¢, 6) where

2 /
r*R"4+2rR 1 1 1
N = Y, —— (sin 0Y,
R 7 { 00+ Gg B0 ")9}

for constant v > 0. We observed that the expression inside { } on the RHS is the Laplace operator
on 0B1(0) in spherical coordinates.

Hence, the second equation corresponds to an eigenvalue equation of the Laplace operatore on

0B1(0). The eigenvalues are given by v = [(I + 1) > 0 where [ € N with [ > |m| for m € Z. The
corresponding eigenfunctions are the spherical harmonics given by

Y™ (¢,0) = €™ P/™ (cos 6).

M2 —2r2V (r) +

sin® 6

The equaton for R becomes

R'+ %R’+ (A—sz(r) —~ l(ltl)) R=0.

r
For the hydrogen atom where V (r) = —1 we obtain
2 2 l(l+1
R+ -R + </\+— ( J; )>R:0
r r r

where we assume the boundary conditions R(0) < co and R(r) — 0 for r — oo.
As in our previous treatment of the hydrogen atom we set w(r) = *"R(r) with 8 = V-
Recall that we assumed that A < 0.
1 2(1 — I(l+1
= w"—|—2<r—ﬁ)w’+{ ( " fy_uwi+ )]w:O.

r2

Power series method: Assume w(r) = Y ;2 axr®. Then

Zk (k — Dapr*~ 2+22kakrk Q—QﬂZkakrk '+2(1-p Zakr l(l+1)2akrk’2:0

or
e’}

> (k= 1)+ 2k — 11+ D] apr™> + > (-2 +(2-28)]ap_1r*2=0
k=0 =k(k+1)—1(I+1) k=1 —2(1—kB)

We can conclude that

I(l+1)ap=0 and [k(k+1)—1(I+ D]ar =—-2(1 —kB)ag_1-

We see that for k < [ it must follow that ar = 0. Then a; is completely arbitrary, the following
coefficients are computed using the recursion formula.

Finally the series is polynomial if 8 = % for some n € N since the recursion formula implies
that ap, = 0 for & > n.
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Thus the eigenvalues are A\ = 7# and the corresponding eigenfunctions are

where L! are the polynomials of the form L! (r) = ZZ;f agrt.

Remark 12.14. The eigenfunctions v, are still not complete because we cannot consider A > 0
which corresponds to the case of a free electron.

Angular Momentum in QM. In Newton mechanic, given a particle z(t) € R3, the angular
momentum is defined as x(t) x &(t) (here x is the cross product between vectors).

2203 — w302 Ly
The angular momentum of QM system is the operator L = —iz xV =i | 2301 — 2103 | = | Lo
11182 — 3?281 L3

In spherical coordinates:
Ly = i(cot @ cos Oy + sin ¢0p), Lo = i(cot 0 sin pdp — cos ¢pdy), Lz = —idy

1
— L = LI+ L3+ LS = =050 —

1
. ¢89 (sin#9y) = — “Laplace operator on 9B;(0)”
sin

Hence, the eigenfunctions of |L|? are the spherical harmonics. Moreover, one can check that
LyY{™ = mY)™, LaY/™ = (L1 £iLa)Y;" = (LF m)(l £m))® ¥;".
Hence the spherical harmonics is a (complete) set of eigen functions for the operator L.

Remark 12.15. In QM one cannot have a pure rotation around a single axis (for instance x3).
This would correspond to the existence of eigenfunctions Y, (¢, 6) that depends on ¢ but not on

6. Hence Pllm‘(cos 0) = const, = 1 =0 = |m| = 0 and therefore ¥, (¢, ) = const.
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Lecture 41

13. GENERAL EIGENVALUE PROBLEMS

Let © C R™ be open, bounded and connected with 02 smooth (n = 3 or n € N).
We consider the general eigenvalue problem

(64) —Au=Au on €
with Dirichlet boundary condition u|sq = 0.
We saw before that for this problem A\ > 0. How can we find the eigenvalues and the solutions

of the corresponding eigenvalue problem?
Dirichlet Energy:

E(u) = / |Vul*dz for u € C*(©2) (We drop the 1 in front of the integral)
Q

The minimizers u of E on C*(Q) are harmonic (Dirichlet principle). Hence if u|sq = 0, the maxi-
mum principle implies © = 0. Therefore A = 0 is not an eigenvalue.

New Minimization problem (with additional constraints):
Find the minimizer of E on C*(Q) on & := {u € C*(Q) : u|oq = 0} with [, u?dx = 1.

B _ Rw) on £\ {0},

) =
[[ullz

(65) <= Find minimizer of

R(u) is called the Rayleigh quotient of w.

Theorem 13.1 (Minimum principle for the first EV). Assume u € C?(Q) N &y solves the mini-
mization problem (65). Then u solves the EV problem (64) with A = R(u) =: A;.

Moreover, assuming that any solution of the EV problem (64) for some X is in C?(Q) N &y, then
A1 is the smallest eigenvalue of —A on Q with homogeneous Dirichlet BC.

Proof. Let ¢ € C'(Q) with compact support in Q. Then u + e = w(e) € & Ve € (—5,5). The
functions w(e) are called trial functions.
We set

_ _ 2 2 2
() = E(w(e) _/Q\w da:+2€/Q<Vu, Voyda + ¢ /Q|v¢\ de,
g(e) = ||w(6)H§:/Quzdac—l—Qe/QU(bda:—&—g/Q(dex

= f(0) = 2/Q<Vu,V<;5)d337 g (0) = Z/QU(bdm

Since w is a minimizer of R on & \{0}, we have

d
= 0= aR(w(e))h:O =

Since g(0) = lw(0)]|2 = ||ull> # 0, it follows
o=/<vu,v¢>da:|\u||§—/u-qbd:c-E(u).
Q Q

— R(u) /Q updz = E:ﬁg /Q upde = /Q (Vu, Vo)dz

Since this holds for any function ¢ € C'(Q) with compact support in €2, the Fundamental theorem
of Calculus of Variations implies

f'(0)g(0) — £(0)g'(0)
g2(0) '

1st Green Id _/ Auddz.

Q

—Au = Au on (.
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If )y is any other eigenvalue with an eigenfunction v € C?(Q2) N &, then
—/ vAvdr = / |Vo|?dr = /\2/ vidx.
Q Q Q

A2 = R(v) > R(u) = 1.

Hence

Recall (u,v) = [, uvdz.

Theorem 13.2 (Minimum principle for the nth EV). Assume we found the first n — 1 EVs
0< A <X <+ < \y1 with the corresponding eigenfunctions vy, ..., v, € C*(Q) N &.

Then the nth EV of —A on Q with homogeneous Dirichlet BC' is given by the following minimum
with additional constraints

(66) Ao = min 200

where w € E\{0}, 0= (w,v1) =+ = (w,vp_1).

Ifu € C?(Q)NE&y solves the minimization problem (66) then u solves (64) for the A = R(u) = \,,.
Proof. Let u € C?(2) N & be a minimizer of (66) and let ¢ € C1(Q) with compact support in Q.

Note we can choose v1,...,v,_1 to be orthogonal. Then, we define
n—1
~ v
QS:qbchkvk where ¢ = M
= (Vk, vk)

The definition of~g5 is such that (¢,v;) =0Vk =1,...,n — 1. Moreover, ¢ € C1(Q) N E. We also
set w(e) = u + ep. Then w(e) € & N CY(Q) and
(11)(6), Uk) = (’LL + 6(57 Uk:) = (U,Uk) + 6((57 Uk:) =0.

Hence w(e) are trial functions for the minimization problem (66) and we can define f, g has before
and compute

f1(0) =2 /Q (Vu, Vé)da, ¢'(0) =2 /Q wide

and
d

de

f(e)

=0 g(e)°

= /Q<Vu,Vq~5)dx:>\*/Qu<5dm

where A* = R(u) = 2% Hence

AL

_— —/ Auq@d:v:/\*/ u&dm
Q Q

n—1
== - / (Au — N'u)pdr = — Z ck/ (Au — N'u) vgde
Q k=1 Q

n—1 n—1
2nd Green Id = — Z ek (Avg — N ug) ude = Z cr, / (A — A )vpudx = 0.
k=1 k=1 Q2

Hence

- /Q Aupdr = \* /Q ugdzs
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and since ¢ € C*(2) with compact support in Q was arbitrary, we get that —Au = \*u on Q and
Ak < A%
Moreover, since {vy,...,v,_1,u} are linear independent, A\* = X, is the nth EV. O

How can we compute the eigenvalues?

13.1. Min-Max principle for the nthe eigenvalue. Let vy, ..., v, be orthogonal eigenfunctions
for the first n EV A,..., A,. Assume [v;]|, = 1 and set

V = span {v1,...,0,} C&

that is linear space of dimension n. Assume (v;), i = 1,...,n, are orthogonal.
Ifw=3)_,cuvr €V, then

n n n
E(w) = Z crey / (Vog, Vo )de = Zci/ |Vog|2de = Zci)\k.
@ k=1 /9 k=1

1,k=1
Hence, on V the energy F is represented by the matrix A = Diag(Aq, ..., Ag), Precisely

BE(w) = (c1,...,¢n)A(ct, ... cn)T for w= chvk.
k=1

Linear Algebra tells us

cAcT E(w)
Ap = MaX —5— = max ——.
c€R™ 3 weV |w]|;
Now, consider arbitrary ws,...,w, € & that are linear independent and W = span{ws,...,wy}.

We want to find w = Y__, zpwy, € W such that (w,v;) =0Vi=1,...,n— 1. For this consider
the set of equations

(w,v;) = ka(wk,vi), i=1,....,n—1
k=1
or equivalently A -z = 0 for the n x (n — 1) matrix A = ((wy, Vi) j=1.... mii=1....m
always find a solution z € R™\{0}.
Hence, there exists w € W\{0} such that

_1- Clearly, we

E
Rw) = 29> 5,
l[wlly
Hence
max R(w) > A\
weEW\{0}
where W = span(ws, ..., w,). This proves the following theorem.

Theorem 13.3 (MinMax principle for EVs). The nth EV of —A on Q with hom. Dir. BC is
given by

, E(w)
Ap = min max 2 |-
Wi, Wn €&, lin.indep. \ weW ||w||2

Ritz-Rayleigh approximation.
The MinMax principle is useful to approximate EVs. For instance, if we have that vy, ..., v, are



136 MAT351 PARTIAL DIFFERENTIAL EQUATIONS - LECTURE NOTES -

linear independent in &y, then we define

l INT
For w! = 22:1 ch v we write R(w!) = A\f = % > \; where ¢ = (c},...,c,0,...,0) € R™.

= dANOT - B(HT = () (A= NB) ()T =0 with ¢! #0 = det(A—A\/B)=0
Hence, by solving 0 = P(X\) = det(A — AB) we find A},..., A\ that approximate the first n EVs .

13.2. Homogeneous Neumann Boundary conditions. Consider

—Au = \u onQWith%:OonaQ

where N is the unit normal vector along €.

In contrast to the Dirichlet problem u = ¢ # R solves the equation for A= 0. Hence, the
smallest eigenvalue is A; = 0.

The all previous considerations hold as well for the Neumann boundary problem where the set
of trial functions is £ = C*(Q) instead of &. For instance the minimization problem for the second
eigenvalue is

E _
min (w2) where w € C*(Q) with / wdx = 0.
[l o

Remark 13.4. Since there is no boundary condition for the trial functions one calls the Neumann
boundary condition also free boundary condition

The minimization principle for higher eigenvalues and the MinMax principle are left as an
exercise.

13.3. Completeness.

Theorem 13.5. Let (v,)nen be a set of eigenfunctions (orthogonal) for EVs A, of —A on Q with
hom. Dir. BC. If f is L*-integrable (square integrable) ([, f*dz < c0), then

- . (f,vn)

f= g CpUp N mean square sense, where ¢, = ( )
vna Un

n=1

Proof. We assume \,, — oo for n — co. We prove the theorem only for f € C?(Omega) (as we
did for Fourier series).
Let ry = f — Y07 | ¢pvy. It follows

N
(rn,v5) = (f,v5) ch Un,v5) = (f,v5) — ¢(vj,v;) =0
n=1
Hence

E(ry)

||TN||2

R(Tn) =

> AN41-

Then

N N
E(Vr,) = /Q [V(f — ;cnvn)|2dac = /Q <|Vf|2 + 2;cn<Vf, Vo) + Z cncm<an,va>> dx

n,m=1
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Since vy, f € C%(Q) it follows with Green’s first identity that

/Q(Vf,an)d:v:—/QfAvndx:)\n/vandx

/(va,vn>dx: —/ Uy AUy, :)\n/ vmvndxzdmyn)\n/ v2dr
Q Q Q Q
Hence

N N N
E(ry) = / <Vf|2 —2) endalfivn) + Y ci)\n(vmvn)> de = / (Vf2 - ciAn(vn,vn)> dx < E(Vf)
Q n=1 n=1 Q n=1
and therefore
E(Vry) < E(Vf)

2 — 2
lrally IVl

E(V/)

— 0.
AN+1

An41 < — ||Tn||§ <
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Lecture 42

Let 0 < A1 < Ao < ... be the eigenvalues of —A on Q with homegeneous Dirichlet BC where
) C R™ is open and bounded with 92 smooth. Let (v,)nen be the corresponding Eigenfunctions.
In the follwing we always will assume that these eigenfunctions exist and are in & N C?(Q).

Minimum principle for the nth eigenvalue. We showed that if u € & N C?(Q) satisfies
R(u) = min R(w) w € &\{0}, 0= (w,v;) Vi=1,...,n—1
then v = v, and A, = R(u).

Now, let wy,...,w,_1 be arbitrary square integrable (L?) functions on €. In the following we
can assume that w; is piecewiese continuous: 3,5 = 1,..., such that Ué’:l ﬁj = Q such that
wilo, € C°(Q;). Define

Ay =inf R(w), w € &\ {0}, (w,w;))=0Vi=1,...,n—1.
Lemma 13.6. X} <),

Proof. Je, k=1,...,nst. w=>}_, vy satisfies (w,w;) =Vi=1,...,n— 1. Such ¢ can be
found by solving a system of linear equations. Hence
BE(w) 2271:1 cxer Jo(Vor, Voy)da B > ki1 ckCl Jo Avguda YR AN

||w||3 ZZ,lzl CkCl fQ vpvdi D h=1Ch D k=1 Ch "

An < R(w)

O
Since the eigenfunctions vy, ..., v,_1 are square integrable, we proved the following theorem.

Theorem 13.7 (Max-Min Principle).

Ap = max < inf R(w)>
Wi, Wn—1 \weE\{0}, (w,w;)=0 Vi=1,...,n—1

Remark 13.8. An analog theorem holds for the eigenvalues 0 = Ay < A3 < ... of the corresponding
problem with homogeneous Neumann BC, but we have to replace & with C'(Q)\{0}.

Corollary 13.9. A < A\ Vn €N,

Proof. Note that {w € C'(Q) :u=0o0n 90} =& C £ =CY(Q). Hence A\t <X = X, < \,. O
Assymptotics of EVs. We want to show that A\,, — co. This will follow from

Theorem 13.10 (Weyl). Let Q be open and bounded with 9 smooth.

(1) Assume Q C R?: Then lim,, o % - T‘égm)’
3
. 5 2
(2) If Q C R3, then lim,,_,o 25 = ’Ugl(Q)'

Before we begin with the proof let us explore the following examples.

Ezample 13.11. For Q C R (that is Q = (0, L)) we have the following. The Dirichlet eigenfunctions

. . 2 2 .
are v, (v) = sin(nfx) with EVs A\, = %75-. Hence lim,, V;z" =ZI,

L
Now we consider 2 = (0,a) x (0,b). The Dirichlet eigenfunctions are vy, (2, y) = vy (x)v,(y)
2,2

with EVs A, , = ”a? + 57— We can relabel the EVs as an increasing sequence A, n € N.
Define the counting function N as

N(A) = The number of EVs A, < A\

Hence, N(\,) = n.
2,2 2 2

Consider A\, ;m = "7 + "7~ = (2)2 + (m)2 < A. How many such A, ,, are there?

™

RIS
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Consider the ellipse E = {(z,y) € R? : w < A}. Then, we observe that

(%) (2)2 —
NV < Area(F) _ lﬂaﬁb\f)\ _ @.
4 4 7T 9w 47
Similar
A E
N > %” — C'- Length(9F) = ”:LA — CV.
T
Hence
ab) ab\
— <N < —
4 VA< ) 4
and therefore
ab C< ()\)<ab:$ A %me)\%
—_——_—— < < — — = i 00
dr XN T X T 4w (A)  ab

Since N(\) = k, the claim follows.
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Lecture 43
Goal:

Theorem 13.12 (Weyl). Let Q C R? be open and bounded, Q) smooth. Let (Ay)nen be the
increasing sequence of Dirichlet eigenvalues. Then
. An 47
im — = ———
n—oo n  Area(Q)

In particular, A\, — .

Lemma 13.13. Let Q1 C Qy. Then
(1) A2 <A
(2) A1 < A

Vn € N.

Proof. (1) Let wy, ..., w,_1 be square integrable (fQ2 w2dx < 00) and piecewise continuous. Then
Ao — min R(w), w € &(Q2), 0= (w,w;) Vi=1,...,n— 1.

Let w € go(Ql)

We use the following fact: there exsits a sequence of w® € CL(Q;), a € N, such that
R(wy) — R(w). From this we can see that we can replace the set of trial functions £(€2;) in the
definition of A%t with C1(€Q).

Now, if w € CL(y), then w € & (Q2). Moreover (w,w;) =0Vi=1,...,n — 1. In particular, if
W; = w;|q,, then w; is square integrable and (w,w;) =0Vi=1,...,n— 1.

Hence, the set of trial functions for A\*% is contained in the set of trial functions for \ 2.
Therefore

A682 < il
n _ n *
Taking the maximum w.r..t square integrable functions wy, ..., w,_1 on s yields )\22 < )\21.

(2) For the Neumann case we first observe

S‘Z’Ql :lnfR(w% w e g(Ql)’ 0= (w,wz) Vi = 1,...,77/* 1.

where wq, ..., w,_1 are square integrable functions on €2;. We define an extension w; of each w; to
Qs by setting w; = 0 on Q2\Qy. Then wy,...,w,_; are sqare integrable functions on 5. Hence,
for

A% =inf R(w), w e £(Q), 0= (w, i) = (w,w) ¥i=1,....n—1.

we have A% < \*92 gince any w € £(£)y) yields w|g, € £(£2;) (all the trial functions on 2 yield
a trial function on 21, and hence the infinimum that defines )\21 is smaller than the minimum that
defines A=,

Taking the maximum w.r.t. all square integrable function wq,...,w,—1 on € yields 5\21 <
)\22. O

Remark 13.14. Consider Qq, Qs C R? such that Q; NNy = 0. If vf}l and vf}f are linear independent
Dirichlet eigenfunctions of £; and s respectively (with EVs At and \2), then {v$, vf}2 Fn.menz

n
are Dirichlet eigenfunctions of = ; U Q2 where, for instance, one sets v2* = 0 on Q.

Proof of Weyl’s theorem. 1st step. Let Q = JQ; C Q with Q; = (0,a;) x (0,b;) disjoint cubes
in Q. Then the previous lemma yields that 22 > M. This implies for the counting functions
N(A), N&()\) (the number of eigenvalue smaller than \) that

NZ(A) < N(V)
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What is the counting function N of Q. By the remark we have
l
N2 = SN
j=1

where N7 is the counting function of Q;.
Moreover, we already computed that w — aj—?. Hence

.. N NI\ ! Area(Q; Area(Q2
lim inf i)zz () Z ( ): ()

; R 4T 4
Jj=1 Jj=1

A—00

2nd step. Now, consider Q; = (0, a;) x (0,b;) such that @; are disjoint, but Q C Ug.:l @j.

If 3 are the Neumann eigenfunctions of @;, then U;Zl{vﬁ; : n € N} are the Neumann eigen-
functions of U;Zl Q; = Q ( with corresponding EVs )\,,). We reorder these EVs and rename them
as b, n € N, such that u, is an increasing sequence. Let w,, be the corresponding eigenfunctions.

~ —\ © —

On the other hand, we can consider 2 = (U;:1 Q) = (Q)° ((-)° gives the open interior) and
Qc Q.

Hence, by (2) in the previous Lemma we have

fin <AL,

As in the first step, one can see that NQ()\) = Zé‘:1 N7(\) where N@ and N7 are the counting
functions for the Neumann eigenvalues of () and (); respectively. Hence

j=1
Therefore
°0) =N | Area(Q)
i <
fim sup —== < > ) ir

Combining the previous two step together with the fact that the Neumann EVs are smaller than
the Dirichlet EVs gives

Area(Q N2(x N2(X) _ Area(
&() > lim sup W) > lim inf (W) > rea(i).
4 A 4
Since we can approximate () from the inside and from the outside by unions of squares ); such
that the area converges to the area of ), this proves the theorem. O

14. FOURIER TRANSFORM

The Fourier series is useful concepts whenever we have periodic boundary conditions, for in-
stance after a change to spherical coordinates.

Let f : R — R be a 2l periodic, continuous function. Its Fourier series (the complex version)
was defines as

Z cnemﬂ% =F(f)

n=—oo

and F(f) converges uniformily to f where the coefficients are ¢, = 5; fil f(y)e~™mtdy.

Question: Can we drop the 2] periodicity somehow? Or can we let | — co?
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fx) = ( / e Z”y"fdy) ety =1

n—=—oo

Let’s write

If | — oo, then formally we expect

s =17 3 [ ([ sy emsas = o [ ([T rwea) e

where the last inequality is change of variables w.r.t. z.
Although this limit is not justified yet, we can make the following definition:

Definition 14.1. Let f : R — C be integrable. Its Fourier transform is defined as
= f / f(y)e ®vdy.

Remark 14.2. Note that y € R +— f(y)e™ ¥ € C is complex valued, and hence the integral is
understood as a complex valued integral.
Since

/_ f(y)e‘ifydy‘é / £ (y)e= | dy < / @)l e dy = / 1F@)ldy < oo

the Fourier transform for an integrable f (that ist [~ |f(y)|dy < oo ) is well-defined.

We would like to justify a formula of the form

_ <2 zﬁzdﬁ
- [ Hoeeg

However f might not be integrable no more.
To circumvent this problem one introduces the Schwartz space S(R).

Definition 14.3. A funciton f € C*°(R,C) is in the Schwartz space S(R) if f is rapidly decreasing
in the sense that

dl
e

sup |z|® < oo Vk,l € N.

z€R

One can check that S is a vector space, and J f € S(R) for all I € N and zf(z) € S(R) for all
f € S(R). In particular S(R) is closed under multlphcatlon with polynomials.

A simple example for a function that is in S(R) is e’

Proposition 14.4. Let f € S(R). The following properties hold.

1) f = f is a linear operator,

L= igf(©),

(E/ a).

Proof. Let us prove (2). With integration by parts we compute

/ f(x)e % dx = f(:l?)e*iEz + / f(z)ice %% dx
- -N

Since f rapidly decays, it follows when N — oo

(;if(@)A = i€ /_ Z f(w)e™ " dw = ig ().
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For the proof of (3) consider

7

(e - @) ~ @) = [ stwesr [

The integral on the left can be split into a part [, and a part fiVN Since f(z) and zf(z)

rapidely decrease and since

—izh _q
R

h, provided N is sufficiently large.

ie

’ < 1, we can estimate the first integral by Ce for a constant that does not depende on

e—iTh_1

For the second integral we note that |i<—;

that

— :17‘ < ¢ for h sufficiently small. Hence, we obtain

F (A1) - F©) - Grf@)"| < e

for h sufficiently small. Since € > 0 is arbitrary, (3) follows. O
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Lecture 44
Corollary 14.5. If f € S(R), then f € S(R).

Proof. By the previous propositon we have

o) = @0 S0 = (@) ()

Then
o0 dt
ol < [ | | e < o
since f € S(R). O
Ezample 14.6. (1) The Fourier transform of f(z) = e~ /2 is f(k) = ore .

Indeed we compute
. oo 2279 —izk o0 1 )2 1.2 K2
f(k) :/ e T 2ok gy :/ e 2@k gre=3k = \foge T
—0 —o0

where we used —1 (22 +ikz) + 1k? — 1k? = — 1 (z +ik)* — 1K2.
(2) The Fourier transform of f(z) = el is f(k) =
in S(R) since it is not differentiable in = = 0.
Corollary 14.7. If f(z) = e /2, then f(&) = 2me = /2.
Theorem 14.8. Let f € S(R).
(1) Plancherel forumal: f (x))%d f |f(x)|2de/2m
L \V
(2) Inversion formula: f(x) = QL f el dy =: (f(k)) (x)
(3) Convolution rule: (f * g) =fg

14.1. Tempered Distribution. Recall that F : C2°(R) — R is called distribution if
(1) F is linear,
(2) F(fn) = F(f) if dtfn ;tf uniformily V¢ € N.

Definition 14.9. If we replace C°(R) with S(R) in the definition of a distribution F, then we
call F a tempered distribution.

a22+7akz a > 0. However note that f is not

Definition 14.10 (Fourier transform of tempered distribution). The Fourier transform of a tem-
pered distribution F is again a tempered distribution F define as

F(¢) = F(9) Vo € S(R)
FEzample 14.11. (1) fR fodzx with f integrable. Then

F(o //¢ e R da £(f) dk—//f e T dkp(x) dz—/f

Hence F ~ f.
(2) F(¢) = 02(¢) = ¢(x). Then

5,(6) = 6,(9) = d(x) = / b(y)e " dy

Hence (5; ~ e~%Y_In particular 50 ~ 1.

= [ ¢(x)dz. Note that f(xz) =1 is not integrable.
Define f, = e~ Then fn ~Fn — F ~ 1. Hence

. R 2

n
sk

n

—)(SON]:.
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14.2. Application of Fourier transformation to PDEs.

(1)

Fundamental solution of the diffusion equation on R:
St =Sz on R x[0,00),
“S(x,0) =8y on R”

After Fourier transformation the PDE becomes

Sy(k,t) = (ik)2S(k,t) = —k2S(k,t) on R x (0,00)

S(k,0)=1 onR
The soluiton of this ODE is

S(k,t) = e ¥

Then the previous proposition easily gives S(z,t) = \/%me_%

Fundamental solution of the Laplace equation on the half plan {(x,y) € R? : y > 0} =: H.
Consider

Au=1ugy+uy, =0 onH
“u(z,0) = oy
After a Fourier transformation w.r.t.  the PDE becomes
—k*a(k,y) + dy,(k,y) =0 on H
@(k,0)=1 on R
Solutions are given by
a(k,y) = etv.

We dismiss the solution that will not tend to 0 for |k| — co. So a(k,y) = e~*I¥. For this
we compute

1 . .
()Y (x,y) /eme_ylkldkr

2
00 0
= i ek(iaf*y)dk + i ek?(i95+y)dk
27T 0 271' —0
(L ke ’“ L N e A
2r \izx —y 0o  2mir—vy —oo  w(x2+y?)

this is exactly the Poisson kernel of H that we have already computed before.
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