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1. Basic Notations and Definitions

1.1. Partial Derivatives. Consider a function u of several variables:

u = u(x, y, z) or more generally u = u(x1, x2, . . . , xn)

for (x, y, z) ∈ U ⊂ R3 or (x1, . . . , xn) ∈ U ⊂ Rn. We also write x = −→x = (x1, . . . , xn).

U is a domain ⇔ U connected, U◦ 6= ∅ and ∂U smooth.

x, y, z (or x1, . . . , xn) are called independent variables.

Notation. Let u be sufficiently smooth (e.g. u ∈ C1(U)). We denote the partial derivatives with

lim
h→0

u(x + hei)− u(x)

h
=

∂u

∂xi
(x) = uxi(x) i = 1, . . . , n,

where ei = (0, . . . , 0, 1︸︷︷︸
i

, 0, . . . , 0). For partial derivatives of order k ∈ N we write

∂ku

∂xi1 . . . ∂xik
(x) = uxi1 ,...,xik (x) i1, . . . , ik ∈ {1, . . . , n}.

For the collection of all partial derivatives of order k ∈ N we write{
uxi1 ,...,xik : i1, · · · ik ∈ {1, · · · , n}

}
=: Dku.
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1.2. Differential Operators.

• Gradient: The vector (ux1
, . . . , uxn) =: ∇u is called the gradient of u.

• Directional Derivative: Given a vector v = (v1, . . . , vn)

∇u · v =

n∑
i=1

uxivi =
∂u

∂v
derivative of u in direction v.

In particular ∇u · (0, . . . , 0, 1︸︷︷︸
i

, 0, . . . , 0) = uxi

• Differential of a vectorvalued map, Divergence:
For V : U ⊂ Rn → Rn, V (x) = (V 1(x), . . . , V n(x)) one defines

DV =

V 1
x1

. . . V 1
xn

. . . . . . . . .
V nx1

. . . V nxn

 and trDV =
n∑
i=1

V ixi =: ∇ · V =: Div V

• Hessian and Laplace operator: u(x) = u(x1, . . . , xn) smooth, x ∈ U . Then ∇u : U ⊂
Rn → Rn and

D∇u =

ux1,x1
. . . ux1,xn

. . . . . . . . .
uxn,x1 . . . uxn,xn

 and trD2u =

n∑
i=1

uxi,xi =: ∆u.

1.3. What is a Partial Differential Equation (PDE).

Definition 1.1. A PDE is an equation which relates an unknown function u, its partial derivatives
and its independent variables.

A general PDE on a domain U ⊂ Rn can be written as

F (x, u,D1u, . . . ,Dku) = F (x, u(x), D1u(x), . . . , Dku(x)) = g(x), x ∈ U(1)

for functions

g(x) and F (x, θ, θ1, . . . , θk)

where (x1, . . . , xn) = x ∈ U , θ ∈ R and θi = (θi1, . . . , θ
i
ni) ∈ Rni and i = 0, . . . , k.

u and D1u, . . . ,Dku are also called dependent variables.

When we study a PDE often the domain U is not specified yet in the beginning.

Definition 1.2. The order of a PDE is the highest order of a partial derivative that appears in
the equation.

The most general form of a first order PDE for 2 independent variables is

F (x, y, u(x, y), ux(x, y), uy(x, y)) = F (x, y, u, ux, uy) = g(x, y).

1.4. Linear PDEs.

Definition 1.3. A PDE of the form

F (x, u,D1u, . . . ,Dku) = g(x)(2)

is called linear if the function

(θ, θ1, . . . , θk) ∈ R× Rn × · · · × Rn
k

7→ F (x, θ, θ1, . . . , θk) ∈ R

is linear.
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A linear PDE of order 2 in n indpendent variables can always be written in the form

n∑
i,j=1

ai,j(x)uxi,xj +

n∑
k=1

bk(x)uxk + c(x)u = g(x)

with coefficients (ai,j(x))i,j=1,...,n, (bk(x))k=1,...,n, c(x) that are functions in x.

Example 1.4 (Poisson equation).

∆u =

n∑
i=1

uxi,xj = g(x) where ai,j = δi,j =

{
1 if i = j,

0 if i 6= j.
.

1.5. Nonlinear PDEs.

Definition 1.5. A PDE of the form

F (x, u,D1u, . . . ,Dku) = g(x)(3)

is called

• semi linear if we can write

F (x, θ, θ1, . . . , θk) = L(x, θk) +G(x, θ, θ1, . . . , θk−1)

and the function θk ∈ Rnk 7→ L(x, θk) is linear.

• quasi linear if we can write

F (x, θ, θ1, . . . , θk) = L(x, θ, θ1, . . . , θk−1, θk) +G(x, θ, θ1, . . . , θk−1)

and the function θk ∈ Rnk 7→ L(x, θ, θ1, . . . , θk−1, θk) is linear.

• fully nonlinear if the PDE is not
[

linear, semilinear or quasilinear
]
.

The following implications are clear: linear =⇒ semi-linear =⇒ quasi-linear =⇒ fully non-linear.

Consider a quasi linear PDE F (x, u,D1u) = g(x). Hence F has the form

F (x, θ, θ1) =

n∑
i=1

ai(x, θ)θ
1 +G(x, θ).

The coefficients (ai)i=1,...,n are functions in x and θ. The PDE takes the form

n∑
i=1

ai(x, u)uxi +G(x, u) = g(x).

Example 1.6 (Inviscid (or Non-viscous) Burger’s equations).

ut + (u2)x = 0 =⇒ ut + uux = 0

is a quasi-linear PDE of order 1 in 2 independent variables: t = x1 and x = x2. Here we have
a1(x, u) = 1, a2(x, u) = u and G = g ≡ 0.

Consider a PDE of order 2 F (x, u,D1u,D2u) = g(x). If the PDE is quasi-linear, it can be

writen in the general form

n∑
i,j=1

ai,j(x, u,D
1u)uxi,xj +G(x, u,D1u) = g(x).

(ai,j)i,j=1,...,n, G are functions in x, θ and θ1.
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1.6. Solutions.

Definition 1.7. Consider a PDE of order k:

F (x, u,D1u, . . . ,Dku) = g(x)(4)

A classical solution of (4) on a domain Ω ⊂ Rn where n is the number of independent variables, is
a sufficiently smooth function u(x) that satisfies (4).

If k ∈ N is the order of the PDE, then, by sufficiently smooth, we man that u ∈ Ck(Ω).

Example 1.8. The function u(x, t) = x
t solves

ut + u · ux = 0 on R× (0,∞) ⊂ R2.(5)

1.7. Homogeneous/Inhomogeneous Linear PDEs.

Definition 1.9. Consider a linear PDE of order k:

L(x, u,D1u, . . . ,Dku) = g(x)(6)

If g(x) ≡ 0, the PDE is called homogeneous. Otherwise, the PDE is called inhomogeneous.

Remark 1.10. • If u and v solve the homogeneous linear PDE

L(x, u,D1u, . . . ,Dku) = 0 on a domain Ω ⊂ Rn(7)

then also αu+βv solves the same homogeneous linear PDE on the domain Ω for α, β ∈ R.
(Superposition Principle)

• If u solves the homogeneous linear PDE (7) and w solves the inhomogeneous linear pde
(6) then v + w also solves the same inhomogeneous linear PDE.

• We can see the map

u ∈7→ Lu where (Lu)(x) = L(x, u,D1u, . . . ,Dku)

as a linear (differential) operator.
Hence, it makes sense to specify appropriate function vector spaces V and W such that

u ∈ V and Lu ∈W .
For instance: For a PDE of order 2, we can choose V = C2(Ω) and W = C0(Ω).

For instance, for a linear PDE of order one for independent variable x and y, we could
set V = C1(R2) and W ∈ C0(R2).
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Lecture 02

1.8. Important Theorems.

• V = (V 1, . . . , V n) : Ω ⊂ Rn → Rn is in Ck(Ω,Rn) if V i ∈ Ck(Ω), i = 1, . . . , n.

• U, V ⊂ Rn open. Φ : U → V is a Ck-diffeomorphism if Φ is one-to-one and onto and
Φ ∈ Ck(U,Rn) and Φ−1 ∈ Ck(V,Rn).

Theorem 1.11 (Transformation formula). Let U, V ⊂ Rn be open and let Φ : U → V be a C1-
diffeomorphism. Then, a function f : V → R is integrable if and only if (f ◦Φ)|detDΦ| : U → R
is integrable. Moreover, it holds∫

V

f(x)dx =

∫
U

f ◦ Φ(y)|detDΦ(y)|dy.

Theorem 1.12 (Divergence (also Gauss) Theorem). Let Ω ⊂ Rn be closed and bounded with
smooth boundary ∂Ω. Let N : ∂Ω → Rn be the outer unit normal vector field of ∂Ω. Let

V ∈ C1(Rn,Rn). Then ∫
∂Ω

N · V dS =

∫
Ω

∇ · V dx.

The Divergence Theorem generalizes the Fundamental Theorem of Calculus:

f(b)− f(a) =

∫ b

a

f ′(x)dx, f ∈ C1([a, b]).

2. Some important exmples of PDEs from physical context

2.1. Simple Transport Equation. Let

V : Rn → Rn, V ∈ C1(Rn,Rn), ∇ · V = 0 and V (x) 6= 0 for all x ∈ Rn.

We imagine a medium in Rn that moves with a speed that is equal to V (x) at any point x ∈ Rn.

Solve d
dtγx(t) = V ◦ γx(t), γx(0) = x. The flow of V is the map

Φt : Rn → Rn, Φt(x) = γx(t).

Φt : Rn → Rn is a C1-diffeomorphism (this follows from smooth dependence of ODEs on initial
values and will not be proven).

Remark 2.1. In this context the subscripts t and x in Φt and γx do not stand for the partial
derivative of Φ or γ w.r.t. t and x, but denote parameters.

Let u(x, t) be the density of a substance Ψ that is released “into” the flow of V .

What is the evolution law for u?

Let Ω ⊂ Rn be any open domain and bounded. We assume:∫
Ω

u(x, t)dx =

∫
φh(Ω)

u(y, t+ h)dy

Φt|Ω : Ω→ Φt(Ω) is a C1-diffeomorphism. The transformation formula yields∫
Ω

u(x, t)dx =

∫
Φh(Ω)

u(y, t+ h)dy =

∫
Ω

u(Φh(x), t+ h)|detDΦh(x)|dx.

Let us assume detDΦh(x) > 0. Since Ω was arbitrary, we get

u(x, t) = u(φh(x), t+ h) detDΦh(x).
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Differentiate w.r.t. h at h = 0 on both sides:

0 = ∇xu ·
d

dh
|h=0Φ0(x)︸ ︷︷ ︸
V (x)

+ut(x, t) + u( Φ0(x)︸ ︷︷ ︸
γx(0)=x

, t)
d

dh
|h=0 detDΦh(x).

The matrix D(φh) is invertible, DΦ0 = En and (x, h) 7→ Φh(x) = γx(h) is a C2 map.

Hence h 7→ D(Φh)(x) =: A(h) is differentiable at h = 0.

d

dh
|h=0 detA(h) = detA(0) tr[A−1(0)

d

dh
|h=0A(h)] = tr[

d

dh
|h=0A(h)]

On the other hand we can compute that

d

dh
|h=0DΦh(x) = D

d

dh
|h=0Φh(x) = DV (x)

It follows

d

dh
|h=0 detDΦh = trDV = ∇ · V = 0.

So the PDE that governs u(x, t) is

ut + V · ∇u = 0.

Simple Transport, revisited. Let us think the previous model from a different perspective.

We set ∫
Ω

u(x, t)dx = M(Ω, t).

Then

d

dt
M(Ω, t) =

d

dt

∫
Ω

u(x, t)dx =

∫
Ω

ut(x, t)dx

How can we understand the change of M(Ω, t) in time t?

Let F(x, t) = Ft(x) ∈ Rn defined as

F(x, t) = u(x, t)V (x).

The total flux of u through ∂Ω is then∫
∂Ω

N(x) · F (x, t)dS(x) =

∫
∂Ω

N(x) · u(x, t)V (x)dS(x),

the net value of how much of the substance Ψ flows in and out of Ω at time t.

But clearly

d

dt
M(Ω, t) = −

∫
∂Ω

N(x) · u(x, t)V (x)dS(x)

Applying the divergence theorem yields∫
Ω

ut(x, t)dx = −
∫

Ω

∇ · [u(x, t)V (x)] dx = (1)

By the chain rule this becomes

(1) = −
∫

Ω

[
∇u(x, t) · V (x) + u(x, t)∇ · V (x)︸ ︷︷ ︸

=0

]
dx = −

∫
∇u(x, t) · V (x)dx.

Since Ω was arbitrary, it follows

ut + V (x) · ∇u = 0.
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2.2. Diffusion equation. Imagine a liquid in 3D or higher.

Let u(x, t) be a concentrations function of substance Ψ released into the liquid.

The substance Ψ moves from regions with higher concentration to regions with lower concen-
trations. We call this process Diffusion.

The rate and direction of change of Ψ in x and t is proportional to the gradient of u w.r.t.
x ∈ Rn at time t. This is known as Fick’s law:

F(x, t) = λ∇xu(x, t) = λ

ux1
(x, t)
. . .

uxn(x, t)

 , λ > 0.

Let Ω be a compact domain with smooth boundary. Let

M(Ω, t) =

∫
Ω

u(x, t)dx and
d

dt
M(Ω, t) =

∫
Ω

ut(x, t)dx

d
dtM(Ω, t) is equal to the total flux through the boundary ∂Ω. Hence∫

Ω

ut(x, t)dx = −
∫
∂Ω

N(x) · F(x, t)dS(x) = −λ
∫
∂Ω

N · ∇udS(x).

Hence, by the divergence theorem∫
Ω

ut(x, t)dx = −λ
∫

Ω

∇ · ∇u(x, t)dx = −λ
∫

Ω

∆u(x, t)dx.

Since Ω ⊂ Rn was arbitrary, it follows ut + λ∆ = 0.

2.3. Nonlinear Scalar Conservation Laws. Imagine a “flowing” substance Ψ.

What if the infinitesimal flux F(x, t) of Ψ in x at time t depends on the concentration function
u in x at time t?

We assume there exists f : R→ Rn such that F(x, t) = f ◦ u(x, t).

Then

d

dt

∫
Ω

u(x, t) = −
∫
∂Ω

N(x) · f ◦ u(x, t)dS(x)

As before by the divergence theorem and differentiating under the integral we obtain∫
Ω

ut(x, t)dx = −
∫

Ω

∇ · f ◦ udx = −
∫

Ω

f ′(u)(x) · ∇u(x)dx

where

f ′(r) = (f ′1(r), . . . , f ′n(r)) .

Example 2.2. Consider the 1D case (for instance traffic in a street). Let f(r) = 1
2r

2.

Then f ′(r) = r. The corresponding PDE

ut + uux = 0

is the inviscid Burger’s equation.

2.4. Fundamental Theorem of Calculus of Variations.

Theorem 2.3 (Fundamental Theorem of Calculus of Variations). Consider f ∈ C0(Rn). If∫
f(x)ϕ(x)dx = 0 ∀ϕ ∈ C0

c (Rn), ϕ ≥ 0 =⇒ f ≡ 0.
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Proof. Assume the contrary. We will derive a contradiction.

If f 6= 0, then there exists at least x0 ∈ Rn such that f(x0) 6= 0.

We can assume f(x0) > 0 (otherwise replace f with −f , this does not change
∫
fϕdx = 0).

In particular, there exist ε > 0 such that f(x0)− ε > 0.

Since f is continuous, there exists δ = δ(ε) > 0 such that

f−1(Bε(f(x0))) = f−1({r ∈ R : |f(x0)− r| < ε}) ⊂ {x ∈ Rn : |x− x0|2 < δ} =: Bδ(x0)

where |x|2 =
√∑n

i=1(xi)2. In particular, if x ∈ Bδ(x0) then f(x) ∈ Bε(f(x0)). So f(x) > ε > 0.

We can choose ϕ ∈ C0
c (Rn), ϕ(x) ≡ 0 on Rn\Bδ(x0) and ϕ(x) = 1 for x ∈ B δ

2
(x0). For instance

ϕ(x) =

{
min{1− 1

δ |x|2, 1} for x ∈ Bδ(x0)

0 for x ∈ Rn\Bδ(x0).

Then, it follows

0 =

∫
f(x)ϕ(x)dx =

∫
Bδ(x)

f(x)ϕ(x)dx ≥ ε
∫
φ(x)dx = ε > 0.

�
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Lecture 03.

3. First order PDEs

3.1. Introduction to the Method of Characteristics. We found the general solution of aux+
buy = 0. Solutions are constant on lines parallel to (a, b).

Now, we consider

ux + yuy = 0⇐⇒ (1, y) · ∇u = 0 in R2.

Instead of straight lines, now we looking for curves (x, y(x)) such that

d

dx
(x, y(x)) = (1, y) ⇔ dy

dx
= y.

Hence y(x) = Cex, and a solution u satisfies

d

dx
u(x, y(x)) = ∇u · (1, y) = 0

and

u(x, y(x)) = u(0, y(0)) = u(0, C)

is independent of x.

Let g ∈ C1(R). For every tuple (x, y) there exists a unique C(x, y) such that (x, y) = (x,C(x, y)ex).

Then u(x, y) := u(0, C(x, y)) = g(ye−x) satisfies

ux + yuy = g′(ye−x)(−ye−x) + yg′(ye−x)e−x = 0.

Therefore u(x, y) = g(ye−x) solves the PDE with auxiliary condition g(y) = u(0, y).

3.2. Method of characteristics for linear equations. We consider a general linear PDE of
order 1 with 2 independent variables x, y:

a(x, y)ux + b(x, y)uy = c1(x, y)u+ c2(x, y) in R2(8)

We assume there is an auxiliary condition given as follows.

u(x, y) = g(x, y) for (x, y) ∈ Γ and g : Γ→ R

where Γ is a suitable 1 dimensional subset in R2, for instance the image of a curve γ : R → R2:
Im(γ) = Γ.

We can rewrite (8) as follows

V (x, y) · ∇u = c1(x, y)u+ c2(x, y)

for a vectorfield (x, y) 7→ V (x, y) = (a(x, y), b(x, y)) ∈ R2.

Let us also consider the case for n independent variables. A general linear PDE of order 1 then
takes the form

n∑
i=1

ai(x)uxi = c1(x)u+ c2(x) in Rn(9)

with auxiliary condition

u(x) = g(x) for x ∈ Γ and g : Γ→ R
where Γ is a suitable n−1 dimensional subset in Rn, for instance a n−1 dimensional submanifold.

We can again write (9) as follows

V (x) · ∇u = c1(x)u+ c2(x).

for a vectorfield V (x) = (a1(x), . . . , an(x)).
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We want to find the flow curves of V (x). That is, we have to solve the following ODE:

d

dt
γx(t) = γ̇x(t) = V (x), γx(0) = x.

We also want to choose the initial point x such that x ∈ Γ.

Recall that

γx(t) =

γ1
x(t)
. . .
γnx (t)

 , γ̇x(t) =
d

dt
γx(t) =

 d
dtγ

1
x(t)
. . .

d
dtγ

n
x (t)


Now, we investigate how u evolves along a flow curve γx:

d

dt
u ◦ γx(t) = ∇u(γx(t)) · γ̇x(t) = ∇u(γx(t)) · V (γx(t))

On the other hand

∇u(γx(t)) · V (γx(t)) = c1(γx(t))u(γx(t)) + c2(γx(t)).

This gives us an ODE for the composition u ◦ γx(t) =: zx(t):

d

dt
zx(t) = żx(t) = c1(γx(t))zx(t) + c2(γx(t)), zx(0) = u0(γx(0)).

3.3. Characteristics equations.

Definition 3.1. Consider linear PDE of order 1 with n independent variables in the form

V (x)∇u = c1(x)u+ c2(x) in Rn and u(x) = u0(x) on Γ

where Γ is an n− 1 dimensional subset.

The corresponding characteristics equations are{
γ̇x(t) = V ◦ γx(t), γx(0) = x,

żx(t) = c1(γx(t))zx(t) + c2(γx(t)), zx(0) = u0(x).

For the case of 2 independent variable the systems of equations becomes
ẋ(t) = a(x(t), y(t)), x(0) = x0,

ẏ(t) = b(x(t), y(t)), y(0) = y0,

żx0,y0(t) = c1(x(t), y(t))zx0,y0(t) + c2(x(t), y(t)), z(0) = u0(x0, y0).

Question 3.2. How can we obtain a solution for the PDE?

3.4. How to find a solution with the method of characteristics. To solve the PDE we need
to determine the value u(x) for every x ∈ Rn.

From the previous consideration, we know that the solution for the PDE (9) with the given
auxiliary condition must obey the characteristics equations.

Hence, if we can find a characteristic curve γx0 for some initial point x0 ∈ Γ such that γx0(t0) = x
for some t0 ∈ [0,∞) then we can solve the characteristic equation for zx0

= u ◦ γx0

żx0
(t) = c1 ◦ γx0

(t)zx0
(t) + c2 ◦ γx0

(t) with zx0
(0) = u0(x0)

and set u(x) = u ◦ γx0(t0) = zx0(t0).

Hence, if we can solve

γx0
(t0) =: Φ(x0, t0) = x(10)

uniquely for every x ∈ Rn we have found a function u : Rn → R that will solve the PDE and
satisfies the auxiliary condition (by construction).

The map Φ(y, s) is again the flow map of the vectorfield V : Rn → Rn that is in C1(Rn,Rn).
Hence, solving (10) uniquely means for any x we find a unique flow curve γx0 such that γx0(t0) = x.
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A suitable auxiliary condition

u(x) = u0(x0) ∀x0 ∈ Γ

now must satisfy that any flow curve of V intersects Γ exactly once.

Example 3.3. Let us consider (again)

(a, b) · ∇u = 0 in R2 with u(x, 0) = x3.

The characteristics equations are 
ẋ(t) = a, x(0) = d1,

ẏ(t) = b, y(0) = d2,

żx,y(t) = 0, zx,y(0) = d3.

We first see that

x(t) = at+ d1, y(t) = bt+ d2.

How do we choose the constants d1 and d2? We choose them such that (x(0), y(0)) ∈ R × {0}.
Hence we set d1 = x ∈ R and d2 = 0.

The equation for zx,y yields zx,y(t) = d3. But since zx,y(0) = u(x(0), y(0)), we have zx,y(0) = x3.

The flow map for (x, 0) ∈ Γ is given by

Φ((x, 0), t) = (at+ x, bt)

Hence, for (x̂, ŷ) ∈ R2 arbitrary, we set up the equation

at+ x = x̂, bt = ŷ

Hence t0 = ŷ/b and (x0, 0) with x0 = x̂− at0 = x̂− a
b ŷ solves

Φ((x0, 0), t0) = (x̂, ŷ)

And hence zx0,0(t0) = (x̂− a
b ŷ)3.
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Lecture 04.
Last Lecture: We found the general solution of aux + buy = 0. Solutions are constant on

lines parallel to (a, b).

Example 3.4. As another example we consider

ux + yuy = 0⇐⇒ (1, y) · ∇u = 0 in R2

with the auxiliary condition u(0, y) = g(y) for g ∈ C1(R).

Instead of straight lines, now we looking for curves (x, y(x)) such that

d

dx
(x, y(x)) = (1, y) ⇔ d

dx
x = 1 &

d

dx
y = y

Hence y(x) = y0e
x with y(0) = y0.

Moreover, a solution u of the PDE satisfies along the curve (x, y(x)):

d

dx
u(x, y(x)) = ∇u · (1, y) = ux + yuy = 0

and u(x, y(x)) = u(0, y(0)) = u(0, y0) is independent of x.

Given a point (x̂, ŷ) ∈ R2 we want to find y0 and y(·) with y(0) = y0 and y(x̂) = ŷ.

Then, we know the value of u in (x̂, ŷ): It is

u(x̂, ŷ) = u(x̂, y(x̂)) = u(0, y0) = g(y0).

But by the formula for y(x), we can indeed find such y0: it is y0 = ŷe−x̂. Therefore we can write

u(x̂, ŷ) = g(ŷe−x̂).

This u satisfies the PDE with the given auxiliary condition. (let us drop ·̂) Indeed

ux + yuy = g′(ye−x)(−ye−x) + yg′(ye−x)e−x = 0.

Therefore u(x, y) = g(ye−x) solves the PDE with auxiliary condition g(y) = u(0, y).

3.5. Characteristics equations.

Definition 3.5. Consider linear PDE of order 1 with n independent variables in the form

V (x)∇u = c1(x)u+ c2(x) in Rn and u = u0 on Γ

where Γ is an n− 1 dimensional subset.

The corresponding characteristics equations are{
γ̇x0

(t) = V ◦ γx0
(t) γx0

(0) = x0,

żx0(t) = c1(γx0(t))zx0(t) + c2(γx0(t)) zx0(0) = u0(x0).

For the case of 2 independent variable the systems of equations becomes
ẋ(t) = a(x(t), y(t)), x(0) = x0,

ẏ(t) = b(x(t), y(t)), y(0) = y0,

ż(t) = c1(x(t), y(t))z(t) + c2(x(t), y(t)), z(0) = u0(x0, y0).

Question 3.6. How we obtain a solution for the PDE?
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3.6. Solving the PDE. We will determine the value u(x) for every x ∈ Rn using the method of
characteristics.

From the previous consideration, we know that the solution for the PDE (9) must obey the
characteristics equations.

Our strategy is:
For x ∈ Rn arbitrary we pick a characteristic γx0 for an initial point x0 ∈ Γ such that γx0(t0) = x

for some t0 ∈ [0,∞).
Then we can solve the characteristic equation for zx0

= u ◦ γx0

żx0(t) = c1 ◦ γx0(t)zx0(t) + c2 ◦ γx0(t) with zx0(0) = u0(x0)

and set

zx0(t0) = u ◦ γx0(t0) = u(x).

Hence, if for every x ∈ Rn we can find a unique x0 ∈ Γ and t0 ≥ 0 such that

γx0(t0) =: Φ(x0, t0) = x

we can define a function u : Rn → R that will solve the PDE and satisfies the auxiliary condition
(by construction). Indeed we have

Proposition 3.7. Assuming u : Rn → R defined above is a C1 function, then it solves

∇u · V (x) = c1(x)u+ c2(x) in Rn with u(x) = u0(x) for x ∈ Γ.

Proof. Let x ∈ Rn, assume x0 is the unique point such that: γx0 solves γ̇x0(t) = V ◦ γx0(t) with
γx0

(t0) = x.
Then u(x) is defined as zx0

(t0).

First, if x ∈ Γ, we pick x0 = x, γx0
= γx and t0 = 0. Then u(x) = zx(0) = u0(x).

For general x ∈ Rn we compute

∇u(x) · V (x) = ∇u(γx0
(t0)) · γ̇x0

(t0) =
d

dt
u ◦ γx0(t0).

Since zx0 solves the last characteristic equation, the right hand side is equal to

c1(γx0
(t0))u ◦ γx0

(t0) + c2(γx0
(t0)) = c1(x)u(x) + c2(x).

Hence u indeed solves the equation. �

Remark 3.8. Let us summarize what we assumed here

• We need that any flow curve meets Γ in exactly one point.

For any x there exists a unique flow curve γx0 such that x0 ∈ Γ and γx0(t0) = x.

Then, we can solve the initial value problem for zx0 because the initial value is given by
u(x0) = u0(x0).

In other words, we have to solve the equation

Φt0 |Γ(x0) = x

where Φt(y) = γy(t) is the flow map of V , and Φt|Γ is the restriction of Φt to Γ.
• We need that u ∈ C1(Rn).



14 MAT351 PARTIAL DIFFERENTIAL EQUATIONS – LECTURE NOTES –

3.6.1. Example. We find the solution for

xux + 2uy = 3u in R2, u(x, 0) = sinx, Γ = R× {0}.
The first two characteristics equations are

ẋ(t) = x(t) x(0) = x0 ∈ R2,

ẏ(t) = 2 y(0) = y0 ∈ R2.

The general solutions are x(t) = x0e
t and y(t) = 2t.

Let (x, y) ∈ R2 be arbitrary. Consider the equation

x(t0) = x0e
t0 = x, y(t0) = 2t0 = y(11)

The equation (11) has a unique solution. This is t0 = y
2 and (x0, y0) = (xe−

y
2 , 0).

For this initial point (x0, y0) = (xe−
y
2 , 0) and u0(x0, y0) = sin

(
xe−

y
2

)
, we consider the third

characteristics equation

d

dt
z(t) = z(t), z(0) = sin

(
xe−

y
2

)
.

The solution is

z(t) = sin
(
xe−

y
2

)
et

and at t0 = y
2 we get

z(t0) = sin
(
xe−

y
2

)
e
y
2 =: u(x, y).

3.7. Temporal Equations. Consider a linear PDE of order 2 of the form

ut +

n∑
i=1

ai(x)uxi = c1(x)u+ c2(x) in Rn.(12)

In this case the auxiliary condition is usually given as an initial condition at time t = 0:

u0(x) = g(x) on Rn.

The characteristics ODE for the t variable is always d
ds t(s) = 1, t(0) = 0. Thus t = s.

We have γ(x0,0)(t) = (t, x1(t), . . . , xn(t)) and denote (x1(t), . . . , xn(t)) =: γx0
(t) for the charac-

teristics.

If we set V (x) = (a1(x), . . . , an(x)), the PDE becomes

ut + V (x) · ∇u = c1(x)u+ c2(x).

The curves γx0
solve γ̇x0

(t) = V ◦ γx0
(t) with γx0

(0) = x0, hence are the flow curves of V .

If the flow map Φt of V is a diffeomorphism of Rn for every t ≥ 0, then for t > and for every
x ∈ Rn we can solve

Φt(x0) = x ⇐⇒ Φ−1
t (x) = x0

uniquely. Hence, Φt(x0) = γx0(t) = x. In this case we can solve the characteristics equation for z

d

dt
zx0

(t) = c1(γx0
(t))z(t) + c2(γx0

)

with initial value zx0(0) = g(x0) and define u(x) := zx0(t) = zΦ−1
t (x)(t) that is a solution for (13).

Note that u is indeed smooth enough.
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Lecture 05.
The method of characteristics is a recipe to solve a linear PDE of order 1 in several

variables:

∇u · V (x) = c1(x)u+ c2(x) in Ω ⊂ Rn & auxiliary condition: u(x) = u0(x) on Γ.

V (x) = (a1(x), . . . , a(x)) ∈ C1(Ω,Rn), c1, c2 ∈ C1(Ω), and Γ is a n− 1 dimensional subset in Ω.

The recipe goes as follows

• We note that the PDE is a statement about the directional derivatives of a C1 solution u.
• Assuming the existence of a C1 solution, we deduced the characteristics equations:{

γ̇x0(t) = V ◦ γx0(t) γx0(0) = x0 ∈ Γ,

żx0
(t) = c1(γx0

(t))zx0
(t) + c2(γx0

(t)) zx0
(0) = u0(x0).

This system of ODEs can be solved uniquely on a maximal intervall (αx0
, ωx0

) 3 0 (General
Existence and Uniqueness Theorem for ODEs).

• The number zx0(t) tells us the values of u at γx0(t) for t ∈ (αx0 , ωx0).

The only result that this analysis actually proves is:

Proposition 3.9. If u ∈ C1(Ω) solves the PDE and γx0
: (αx0

, ωx0
)→ Rn is a flow curve

of V with x0 ∈ Γ,
then u ◦ γx0 : (αx0 , ωx0)→ R with u ◦ γx0(0) = u0(x0) must solve the ODE for zx0 .

This gives us a method to “synthesize” an explicite solution via the following steps:

If we can find a unique solution (x0, t0) for the equation γx0
(t0) = x for every x ∈ Ω.

And (x0, t0) depends in a sufficiently smooth way on x.

Remark 3.10. However, this might not be always possible:

There might exist x ∈ Ω for which there exists not solution of γx0(t0) = x with x0 ∈ Γ
and t ∈ (αx0

, ωx0
).

Temporal Equations, revisited. Given a linear PDE of order 2 of the form

ut +

n∑
i=1

ai(x)uxi = c1(x)u+ c2(x) in Rn × R(13)

The initial condition at time t = 0 is

u(x, 0) = g(x) on Rn, g ∈ C1(Rn).

The characteristics ODE for the t variable is always d
ds t(s) = 1, t(0) = 0. Thus t = s.

If we set V (x) = (a1(x), . . . , an(x)), the PDE becomes

ut + V (x) · ∇u = c1(x)u+ c2(x).

The flow curves γx0
of V are γ̇x0

(t) = V ◦ γx0
(t) with γx0

(0) = x0.

The characteristics of the PDE are

γ(x0,0)(t) =

(
γx0(t)
t

)
.

Applying our recipe means to solve γx0(t) = x uniquely for every x ∈ Rn and every t ∈ R.

If the flow map Φt(x) = γx(t) of V is a diffeomorphism of Rn for every t ≥ 0, then

Φ−1
t (x) = x0 solves Φt(x0) = x

uniquely. In this case we can define u(x) := zx0(t) = zΦ−1
t (x)(t) that is a solution for (13).
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Example 3.11 (Transport equation with constant coefficients). Consider

ut +

n∑
i=1

aiuxi = 0 in Rn × [0,∞) with u(x, 0) = g(x) on Rn, g, f ∈ C1(Rn).

Define V (x) ≡ (a1, . . . , an) = v. The flow curves of V are

γx0
(t) = x0 + tv

and the flow map φt(x0) = x0 + tv is a diffeomorphism. Hence

x0 := φ−1
t (x) = x− tv uniquely solves φt(x0) = x.

Solving the characteristics equation

d

dt
zx0

(t) = 0, zx0
(0) = u(x0, 0) = g(x0)

yields zx0(t) = g(x0). Hence u(x, t) = g(x− tv) is the solution for the PDE.

3.8. Semi-linear PDEs. Consider a semi-linear PDE of order 1

V (x) · ∇u = c(x, u) in Ω ⊂ Rn with auxiliary condition u(x) = g(x) on Γ ⊂ Ω.

The methods of characteristics applies in the exact same way.

But the equation for zx0
becomes a nonlinear equation in zx0

:

d

dt
zx0(t) = c(γx0(t), zx0(t)), zx0(0) = g(x0), x0 ∈ Γ.

3.9. Quasi-linear PDEs. Consider a quasilinear PDE of order 1

n∑
i=1

ai(x, u)uxi = c(x, u) in Ω ⊂ Rn with auxiliary condition u(x) = g(x) on Γ ⊂ Ω.

Defining the vector field V (x, u) = (a1(x, u), . . . , an(x, u)) the PDE becomes

V (x, u) · ∇u = c(x, u).

Assuming a sufficiently smooth solution u we can write down the following equations

γ̇x0
(t) = V (γx0

(t), u ◦ γx0
(t))

d

dt
u ◦ γx0

(t) = c(γx0
(t), u ◦ γx0

(t))

Not that in contrast to linear and semi-linear PDEs this is a coupled system of ODEs.

Provided the coefficients are ai and c are C1 the solution (γx0(t), zx0(t)) exists and depends in
C1 sense on (x0, t).

3.10. Transversality condition, Existence of local solutions. Consider again

aux + buy = 0 on R2 with u(0, y) = g(y), g ∈ C1(R).

We could construct a (unique) solution as long as a 6= 0. Or

det

(
a 0
b 1

)
6= 0.

Consider a general quasi-linear PDE of order 1 in two independent variables

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u) in Ω ⊂ R2 & auxiliary condition u(x, y) = g(x, y) on Γ

where Γ = Imη and η : R→ R2, η(t) = (k(t), l(t)), η ∈ C1(J,R2) for an interval J ⊂ R. Assume Γ
is a embedded sumanifold.
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The Transversality Condition for this problem is

det

(
a(k(t), l(t), g(k(t), l(t))) k̇(t)

b(k(t), l(t), g(k(t), l(t)) l̇(t)

)
6= 0.

Theorem 3.12. Consider the previous quasi-linear PDE and assume the transversality condition.
Then, for every s0 ∈ J there exists δ > 0 such that Bδ(η(s0)) ⊂ Ω and

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u) in Bδ(γ(t)) with u(x, y) = g(x, y) on Γ ∩Bδ(t)
has a unique solution u.

Proof. We already mentioned that γx0,y0
(t) =: φ(x0, y0, t) dependes smoothly on (x0, y0, t) for

(x0, y0, t) ∈ R2 × R.

We pick s0 ∈ J with η(s0) = x0 and define

ψ(s, t) = φ(η(s), t), s ∈ (s0 − δ, s0 + δ) ⊂ J, t ∈ (−ε, ε),
where we choose δ > 0 such that (−ε, ε) ⊂ (αη(s), ωη(s)) for all s ∈ (s0 − δ, s0 + δ).

Then ψ : (s0 − δ, s0 + δ)× (−ε, ε)→ R is C1, since it is a composition of C1 maps.

We compute

∂

∂t
ψ(s, t)

∣∣
s0,0

=
d

dt

∣∣∣
t=0

φ(η(s0), t) = (a(k(s0), l(s0), zk(s0),l(s0)), b(k(s0), l(s0), zk(s0),l(s0)))

and
d

ds
ψ(s, t)

∣∣∣
s0,0

=
d

ds
φ(η(s0), 0) =

d

ds
η(s0) = (k̇(s0), l̇(s0)).

Now, the transversality condition implies that the differential of the map (s, t) 7→ φ(η(s), t) in
(s0, 0) is invertible.

Hence, by the inverse function theorem, there exists a smaller δ̂ > 0 such that ψ(s, t) is a

C1-diffeomorphism on (s0 − δ̂, s0 + δ̂)× (−δ̂, δ̂).
Hence ψ((s0 − δ̂, s0 + δ̂) × (−δ̂, δ̂)) =: U ⊂ R2 is an open domain in R2 and for all (x, y) ∈ U

there exists a unique pair (s, t) such that φ(η(s), t) = (x, y). �

Example 3.13 (Transport equation with nonlinear right hand side). Consider

ux + uy = u2 on Ω ⊂ R2 with u(·, 0) = g ∈ C1(R).

Here the vector field is V (x) = (1, 1) with the flow γ(x0,0)(t) = (x0 + t, y0 + t).

Hence for (x, y) ∈ R2 the point (x0, 0) = (x− t0, 0) and t0 = y solves γ(x0,0)(t0) = (x, y).
The characteristics equation for zx0 is

d

dt
z(x0,y0) = (z(x0,y0))

2 z(x0,y0)(0) = g(x0).

The solution of this ODE Is z(x0,y0)(t) = 1
1

g(x0)
−t . So u(x, y) = u(x0,0)(t0) = 1

1
g(x−y)

−y .

This yields the following contraint: g(x− y)y < 1. Hence, to find a solution it is necessary that
Ω ⊂ {(x, y) ∈ R2 : g(x− y)y ≤ 1}.
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Lecture 06.

3.11. Burgers’ Equations. We studied the linear transport equation: ut+cux = 0 in R× [0,∞),
u(x, 0) = g(x).

The solution was given by u(x, t) = g(x− tc).

This is not a good model for describing natural phenomenas like waves, or street traffic.

A better equation is

Definition 3.14 (The inviscid Burgers’ equation).

ut + uux = 0 in R× [0,∞), u(x, 0) = g(x), g ∈ C1(R).

Because of the non-linearity uux the equation is a quasi-linear equation.

A solution u moves with speed in x that is given by the value of u in x itself.

We can easily write down the characteristics equations:

d

dt
γx0(t) = zx0 , γx0(0) = x0 ∈ R,

d

dt
zx0

(t) = 0, zx0
(0) = g(x0).

The solution of this system is

zx0
(t) ≡ g(x0) for t ≥ 0,

γx0
(t) = tg(x0) + x0 for t ≥ 0.

Hence the characteristic that starts in x0(= (x0, 0)) is the straight line with slope g(x0). If g is an
increasing function, then the corresponding characteristics will span out the space-time half plane
R× [0,∞).

However, if g is not increasing, then characteristics will collide.

Example 3.15.

ut + uux = 0 in R× [0,∞) & u(x, 0) = g(x), g ∈ C1(R)

with

g(x) =


1 if x ≤ 0,

decreasing if 0 ≤ x ≤ 1,

0 if x ≥ 1.

For simplicity, we set g(x) = 1− x in x ∈ (0, 1) (although g is then not C1).

We can try to solve this equation with the characteristics method:

We observe

• Around (x̂, 0) with x̂ ≤ 0, we have γx0(t) = t+ x0 and the solution u(x, t) ≡ 1,
• Around (x̂, 0) with x̂ ≥ 1, we have γx0(t) = x0 and the solution is u(x, t) ≡ 0,
• For x̂ ∈ (0, 1) the following happens:

If (x, t) satisfies t < x < 1, we solve γx0
(t) = t(1− x0) + x0 = x: x0 = x−t

1−t ∈ (0, 1).

Then, the slope of γx0
(t) is g(x0) = (1− x0) = 1−x

1−t . That is also the value of u(x, t).
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3.12. Distributional solutions of scalar conservations laws. Let us consider a general

Definition 3.16 (Scalar Conversation Law).

ut + (f(u))x = ut + f ′(u)ux = 0 in R× [0,∞) & u(x, 0) = g(x)(14)

where g ∈ C1(R) and f ∈ C2(R) with f ′′ ≥ 0 (hence f is convex).

From the Burgers Equation we learned that C1 solutions may be defined only up to some time
t∗. Then a Shock has developed.

Shocks can have a physical meaning, so it is desirable to extend our concept of solution to
include functions u that are discontinuous and still satisfy the PDE in a generalized (or
weak) sense.

Definition 3.17. We say u(x, t), (x, t) ∈ R× [0,∞) is piecewise smooth if

• u is C1 in all points (x, t) except along a C1 curve s(t), t ∈ (a,∞),
• u is discontinuous in s(t) for all t ∈ (a,∞).

In addition we assume that for every t ∈ (a,∞) the limits

u+(s(t), t) := lim
x↓s(t)

u(x, t), u−(s(t), t) := lim
x↑s(t)

u(x, t) exist.

Question 3.18. What is a good notion of solution for the conservation law (14) in the class of
piecewise smooth functions u?

Should we call a piecewise smooth function u already a solution if u solves the conversation law
in the classical sense in every (x, t) where u is a C1 function?

• Then answer to the second question is NO!
• When we derived the conversations law, we assumed a priori that a solution would be C1.
• But eventually the class of C1 function is to small to capture all physical meaningful events.

Recall we had the integral equation∫ ∞
−∞

1Ω [ut + (f(u))x] dx = 0

for every connected domain with smooth boundary Ω ⊂ R.

This motivates the following definition.

Definition 3.19 (Distributional solutions). We say a piecewise smooth function u is a solution of
(14) in the distributional sense if∫ ∞

0

∫ ∞
−∞

[uφt + f(u)φx] dxdt = 0 for any φ ∈ C∞c (R× (0,∞)).

Using integration by parts and the fundamental theorem of calculus we see that for every
(x, t) 6= (s(t), t) the function u satisfies ut + (f(u))x = 0 classically.

Theorem 3.20 (Rankine-Hugoniot jump condition(s)). Let s(t), t ≥ 0 is a C1 curve in R× [0,∞)
(parametrized as graph). Assume u is piecewise smooth in the sense of the previous definition.
Then u is a solution of (14) in the sense of distributions if and only if u is a classical solution in
any point where u is C1 and

s′(t) =
f(u+)− f(u−)

u+ − u−
◦ s(t) for every t ∈ (0,∞).

Proof. Consider u that is piecwise smooth in the previous sense.

Let φ be in C1
c (R× (0,∞)) with compact support in Br((s(t), t)).

We define

B+ = {(x, t) ∈ Br((s(t0), t0)) : x ≥ s(t)} & B− = {(x, t) ∈ Br((s(t0), t0)) : x ≤ s(t)}
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Assume u is a solution in distributional sense. Then

0 =

∫ ∞
0

∫ ∞
−∞

[uφt + f(u)φx] dxdt =

∫ ∫
B+

[uφt + f(u)φx] dxdt+

∫ ∫
B−

[uφt + f(u)φx] dxdt

Now, here comes a trick. The identity

uφt + f(u)φx = uφt + f(u)φx + utφ+ (f(u))xφ

holds on {(x, t) : x > s(t)} and {(x, t) : x < s(t)}. The right hand side in the previous identiy
becomes

uφt + f(u)φx + utφ+ (f(u))xφ = (uφ)t + (f(u)φ)x = ∇ · (f(u)φ, uφ)

Inserting this back into the integral identy yields∫ ∫
B+

[uφt + f(u)φx] dxdt =

∫ ∫
B+

∇ · (f(u)φ, uφ)dxdt

and the same for the integral over B−. By the divergenc theorem (for domains with corners)∫ ∫
B+

∇ · (f(u)φ, uφ)dxdt =

∫
∂B+

N · (f(u+)φ, u+φ)dS =

∫
{(s(t),t):t>0}

φ
(
N · (f(u+), u+)

)
dS

∫ ∫
B+

∇ · (f(u+)φ, u+φ)dxdt =

∫ ∞
0

φ(t)(−s′(t), 1) · (f(u+), u+) ◦ (s(t), t)
√

1 + |s′(t)|2dt.

For the integral that involves B− this is∫ ∫
B−
∇ · (f(u+)φ, u+φ)dxdt =

∫ ∞
0

φ(t)(s′(t),−1) · (f(u+), u+) ◦ (s(t), t)
√

1 + |s′(t)|2dt.

It follows that

0 =

∫ ∞
0

φ(t)
[
(−s′(t), 1) · (f(u+), u+) ◦ (s(t), t)

+ (s′(t),−1) · (f(u−), u−) ◦ (s(t), t)
]√

1 + |s′(t)|2dt.

We conclude that

0 = −s′(t)u+ + f(u+)s′(t)u− − f(u−) → s′(t) =
f(u+)− f(u−)

u+ − u−
◦ (s(t), t).

This is the jump condition. Now assuming u is a solution when it is C1 together with jump
condition, we can reverse this chain of implications and obtain u is solution in distributional
sense. �

3.13. Non-uniquness of distributional solutions, Lax entropy condition. Since we know
that for certain initial conditions, shocks always develop, and since we have the concept of distri-
butional solution at hand, we consider the following PDE problem for the Burgers equation.

ut + uux = 0 in R× [0,∞) & u(x, 0) = g(x) =

{
1 if x ≤ 0,

0 if x ≥ 0.

Let us apply the previous theorem. We want find a C1 curve s(t), t ≥ 0 that satisfies the jump
condition. For the burgers equation we have f(x) = 1

2x
2. Then the jump condition is

(u+)2 − (u−)2

2(u+ − u−)
=

1

2
(u+ − u−) = s′(t).

Therefore, distributional solutions of the previous PDE with initial condition are

u(x, t) =

{
1 for x ≤ 1

2 t,

0 for x > 1
2 t.
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and

v(x, t) =

{
0 for x ≤ 1

2 t,

1 for x > 1
2 t.

We want to choose the solution that is physical meaninful. Which one is it?
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Lecture 07.
We consider the Burgers’ equation with discontinuous initial value:

ut + uux = 0 in R× [0,∞) & u(x, 0) = g(x) =

{
1 if x < 0,

0 if x ≥ 0.

Let us apply the previous theorem. We want find a C1 curve s(t), t ≥ 0 that satisfies the jump
condition. For the burgers equation we have f(x) = 1

2x
2. Then the jump condition is

(u+)2 − (u−)2

2(u+ − u−)
◦ s(t) =

1

2
(u+ + u−) ◦ s(t) = s′(t).

Therefore, a distributional solutions of the previous PDE with this initial condition is

u(x, t) =

{
1 for x ≤ 1

2 t,

0 for x > 1
2 t.

On the other hand, consider

ut + uux = 0 in R× [0,∞) & u(x, 0) = g(x) =

{
0 if x ≤ 0,

1 if x ≥ 0.

A distributional solution is

v(x, t) =

{
0 for x ≤ 1

2 t,

1 for x > 1
2 t

but also

w(x, t) =


0 for x ≤ 0,
x
t for 0 < x < 1

2 t,

1 for x ≥ 1
2 t

is a solution that is even continuous. This solution is called the rarefaction wave.

For this problem there is no uniqueness.

Question 3.21. Which solution should we pick? Which solution is physically meaninful?

For the solution v characteristics emanate from the shock.

This is physically unreasonable.

Recall the characteristcs equation

dx

dt
= f ′(u).

A sufficient condition such that characteristics do not emanate from the shock is

f ′(u+) ≥ s′ ≥ f ′(u−).(15)

Since f is convex, 15 implies that u+ ≥ u−.

Definition 3.22. Lax entropy a condition We say a piecewise smooth solution u(x, t) to a con-
servation law is an entropy solution if the Lax entropy condition (15) holds.

Note that a smooth solution is an entropy solution since there is no curve s that describes a
discontinuity.

Theorem 3.23. If an entropy solution exists, then it is the unique distributional solution for the
scalar conversation law.
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4. Linear homogeneous second order PDEs

4.1. Classification of linear second order PDEs. Consider linear second order PDE for n
independent variables has the form

n∑
i,j=1

ai,juxi,xj +

n∑
k=1

bkuxk + cu = d on Ω.(16)

We assume ai,j , bk, c, d ∈ C0(Ω) and ai,j = aj,i. Hence

A =

a1,1 . . . a1,n

. . . . . .
an,1 . . . an,n

 is a symmetric matrix.

Recall form linear algebra that there exists a symmetric matrix B such that

BAB> =


d1 0 . . . . . . 0
0 d2 0 . . . 0
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
0 . . . . . . dn−1 0
0 . . . . . . 0 dn

 =: D

with d1, . . . , dn ∈ C0(Ω). {d1(x), . . . , dn(x)} are the eigenvalues of A(x).

Definition 4.1. The PDE (16) is called

(1) Elliptic if all the eigenvalues d1, . . . , dn are positive. That is equivalent to say that A is
positive definite,

(2) Parabolic if exactly one eigenvalue is 0 and the other eigenvalues have the same sign,
(3) Hyperbolic if exactly one eigenvalue is negative and the other eigenvalues are positive,
(4) Ultrahyperbolic if there are more thatn one negative eigenvalues and the other eigenval-

ues are positive.

Consider linear second order PDE for 2 independent variables has the form

a1,1ux1,x1
+ 2a1,2ux1,x2

+ a2,2ux2,x2
+ b1ux1

+ b2ux2
+ cu = d.(17)

Definition 4.2. The PDE (17) is

(1) Elliptic ⇐⇒ a1,1a2,2 − a2
1,2 > 0,

(2) Parabolic ⇐⇒ a1,1a2,2 − a2
1,2 = 0,

(3) Hyperbolic ⇐⇒ a1,1a2,2 − a2
1,2 < 0.

Let B the n× n matrix such that

BAB> = D

We can introduce new coordinates (y1, . . . , yn) = y via Bx = y.

Lemma 4.3. The PDE (16) writes w.r.t. the coordinates y as

n∑
i=1

diuxi,xi +
∑
k=1

bkuxk + cu = d.

After rescaling with 1√
|di|

in yi for every i = 1, . . . , n as long as di 6= 0 this becomes

∆u+∇u · (b1, . . . , bk) + cu = d.
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Proof. We compute

uxi(x) =
∂u

∂xi

∣∣∣
x

=
∂(u ◦B−1 ◦B)

∂xi

∣∣∣
x

= ∇y(u ◦B−1)
∣∣
Bx
· (B1,i, . . . , Bn,i) =

n∑
k=1

∂u ◦B−1

∂yk

∣∣∣
Bx
Bk,i

We set u(y) := u ◦B−1y and uyi := ∂(u◦B−1)
∂yk

. Therefore

uxj ,xi =

n∑
k,l=1

uyk,ylBk,iBl,j =⇒
n∑

i,j=1

Ai,juxi,xj =

n∑
k,l=1

n∑
i,j=1

Bk,iAi,jB
>
j,l︸ ︷︷ ︸

dkδk,l

uyk,yl =

n∑
k=1

dkuyk,yl .

�

Consider linear second order PDE for 2 independent variables has the form

a1,1ux1,x1
+ 2a1,2ux1,x2

+ a2,2ux2,x2
+ b1ux1

+ b2ux2
+ cu = d on R.(18)

Example 4.4. Consider the PDE (18) for 2 independent variables. Let d = c = b2 = 0. Applying
the transformations of the previous lemma yields

(1) Elliptic: ux1,x1
+ ux2,x2

+ b1ux1
= 0. If b1 = 0, we have the Laplace equation:

ux1,x1 + ux2,x2 = 0.

(2) Parabolic: Assume d2 = 0 and set x1 = x and x2 = t. Then ux,x + b1u1 . If b1 = 1 we
have the diffusion equation:

ux,x + ut = 0.

(3) Hyperbolic: Assume d2 < 0. Then ux,x − ut,t + b1ut. If b1 = 0 we have the wave
equation:

ux,x − ut,t = 0.
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Lecture 08.

4.2. Deriving the wave equation in 1D. Consider a flexible, elastic homogenous string or
thread of length l, that undergoes relatively small transverse vibrations.

We think of the string as the graph of function u(x, t) on [0, l] that depends also on t ∈ [0,∞).

Let T (x, t) be the magnitude of the tension force that pulls in (x, u(x, t)) along the string at
time t. And let us assume T does not depend on t. Moreover there are no other forces.

Because the string is perfect flexible the tension force is directed tangential to the string.

And let ρ(x) be the mass density of the string as distribution on [0, l]. Since the string is
homogeneous, we assume ρ(x) ≡ constant.

We consider an interval [x0, x1] ⊂ [0, l] that gives a section {(x, u(x)) : x ∈ [x0, x1]} of the string.

We apply Newton’s law: the Force F is given by mass times accelaration.

This yields the following two equations

T (x1)√
1 + ux(x1)2

− T (x0)√
1 + ux(x0)2

= 0 for horizontal forces

and

T (x1)ux(x1)√
1 + ux(x1)2

− T (x0)ux(x0)√
1 + ux(x0)2

=

∫ x1

x0

ρut,t(x)dx for vertical forces.

We assume the magnitude of the motion is small compared to 1. By that we mean that the slope
ux(x, t) of u(x, t) w.r.t. x at time t is small compared to 1.

If Taylor expand the x 7→
√
x around 1 we get√

1 + u2
x = (1 + u2

x)
1
2 =

∞∑
i=0

(
1/2
i

)
(ux)i = 1 +

1

2
u2
x + . . . .

(Binomial series) where(
α
i

)
=
α · (α− 1) · . . . (̇α− i+ 1)

1 · 2 · · · · · i
for i ∈ N and α ∈ R, α ≥ 0.

Hence, we make the assumption that Newton’s laws for the string reduces to

T (x1)− T (x0) = 0 for horizontal forces.

and

T (x1)ux(x1)− T (x0)ux(x0) =

∫ x1

x0

ρut,t(x)dx for vertical forces.

The first equation says that T (x) ≡ T is constant along [0, l].

In the second equation we can apply the fundamental theorem of calculus. Hence

T

∫ x1

x0

ux,x(x, t)dx =

∫ x1

x0

ρut,t(x, t)dx.

Since this euqation holds for every x0 < x1 with x0 and x1 close to each other, it follows Tux,x =
ρut,t. Now, let us also assume the mass ditribution ρ(x) along the string is constant and set

c =
√

T
ρ .

Definition 4.5 (Wave equation in 1D).

ut,t = c2ux,x on R× [0,∞)

for c 6= 0.
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Remark 4.6 (Modifications). (1) If there is an air resistence r present, one has an extra term
proportional to the speed ut:

ux,x − c2ut,t + rut = 0 where r > 0.

(2) If there is transversal elastic force, we have an extra term proportional to the magnitude
of the displacement u:

ux,x − c2ut,t + ku = 0 where k > 0.

(3) If there is an external force, an extra term f independent of u appears:

ux,x − c2ut,t + f(x, t) = 0 where f(x, t) is a time dependent function.

4.3. General solution of the wave equation in 1D. The wave equation in 1D factors nicely
in the following way:

0 = ut,t − c2ux,x =

(
∂

∂t
− c ∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
u.

We recognize that this yields a coupled system of two first order equations:

ut + cux = v

vt − cvx = 0.

This idea allows us to prove the following

Theorem 4.7. The general C2 solution of the wave equation ut,t− c2ux,x = 0 on R is of the form

u(x, t) = f(x+ ct) + g(x− ct)

for arbitrary functions f, g ∈ C2(R).

Proof. We first consider

vt − cvx = 0 on R× [0,∞).(19)

We know the general solution of (19):

v(x, t) = h(x+ ct)

for h ∈ C1(R) arbitrary where v satisfies v(x, 0) = h(x). Then we can consider

ut + cux = h(x+ ct) on R× [0,∞) with u(x, 0) = g̃(x), g ∈ C2(R).(20)

Lets solve this. The characterisitcs equations are

d

dt
xx0(t) = c with x(0) = x0 &

d

dt
zx0(t) = h(xx0(t) + ct) with zx0(0) = g̃(x0).

It follows that xx0(t) = ct+ x0. Hence for x ∈ R and t > 0 we set x0 = x− ct.
Moreover

zx0
(t) =

∫ t

0

h(xx0
(s) + cs)ds+ g̃(x0) =

∫ t

0

h(cs+ x0 + cs)ds+ g̃(x0).

Then the solution u in (x, t) is given by u(x, t) =

∫ t

0

h(cs+ x0 + cs)ds+ g̃(x0).

Applying the substituion ruel
∫ b
a
f ◦ φ(s)φ′(s)ds =

∫ φ(b)

φ(a)
f(s)ds with φ(s) = x0 + 2cs gives

u(x, t) =

∫ x0+2ct

x0

1

2c
h(τ)dτ + g̃(x− ct) =

∫ x+ct

x−ct

1

2c
h(τ)dτ + g̃(x− ct).

Then the claim follows with f(s) :=
∫ s

0
1
2ch(τ)τ and g(s) =

∫ 0

s
1
2ch(τ)dτ + g̃(s) where f, g ∈

C2(R). �
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An alternative proof (without characteristics). We can check that f(x+ ct) for

f(s) =

∫ s

0

1

2c
h(τ)dτ

solves the equation ut + cux = h(x+ ct). Indeed

∂

∂t
f(x+ ct) = f ′(x+ ct)c =

1

2
h(x+ ct),

∂

∂x
f(x+ ct) = f ′(x+ ct) =

1

2c
h(x+ ct).

Therefore

∂

∂t
f(x+ ct) + c

∂

∂x
f(x+ ct) = h(x+ ct).

On the other hand g(x− ct) for g ∈ C2(R) solves the homogeneous equation ut + cux = 0.

But we learned before that the sum of a solution of the homogeneous equation and of a solution
of the inhomogeneous equation, still solves the inhomogeneous equation ut + cux = h(x+ ct).

Therefore, f(x+ ct) + g(x− ct) also solves the wave equation.

Remark 4.8. It seems we found two different expression for g (depending on the proof), but for
the first expression we fixed a initial condition g̃ and found g depending on g̃.

The Initial Value Problem for the wave equation in 1D. Now we consider{
ut,t − c2ux,x = 0 on R× [0,∞)

u(x, 0) = φ(x) & ut(x, 0) = φ(x) φ ∈ C2(R), ψ ∈ C1(R).
(21)

Theorem 4.9 (D’Alembert’s formula). The unique solution of the initial value problem (21) is
given by

u(x, t) =
1

2
[φ(x+ ct) + φ(x− ct)] +

1

2c

∫ x+ct

x−ct
ψ(s)ds.

Proof. From the formula for the general solution, we get

φ(x) = f(x) + g(x) &
1

c
ψ(x) = f ′(x)− g′(x).

Differentiating φ yields φ′ = f ′ + g′. Adding and substracting these identities yields

f ′(x) =
1

2

(
φ′(x) +

1

c
ψ(x)

)
, & g′(x) =

1

2

(
φ′(x)− 1

c
ψ(x)

)
.

Integrating from

f(x) =
1

2

(
φ(x) +

1

c

∫ x

0

ψ(s)ds

)
+A1 & g(x) =

1

2

(
φ(x)− 1

c

∫ x

0

ψ(s)ds

)
+A2.

Since φ(x) = f(x) + g(x) we have A1 +A2 = 0.
Now, we can write

f(x+ ct) + g(x− ct) =
1

2

(
φ(x+ ct) +

1

c

∫ x+ct

0

ψ(s)ds

)
+

1

2

(
φ(x− ct)− 1

c

∫ x−ct

0

ψ(s)ds

)
+A1 +A2

=
1

2

(
φ(x+ ct) +

1

c

∫ x+ct

0

ψ(s)ds

)
+

1

2

(
φ(x− ct) +

1

c

∫ 0

x−ct
ψ(s)ds

)
=

1

2
(φ(x+ ct) + φ(x− ct)) +

1

2c

∫ x+ct

x−ct
ψ(s)ds

This is what was to prove. �
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• Semigroup property: Define

W (t)(φ, ψ) := (u, ut)

where u is the unique solution of the wave equation

ut,t = c2uxx in R× [0,∞) with φ(x) = u(x, 0), ψ(x) = ut(x, 0)(22)

given by d’Alembert’s formula.

Corollary 4.10. The following semi-group property holds

W (s+ τ)(φ, ψ) = W (s)(W (t)(φ, ψ))

Proof. Let P1(x, y) = x be the projection map.

Then s ≥ 0 7→ v(·, s) := P1 ◦W (s + τ)(φ, ψ) is a solution of the wave equation with initial
conditions

v(x, 0) = u(x, τ) & vt(x, 0) = ut(x, τ)

By d’Alembert’s formula we have v(x, s) = W (s)(u(·, τ), ut(·, τ)) = W (s)(W (τ)(φ, ψ)). �

• Causality: For a point (x, t) ∈ R× (0,∞) the solution u given by d’Alembert’s formula

u(x, t) =
1

2
[φ(x− ct) + φ(x+ ct)] +

1

2

∫ x+ct

x−ct
ψ(s)d

depends only on the values of ψ on [x− ct, x+ ct] and the values of φ in x− ct and x+ ct.

Moreover, for s ∈ (0, t) we have by the semi-group property

W (t)(φ, ψ) = W (t− s)(W (s)(φ, ψ)).

So u(x, t) also only depends on the values of W (s)(φ, ψ) = (u(·, s), uτ (·, s)) on [x − c(t −
s), x+ c(t− s)].

Hence, the domain of dependence is space-time triangle in R× [0,∞).

Similar, the domain of influence for (x, t) ∈ R × [0,∞) is a space time triangle in
R× [0,∞).
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lecture9

Example 4.11 (Plucked String). Consider the initial value problem

ut,t = c2ux,x in R× [0,∞) & u(x, 0) = φ(x) =

{
b− b|x|

a for |x| < a,

0 for |x| ≥ a.

The solution is

u(x, t) =
1

2
[φ(x+ ct) + φ(x− ct)] .

We note that the initial condition is not C2-differentiable. Hence also the formula doesn’t give us
a C2 solution. Nevertheless, this u is still a solution in a “weak” sense, similar like a distributional
solution for conservation laws.

For t = a
2c the solution has the form

u(x, t) =


0 if |x| ≥ 3a

2 ,
1
2φ(x+ 1

2a) if x ∈ (− 3a
2 ,−

a
2 ),

1
2

[
φ(x+ 1

2a) + φ(x− 1
2a)
]

if |x| ≤ a
2

1
2φ(x− 1

2a) if x ∈ (a2 ,
3a
2 ).

where for instance

1

2
φ(x+

1

2
a) =

1

2

[
b− b

a
|x+

1

2
a|
]

=
1

2

[
b+

b

a
x+

1

2
b

]
=

3

4
b+

b

2a
x for x ∈ (−3a

2
,−a

2
).

and

1

2
φ(x− 1

2
a) =

1

2

[
b− b

a
|x− 1

2
a|
]

=
1

2

[
b− b

a
x+

1

2
a

]
=

3

4
b− b

a
x for x ∈ (

a

2
,

3a

2
).

and

1

2
φ(x+

1

2
a) +

1

2
φ(x− 1

2
a) =

1

2

[
b− b

a
|x+

1

2
a|
]

+
1

2

[
b− b

a
|x− 1

2
a|
]

=
1

2

[
b− b

a
x+

1

2
b

]
+

1

2

[
b+

b

a
x− 1

2
b

]
= b

For t = 3a
c the solution has the form

u(x, t) =


0 if |x| ≥ 4a,
1
2φ(x+ 1

2a) if x ∈ (−4a,−2a),

0 if |x| ≤ 2a
1
2φ(x− 1

2a) if x ∈ (2a, 4a).

4.4. Preservation of Energy. Imagine an infinite string with uniform mass distribution ρ, uni-
form tension force T given by the graph of u(x, t) for x ∈ R. The string behaves according to the
wave equation

ρut,t = Tux,x

with initial conditions φ(x) = u(x, 0) and ψ(x) = ut(x, 0) on R. We set again c =
√

T
ρ .

The kinetic energy is defined as

KE =
1

2

∫ ∞
−∞

ρ · (ut)2(x)dx

This integral and the following ones are evaluated from −∞ to +∞.

To be sure that the integral converge we assume that φ(x) = u(x, 0) & ψ(x) = ut(x, 0) vanish
outside of [−R,R] for some R > 0.
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Then ut(x) vanishes outside of [−R− ct, R+ ct] and

1

2

∫ ∞
−∞

ρ(ut)
2dx =

1

2

∫ R+ct

−R−ct
ρ(ut)

2dx.

We differentiate the kinetic energy in t:

dKE

dt
=

1

2
ρ

∫ ∞
−∞

d

dt
(ut)

2dx = ρ

∫ ∞
−∞

utut,tdx.

Here we apply that we can differentiate under the integral. At this point we use that u satisfies
the wave equation ut,t = c2ux,x:

dKE

dt
= T

∫ ∞
−∞

utux,xdx = Tutux

∣∣∣∞
−∞
− T

∫ ∞
−∞

ut,xuxdx.

The first term on the right hand side vanishes since ut vanishes outside [−R− ct, R+ ct].

In the second term we can write ut,xux = 1
2

(
(ux)2

)
t
. Hence

dKE

dt
= − d

dt

∫
1

2
T (ux)2dx.

We call 1
2

∫∞
−∞ T (ux)2dx =: PE the potential energy.

We see that

d

dt
[KE + PE] = 0

and therefore

KE + PE =
1

2

∫ ∞
−∞

(
ρ(ut)

2 + T (ux)2
)
dx =: E

is constant. This is the law of preservation of enery.

Application: We can use the Preservation of Enery to show uniquness of solutions of the wave
equation.

Let u1, u2 be two solutions of

ρut,t = Tux,x (⇔ ρut,t − Tux,x = 0)(23)

with the same initial conditions u(x, 0) = φ(x) and ut(x, 0) = ψ(x).

The wave equation (23) is a linear, homogeneous PDE.

Hence, the difference v = u1 − u2 is also solution with initial condition u(x, 0) = 0 and ut(x, 0).
The task is to show that v(x) ≡ 0, then clearly we have u1 = u2.

By Preservation of Energy it follows

0 =
1

2

∫ ∞
−∞

(
ρ(vt(x, 0))2 + T (vx(x, 0))2

)
dx =

1

2

∫ ∞
−∞

(
ρ(vt(x, t))

2 + T (vx(x, t))2
)
dx ≥ 0.

It follows

0 =
1

2

∫ ∞
−∞

(
ρ(vt(x, t))

2 + T (vx(x, t))2
)
dx.

This is only possible if vt ≡ 0 and vx ≡ 0 (⇔ ∇v = 0).

It follows that v = const on R× [0,∞). Since v(t, 0) = 0, it follows v(x) ≡ 0.
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4.5. The diffusion equation: Maximum principle and consequences. Recall the Diffusion
Equation

ut = kux,x.(24)

First we study this equation without considering initial or boundary conditions.

Though similar to the wave equation, its mathematical properties are completely different.

The constant k > 0 is called the diffusion constant or volatility.

To solve this equation is harder than to solve the wave equation. Therefore we start by assuming
we have a solution and studying its properties.

Theorem 4.12 (Maximum Principle). Let u(x, t) be a C2 solution of (24) on [0, l] × [0, T ] ⊂
R× [0,∞). Then

(1) The maximum of u(x, t) is assumed either on [0, l]× {0} or on {0} × [0, T ] ∪ {l} × [0, T ]:

max
(x,t)∈[0,l]×[0,T ]

u(x, t) = max
(x,t)∈[0,l]×{0}∪{0}×[0,T ]∪{l}×[0,T ]

u(x, t).

(Weak Maximum Principle)

(2) If there exists (x0, t0) ∈ (0, l)× (0, T ) such that

max
(x,t)∈[0,l]×[0,T ]

u(x, t) = u(x0, t0) =: M.

Then u(x, t) ≡M on [0, l]× [0, T ]. (Strong Maximum Principle)

Theorem 4.13 (Maximum Principle, short). Let M := max(x,t)∈∂([0,l]×[0,T ])\[0,l]×{T} u(x, t).

(1) u ≤M on (0, l)× (0, T ).

(2) If there exists (x0, t0) ∈ (0, l)× (0, T ) then u ≡M on [0, l]× [0, T ].

In this formulation we can see the weak maximum principle as a geometric inequality, and the
strong maximum principle as the characterization of the equality case.

Physical Interpretation: Imagine a rod of length l > 0 with no internal heat source. Then
then the weak maximum principle tells us that the hottest and the coldest spot can only occur at
th initial time t = 0 or at one of the two ends of the rod.

On the other hand, by the strong maximum principle if the coldest or the hottest spot occur
inside of the rod away from the ends at some positive time t > 0, then, the temperature distribution
must be constant along the rod.

Proof of the weak maximum principle. Here, we will only prove the weak maximum principle.
The proof of the strong maximum principle is much more difficult and requires tools that

currently are not at our disposal.

Idea for the proof of the weak maximum principle:
If there exists (x0, t0) ∈ (0, l) × (0, T ) such that u(x0, t0) = max[0,l]×[0,T ] u then ut = ux = 0

and ux,x ≤ 0. If we would even know that ux,x < 0, this would contradict the heat equation. For
a rigorous proof we need to work a little bit more.

The trick is to consider v(x, t) = u(x, t) + ε 1
2x

2 for some ε > 0. Then

vx,x = ux,x + ε = kut + ε = kvt + ε

Hence, the Partial Differential Inequality

vx,x > kvt.(25)

Let M = max(x,t)∈∂([0,l]×[0,T ])\[0,l]×{T} u(x, t). Then it is clear that

v(x, t) ≤M + εl2 on ∂([0, l]× [0, T ])\[0, l]× {T}
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Now suppose that there is (x0, t0) ∈ (0, l)× (0, T ] such that u(x0, t0) > M . Then

v(x0, t0) = u(x0, t0) + ε
1

2
x2

0 > M.

In particular, the maximum of v is occurs in a point (x1, t1) ∈ (0, l)× (0, T ] and v(x1, t1) > M .

If (x1, t1) ∈ (0, l) × (0, T ) then vt = 0 and vx,x ≥ 0 (⇒ kvx,x ≥ 0) what contradicts (25). If
(x1, t1) ∈ (0, l)× {T}, then we still have vx,x(x1, T ) ≥ 0.

However ut(x1, T ) = 0 does eventually not hold.

But we now that v(x1, T − δ) ≤ v(x1, T ). Hence

ut(x1, T ) = lim
δ↓0

v(x1, T − δ)− v(x1, T )

−δ
≥ 0.

So we have

vt(x1, T ) ≥ vx,x(x1, T )

what again contradicts (25): vt,t ≤ kux,x. �
Application: Uniqueness of solutions to the diffusion equation Dirichlet Problem for

the diffusion equation We consider the diffusion equation

ut = kux,x on [0, l]× [0, T ]

with the initial condition

u(x, 0) = φ(x) for x ∈ [0, l] and φ ∈ C2([0, l])

and boundary values

u(0, t) = g(t) & u(l, t) = h(t) for t ∈ [0, T ] and h, g ∈ C2([0, T ]).

Corollary 4.14. There exists at most one C2 solution to the Dirichlet problem for the diffusion
equation.

Proof. The first step of the proof is similar to what we saw for the wave equation.

Assume u1, u2 are two solutions to the Dirichlet problem with φ, g, h given as above. Then, by
linearity of the equation w = u1 − u2 is a solution of the Dirichlet problem with φ = g = h ≡ 0.

We need to show that w = 0.

By the weak maximum principle w ≤ 0. Since also −w solves the Dirichlet problem with
φ, g, h ≡ 0 we also have −w ≤ 0. Hence w = 0. �

Alternative Proof of uniqueness via energy method: Let us investigate an alternative
method to prove uniqueness of solution of the diffusion equation. This method is similar to the
strategy that we applied for the corresponding statement for solutions of the wave equation.

Let u be a solution to the previous Dirichlet Problem with g = h ≡ 0 and consider

E(t) =

∫ l

0

1

2
(u(x, t))2dx.

Proposition 4.15. The qantity E(t) is positive and monotone decreasing in t ∈ [0,∞).

Proof. Let us compute the derivative in t.

dE

dt
=

∫ l

0

ut(x, t)u(x, t)dx =

∫ l

0

ux,x(x, t)u(x, t)dx.

By integration by parts the right hand side becomes

ux(l, t)u(l, t)− ux(0, t)u(0, t)−
∫ l

0

(ux(x, t))2dx = −
∫ l

0

(ux(x, t))2dx ≤ 0.

�
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Now, if u1, u2 are two solution for the Dirichlet problem with φ ∈ C2([0, l]) and g, h ∈ C2([0, T ]),
then u = u1 − u1 is a solution of the Dirichlet problem with φ, g, h ≡ 0.

Since E(0) = 0, the previous proposition implies E(t) = 0 for all t ≥ 0 and therefore u(x, t) ≡
0.

4.6. Stability. Stability was the third property for well-posedness of a PDE: “Small changes of
the date imply only small changes for the corresponding solutions”.

The energy method shows the following: If u1 and u2 are solutions of the Dirichlet problem
with the same g, h and but for φ1 and φ2 that are eventually different, then∫

1

2
(u1(x, t)− u2(x, t))2dx ≤

∫ l

0

1

2
(φ1(x)− φ2(x))2dx.

This is Stability in the square integral sense.

Alternative we can use the maximum principle again. Let u1 and u2 be solutions of the Dirichlet
problem with φ1, g1, h1 and φ2, g2, h2 respectively. Set u = u1 − u2. Then

u1 − u2 =≤ max{max(φ1 − φ2),max(g1 − g2),max(h1 − h2)}.
But we also get

u2 − u1 ≤ max{max(φ2 − φ1),max(g2 − g1),max(h2 − h1)}.
Then

|u1 − u2| ≤ max{max |φ2 − φ1|,max |g2 − g1|,max |h2 − h1|}.
This is called stability in the uniform sense.
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4.7. Solving the Diffusion Equation on the real line. Consider the diffusion equation on the
real line

ut = kux,x on R× (0,∞)(26)

More precisely, we look for u ∈ C2(R× (0,∞)) that solves the initial value problem

ut = kux,x on R× (0,∞)

u(x, 0) = φ(x) for x ∈ R.
(27)

φ ∈ C1(R) and k > 0.

The initial condition is understood in the sense that limt↓0 u(x, t) = φ(x).

For φ we assume that φ(x) → 0 if |x| → ∞. The method to find a solution will be very
different from the previous techniques that we used.

Let us collect some general properties of solutions of the diffusion equation ut = kux,x.

(a) Translation invariance: If u(x, t) solves (26), then also u(x − y, t) solves (26) for any
y ∈ R.

(b) If u(x, t) is a smooth (Ck) solution (26), any derivative (ut, ux, ux,x, ect.) if it exists, solves
(26) as well.

(c) Superposition: Any linear combinations of solutions of (26) is again a solutions of (26):

ui(x, t), i = 1, . . . , n solves (26) =⇒
n∑
i=1

λiu
i(x, t) =: u(x, t) solves (26).

(d) An integral of a solution is again a solution: If u(x, t) solves (26) and φ ∈ C0(R)
then

v(x, t) =

∫
u(x− y, t)φ(y)dy solves (26).

Proof. We calculate

vt(x, t) =

∫
∂

∂t
u(x− y, t)φ(y)dy =

∫
∂2

∂z2

∣∣∣
z=x−y

u(z, t)φ(y)dy

=

∫
∂2

∂x2
[u(x− y)]φ(y)dy = vx,x(x, t). �

(e) Scaling property: If u(x, t) is a solution of (26), so is u(
√
ax, at) for any a > 0.

Remark 4.16. Of course these transformations do not preserve the initial value problem

Let us consider the following special initial condition:

ψ(x) =

{
0 x < 0

1 x > 0

and arbitrary value in x = 0.
We consider this ψ because it is scaling invariant: ψ(ax) = ψ(x) ∀a > 0.

We say u(x, t) in C2(R× (0,∞)) solves the diffusion equation with initial condition ψ if

ut = kux,x R× (0,∞)

and limt↓0 u(x, t) = ψ(x) for all x ∈ R.

If u(x, t) solves the diffusion equation on R × (0,∞) with initial condition ψ(x), then by the
scaling property also u(

√
ax, at) is a solution with the same initial condition ψ(x).
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Moreover, we expect uniqueness of solutions for a given initial value function. Hence, it should
hold

u(x, t) = u(
√
ax, at).

From this we make the following Ansatz:

Q(x, t) = g(x/
√
t)

Why do we choose this Q?

Because Q satisfies Q(
√
at, a) = Q(x, t).

Lemma 4.17. Q(x, t) = g(x/
√
t) solves (26) if and only if g satisfies g′′(r) = − 1

2k rg
′(r).

Proof. We calculate

Qt(x, t) =

[
g

(
x√
t

)]
t

= −1

2

x

(
√
t)3

g′
(
x√
t

)
Qx(x, t) =

[
g

(
x√
t

)]
x

=
1√
t
g′
(
x√
t

)
Qx,x(x, t) =

[
g

(
x√
t

)]
x,x

=
1

t
g′′
(
x√
t

)
.

Hence

0 =
1

t

[
1

2

x√
t
g′
(
x√
t

)
+ kg′′

(
x√
t

)]
.

Since t > 0 and by substitution of x√
t
, it follows that g must satisfy

g′′(r) = − 1

2k
rg′(r).(28)

On the other hand, if g satisfies (28), then Q(x, t) = g
(
x√
t

)
satisfies the ut = kux,x. �

Lemma 4.18. The general solution of g′′(r) = − 1
2k rg

′(r) is g(r) = c1

∫ r

r0

e
−
(

τ√
4k

)2

dτ + c2, c1, c2 ∈

R.

Proof. We set h = g′ and consider the ODE h′(r) = − 1
2k rh(r).

We can easily solve this equation by standard techniques. The general solution is given by

h(r) = c1e
−r2

. And therefore g(r) = c1

∫ r

r0

e
−
(

τ√
4k

)2

dτ + c2. �

Corollary 4.19. The function Q(x, t) = c1

∫ x√
t

0

e
−
(

τ√
4k

)
dτ + c2 is a solution of ut = kux,x on

R× (0,∞).

We want to choose the constants c1, c2 ∈ R such that

lim
t↓0

Q(x, t) =

{
0 x < 0

1 x > 0.

We can compute the following limits

x > 0, lim
t↓0

Q(x, t) = lim
t↓0

c1

∫ x√
t

0

e
−
(

τ√
4k

)
dτ + c2

= lim
t↓0

c1
√

4k

∫ x√
4kt

0

e−τ
2

dτ + c2 = c1

√
4kπ

2
+ c2.
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Hence, we require

1 = c1

√
4kπ

2
+ c2.

Here we used that
∫∞

0
e−τ

2

dτ =
√
π

2 . Similar

x < 0, lim
t↓0

Q(x, t) = lim
t↓0

c1

∫ x√
t

0

e
−
(

τ√
4k

)2

dτ + c2 = −c1
√

4kπ

2
+ c2

and hence we require also

0 = −c1
√

4kπ

2
+ c2.

We can solve this system of two linear equations for c1 and c2 and obtain

c1 =
1√
4kπ

and c2 =
1

2
.

Corollary 4.20. Q(x, t) =
1√
4kπ

∫ x√
t

0

e
−
(

τ√
4k

)2

dτ +
1

2
solves ut = kux,x on R× (0,∞) and

lim
t↓0

u(x, t) = ψ(x) =

{
0 x < 0,

1 x > 0.

Definition 4.21 (Fundamental solution of the diffusion equation on the real line).

S(x, t) =
∂

∂x
Q(x, t) =

∂

∂x

1√
4kπ

∫ x√
t

0

e
−
(

τ√
4k

)2

dτ =
1√

4kπt
e
−
(

x√
4kt

)2

.

Note that Q (and S) are C∞ functions on R× (0,∞) (because ex is C∞).
The function S(x, t) is called the fundamental solution of ut = kux,x on the real line.

Theorem 4.22. The unique solution of the initial value problem (27) :

ut = kux,x on R× [0,∞)

u(x, 0) = φ(x) for x ∈ R

where φ ∈ C1(R) with φ(x)→ 0 if |x| → ∞ and k > 0 is

u(x, t) =

∫ ∞
−∞

S(x− y, t)φ(y)dy.

Proof. We already saw that u(x, t) is indeed a solution of ut = kux,x on R× (0,∞).

We only need to check the initial value condition. For that we compute the following:

u(x, t) =

∫ ∞
−∞

∂

∂z

∣∣∣
z=x−y

Q(z, t)φ(y)dy = −
∫ ∞
−∞

∂

∂y
[Q(x− y, t)]φ(y)dy

= −Q(x− y, t)φ(y)
∣∣∣y=∞

y=−∞
+

∫ ∞
−∞

Q(x− y, t)φ′(y)dy.

Since φ(x)→ 0 for |x| → ∞, it follows

u(x, t) =

∫ ∞
−∞

Q(x− y, t)φ′(y)dy, t > 0.
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Moreover

lim
t↓0

u(x, t) =

∫ ∞
−∞

lim
t↓0

Q(x− y, t)φ′(y)dy

=

∫ ∞
−∞

1[0,∞)(x− y)φ′(y)dy =

∫ ∞
−∞

1(−∞,0](y − x)φ′(y)dy

=

∫ x

−∞
φ′(y)dy = φ(x).

Uniqueness follows by the enery method. �
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Properties of the fundamental solution

• S(x, t) > 0 for all (x, t) ∈ R× (0,∞).

• We compute that∫ ∞
−∞

S(x− y, t)dy =

∫ ∞
−∞

S(y, t)dy =
1√
π

∫ ∞
−∞

1√
4kt

e
−
(

y√
4kt

)2

dy =
1√
π

∫
e−x

2

dx = 1.

• The solution u(x, t) =
∫
S(x− y, t)φ(y) is in C∞(R× (0,∞)).

• We have

max
{x∈R:|x|≥δ}

S(x, t) ≤ 1√
4kπt

e
−
(

δ√
4kt

)2

→ 0 when t ↓ 0.

In particular S(x, t)→ 0 for all x 6= 0 as t ↓ 0.
• S(x, 0) is not defined.

But we computed

lim
t↓0

u(x, t) = lim
t↓0

∫ ∞
−∞

S(x− y, t)φ(y)dy = φ(x).

Hence, we can interpret y 7→ S(x − y, 0) not as function but as a linear operators δx on
C1(R):

δx(φ) = φ(x).

The operator δx is an example for a distribution, the Dirac δx distribution.

4.8. Distributions. Distributions are generalized functions.

We define D = C∞c (R), the set of C∞ functions φ with φ(x) = 0 for |x| ≥ R for some R > 0.
We say φ has compact support.

Definition 4.23 (Distributions). A distribution is continuous linear map F : D → R.

What means continuous in this context?
Let us first define a notion of convergence on D. Consider φi, φ ∈ D, i ∈ N.

We say φi → φ in D if

max
x∈R
|φi(x)− φ(x)| → 0 and max

x∈R

∣∣∣∣dkdrφi(x)− dk

dr
φ(x)

∣∣∣∣→ 0, ∀k ∈ N.

Then we say a linear map F : D → R is continuous if

F(φn)→ F(φ) whenever φn → φ in D.

The concept of distribution allows us to make sense of ′′S(x, 0)′′ as the distribution δ0.

Examples.

(1) Let f : R→ R be an integrable function. Then

F(φ) =

∫ ∞
−∞

f(x)φ(x)dx

is a distribution.

We see F is linear. Let’s check continuity of F . Consider φn → φ ∈ D. Then

|F (φn)−F(φ)| ≤
∫
|f(x)| |φn(x)− φ(x)| dx ≤ max

x∈R
|φn(x)− φ(x)|

∫
|f(x)|dx→ 0.

Hence F is indeed a distribution.

The example shows that we can think of functions as distributions.



MAT351 PARTIAL DIFFERENTIAL EQUATIONS – LECTURE NOTES – 39

(2) Let f be as before. Then

G(φ) =

∫ ∞
−∞

f(x)φ′(x)dx

is a distribution. Continuity follows as in the previous example.

Now, if f ∈ C1(R), then G(φ) = −
∫ ∞
−∞

f ′(x)φ(x)dx.

The function f ′ represents the distribution G.

The concept of distributions now allows us to define derivatives for functions that are not differ-
entiable in the classical sense.

4.8.1. Derivatives in distributional sense.

Definition 4.24. We say a locally integrable function f : R→ R has a derivative in distributional
sense if there exists a distribution G : D → R such that∫

f(x)φ′(x)dx = G(φ) ∀φ ∈ D.

Example 4.25. • Every C1 function has a derivative in distributional sense:∫
f(x)φ′(x)dx = −

∫
f ′(x)φ(x)dx

and the right hand side defines a distribution.
• The function f(x) = 0 for x < 0 & f(x) = x for x ≥ 0 has a derivative in distributional

sense:∫
f(x)φ′(x)dx=

∫ ∞
0

xφ(x)dx = xφ(x)
∣∣∞
0
−
∫ ∞

0

φ(x)dx = −
∫ ∞
−∞

ψ(x)φ(x)dx

and derivative is represented by ψ.

Question: Has the function

ψ(x) =

{
0 x < 0

1 x ≥ 1

a distributional derivative? If yes, what is it?

We can compute the distributional derivative using the S(x, t):∫
ψ(x)φ′(x)dx =

∫ ∞
0

φ′(x) = lim
t↓0

∫
Q(x, t)φ′(x)dx = lim

t↓0

∫
S(x, t)φ(x)dx = φ(0) = δ0(φ)

So indeed ψ has a derivative in distributional sense but it cannot be represented as function!

Physical Intepretations of S(x, t). The fundamental solution S(x − y, t) describes the diffusion of
a substance.

For any time t > 0 the total mass is 1.

Initally at time t = 0 the substance completely concentrated in y.

We can see the convolution
∫
S(x − y, t)φ(y)dy also as follows. For t > 0 we can approximate

the integral via a Riemann sum:∫ ∞
−∞

S(x− y, t)φ(y)dy ∼
n∑
i=1

S(x− yi, t)φ(yi)∆yi

where {y0 ≤ y1 ≤ · · · ≤ yn} ⊂ R with n ∈ N ↑ ∞ and ∆yi = yi − yi−1.

On the right hand side we have a sum that is the mean value in space of the family

S(x− yi, t) weighted with φ(yi), i = 1, . . . , n.
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Consequently, we can interpret
∫
S(x − y, t)φ(y)dy as the limit of these mean values when we

let the number of points go to infinity.

Probabilistic interpretation of S(x, t). .
The fundamental solution is the transition probability density of Brownian motion in R.

What does that mean? If a particle in 0 at time t = 0 follows a “random path” then∫ b

a

S(−y, t)dy

is the probability that we will find this particle at time t > 0 in the interval [a, b].

4.9. Back to Uniqueness.

Lemma 4.26. Let φ ∈ C1(R) with φ(x)→ 0 for |x| → ∞. We consider

u(x, t) =

∫ ∞
−∞

S(x− y, t)φ(y)dy.

Then, for t > 0 fixed, u(x, t)→ 0 for |x| → ∞.

Proof. We pick ε > 0. Let R(ε) > 0 such that |φ(x)| ≤ ε for |x| ≥ R for R ≥ R(ε). We fix such
an R > R(ε). We pick R > R(ε) such that

S(R, t) =
1√

4kπt
e
−
(

R√
4kt

)2

≤ ε.

Consider a sequence (xn)n∈N with |xn| → ∞, and let N ∈ N such that |xn| ≥ 2R for n ≥ N .

Let n ≥ N. Then

u(xn, t) =

∫ xn+R

xn−R
S(xn − y)φ(y)dy +

∫
{y∈R:|xn−y|>R}

S(xn − y)φ(y)dy.

We write {y ∈ R : |xn − y| > R} = {|xn − y| > R} in the following. Hence

|u(xn, t)| ≤

∣∣∣∣∣
∫ xn+R

xn−R
S(xn − y)φ(y)dy

∣∣∣∣∣+

∣∣∣∣∣
∫
{|xn−y|>R}

S(xn − y)φ(y)dy

∣∣∣∣∣ .
The second integral on the right hand side can be estimated as follows∣∣∣∣∣

∫
{|xn−y|>R}

S(xn − y)φ(y)dy

∣∣∣∣∣ ≤
∫
{|xn−y|>R}

1√
4kπt

e
−
(

R√
4kt

)2

|φ(y)| dy

≤ ε
∫
{|xn−y|>R}

|φ(y)| dy ≤ ε
∫
|φ(y)| dy.

If |xn − y| ≤ R, then |y| ≥ |xn| − |xn − y| ≥ |xn| −R ≥ 2R −R = R. Therefore, the first integral
on the right hand side becomes∣∣∣∣∣

∫ xn+R

xn−R
S(xn − y)φ(y)dy

∣∣∣∣∣ ≤ ε
∫ xn+R

xn−R
S(xn − y)dy ≤ ε

∫
S(xn − y, t)dy ≤ ε.

We can conclude that for n ≥ N it follows that

|u(xn, t)| ≤ ε+ ε

∫
|φ(y)|dy

Therefore

lim sup
n→∞

|u(xn, t)| ≤ ε(1 +

∫
|φ(y)|dy) ∀ε > 0 ⇒ lim sup

n→∞
|u(xn, t)| ≤ 0 ⇒ lim

n→∞
|u(xn, t)| = 0.

�
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Theorem 4.27 (Existence and Uniqueness). The initial value problem

ut = kux,x on R× (0,∞)

u(x, 0) = φ(x) for x ∈ R
(29)

for φ ∈ C1(R) with φ(x)→ 0 if |x| → ∞ and k > 0 has a unique solution u(x, t) with u(x, t)→ 0
if |x| → ∞.

Proof. Assume there are 2 solutions u1(x, t) and u2(x, t) with u1(x, t), u2(x, t)→ 0 for |x| → ∞.

Then we consider u = u1 − u2 and also u(x, t)→ 0 if |x| → ∞.

Now we apply the energy method

d

dt

∫
1

2
[u(x, t)]2dx =

∫
ut(x, t)u(x, t)dx =

∫
kux,x(x, t)u(x, t)dx.

Hence
d

dt

∫
1

2
[u(x, t)]2dx = kux(x, t)u(x, t)

∣∣∣x=∞

x=−∞
−
∫

(ux(x, t))
2
dx ≤ 0.

It follows that ∫
1

2
[u(x, t)]2dx ≤

∫
1

2
[u(x, ε)]2 → 0.

Hence u = 0 and u1 = u2. �
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5. Second order equations: Sources and Reflections

5.1. Diffusion equations with a source term. In the following we will study inhomogeneous,
linear second order PDEs

For instance, consider the initial value problem for diffusion equation with a source term: Dif-
fusion equation with a source term Let f ∈ C0(R× (0,∞)).

ut − kux,x = f(x, t) on R× (0,∞)

u(x, 0) = φ(x) on R.
The physical interpretation of this equation is, for instance, the heat evolution of an infinitely

long rod with an initial temperatur φ and a source (or sink) of heat at later times.

Remark 5.1. If we define A = k ∂2

∂x2 , then A is linear operator that goes from C2(R) to C0(R).

Then the inhomogeneous diffusion equation then takes the form

d

dt
u(t) = Au(t) + f(t) t > 0 and u(0) = φ ∈ C1(R)

where u(t) = u(·, t) ∈ C2(R) and f(t) = f(·, t) ∈ C0(R).

5.1.1. Structural similarities with inhomogeneous ODEs. Recall the following ODE problem. Let
A ∈ Rn×n.

d

dt
v(t) = Av(t) + f(t), v(0) = v0

where t ∈ [0,∞) 7→ v(t), f(t) ∈ Rn.

For f ≡ 0 this is a homogeneous, linear ODE with constant coefficients.

The solution is given by t ∈ [0,∞) 7→ etAv0.

etA is called the solution operator.

Recall: In case A = BDB−1 for a diagonal matrix D = (d1, . . . , dn) then

etA = B(etd1 , . . . , etdn)B−1

More general, one can find the operator etA by means of the Jordan form for the matrix A.

The solution formula for the inhomogeneous problem with f 6= 0 is given by

u(t) = etAv0 +

∫ t

0

e(t−s)Af(s)ds.

5.1.2. Dunhamel’s principle. The solution formula for the inhomogeneous ODE is derived via Dun-
hamel’s principle.

Assume v(t) solves the inhomeogeneous problem. Assume S(−t) = e−tA =
[
etA
]−1

exists.

Then we can compute

S(−t)f(t) = S(−t)
[
d

dt
v(t)−Av(t)

]
= S(−t) d

dt
v(t)− S(−t)Av(t) =

d

dt
[S(−t)v(t)] .

The last equality is the product rule. Integrating from 0 to t > 0 gives∫ t

0

S(−s)f(s)ds = S(−t)v(t)− v0

Hence

v(t) = S(t)v0 + S(t)

∫ t

0

S(−s)f(s)ds = S(t)v0 +

∫ t

0

S(t− s)f(s)ds.
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We can then check that this v(t) indeed satisfies the inhomogeneous ODE

d

dt
v(t) =

d

dt
S(t)v0 +

d

dt

∫ t

0

S(t− s)f(s)ds

= AS(t)v0 + S(0)f(t) +

∫ t

0

AS(t− s)f(s)ds

= A

[
S(t)v0 +

∫ t

0

S(t− s)f(s)ds

]
+ f(t) = Av(t) + f(t).

The solution formula for ODEs gives us an idea how a solution formula for PDEs should look
like.

We saw a version of this formula before in the case of inhomogeneous first order PDEs of the
form

ut − aux = f(x, t)

Here, the operator is given by A = a ∂
∂x . Then the PDE takes the form

ut = Au+ f(x, t)

Recall the solution of the homogeneous equation was given by

φ(x+ ta) = [S(t)φ] (x)

Dunhamel’s principle suggests the solution formula

v(t) = S(t)φ+

∫ t

0

S(t− s)f(s)ds = φ(x+ at) +

∫ t

0

f(x+ a(t− s), s)ds.

for the inhomogeneous problem.

This is exactly the formula that we already derived from the method of characteristics.

Back to the inhomogeneous diffusion equation The unique solution of the initial value
problem

ut = kux,x on R× (0,∞)

u(x, t)→ 0, |x| → ∞
u(x, 0) = φ(x) on R.

was given by ∫ ∞
−∞

S(x− y, t)φ(y)dy =: S(t)φ(x) where S(x, t) =
1√

4πkt
e
−
(

x√
4kt

)2

.

We can see S(t) : C1(R)→ C2(R) as a family of solution operators.

Now we consider the same problem but with a source term f ∈ C0(R× (0,∞)):

ut = kux,x + f(x, t) on R× (0,∞).

We also write f(s) for f(·, s). We assume |f(x, t)| ≤ C. We prove the following theorem.

Theorem 5.2. The unique solution ofthe inhomogeneous problem is given by the formula

v(x, t) = [S(t)φ] (x) +

∫ t

0

[S(t− s)f(s)](x)ds.

Proof. We only check the existence statement.

First we compute vt= [S(t)φ]t +
d

dt

∫ t

0

S(t− s)f(s)ds = k [S(t)φ]x,x +
d

dt

∫ t

0

S(t− s)f(s)ds.

We consider the second term on the right hand side

d

dt

∫ t

0

[S(t− s)f(s)](x)ds =
d

dt

∫ t

0

∫ ∞
−∞

S(x− y, t− s)f(y, s)dyds =
d

dt

∫ t

0

g(s, t)ds.
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s ∈ (−∞, t] 7→ g(s, t) is continuous with

g(t, t) = lim
s↑t

g(s, t) = δx[f(·, t)] = f(x, t).

More precisely, we can compute

g(s, t) =

∫ ∞
−∞

S(x− y, t− s)f(y, s)dy

=

∫ ∞
−∞

S(x− y, t− s)f(y, t)dy +

∫ ∞
−∞

S(x− y, t− s)(f(y, s)− f(y, t))dy

For the first term it follows by computation as we did before that

lim
s→t

∫ ∞
−∞

S(x− y, t− s)f(y, t)dy = δx[f(t)] = f(x, t).

For the second we get∫ ∞
−∞

S(x− y)[f(y, s)− f(y, t)]dy =

∫ x+C̃

x−C̃
S(x− y, t− s)[f(y, s)− f(y, t)]dy

+

∫
{y:|x−y|>C̃

S(x− y, t− s)[f(y, s)− f(y, t)]dy

Since f ∈ C0(R × (0,∞)), f is uniformily continuous on [x − C, x + C] × [t − η, t + η] for t > 0
and η > 0 sufficiently small such that t− η > 0.

In particular, given ε > 0 there exists δ(C̃, ε) > 0 such |f(y, s)− f(y, t)| < ε for |s− t| < δ.

Therefore, for the first term on the right hand side in the last formula we have

−ε ≤
∫ x+C̃

x−C̃
S(x− y, t− s)[f(y, s)− f(y, t)]dy ≤ ε.

For the second term on the right hand side in the last formula we have

−2CKe−C̃
2

≤
∫
S(x− y, t− s)[f(y, s)− f(y, t)] ≤ 2CKe−C̃

2

because |f(y, s) − f(y, t)| ≤ C and S(x − y, t − s) ≤ Ke−C̃
2

on {y : |x − y| ≥ C} for a constant

K > 0. So we can choose C̃ such that 2CKe−C̃ ≤ ε.
This considerations together imply that

lim
s→t

g(s, t) = f(x, t)± 2ε

and since ε > 0 was arbitrary, the limit is f(x, t).
Hence τ ∈ [0,∞) 7→

∫ τ
0
g(s, t)ds =

∫ τ
0

∫∞
−∞ S(x− y, t− s)f(y, s)dyds is differentiable in t with

d

dt

∫ τ

0

g(s, t)ds = g(t, t) = f(x, t).

Therefore

d

dt

∫ t

0

g(s, t)ds = f(x, t) +

∫ t

0

∂

∂t
g(s, t)ds

For the second term on the right hand side we calculate∫ t

0

∂

∂t
g(s, t)dt =

∫ t

0

∫ ∞
−∞

∂

∂t
S(x− y, t− s)f(s)dyds =

∫ t

0

∫ ∞
−∞

k
∂2

∂x2
S(x− y, t− s)f(s)dyds

= k
∂2

∂x2

∫ t

0

∫ ∞
−∞

S(x− y, t− s)f(s)dyds = k

[∫ t

0

[S(t− s)f(s)](x)ds

]
x,x

.

So we computed vt = f(x, t) + k
[
S(t)φ+

∫ t
0

S(t− s)f(s)ds
]
x,x

. �
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5.2. Diffusion on the half line, Reflection method. We consider the Dirichlet problem for
the diffusion equation:

ut = kux,x on (0,∞)× (0,∞)

u(x, 0) = φ(x) on [0,∞)

u(0, t) = 0 for t > 0.

(30)

To find a solution formula for this equation we apply the reflection method:

Consider the odd extension of φ to the real line:

φodd(x) =

{
φ(x) x ≥ 0

−φ(−x) x < 0.

The corresponding initial value problem has the solution:

u(x, t) =

∫ ∞
−∞

S(x− y, t)φodd(y)dy.

Since φodd is odd, also x 7→ u(x, t) is odd, that is u(x, t) = −u(−x, t) (Exercise).

Hence u(0, t) = 0 and the restriction v of u to [0,∞) × [0,∞) solves the Dirichlet problem for
the diffusion equation with initial condition φ.

A solution formula of v that only depends on φ is derived as follows

v(x, t) =

∫ ∞
0

S(x− y, t)φ(y)dy +

∫ 0

−∞
S(x− y, t)φodd(y)dy

=

∫ ∞
0

[S(x− y, t)φ(y) + S(x+ y, t)φodd(−y)] dy =

∫ ∞
0

[S(x− y, t)− S(x+ y, t)]φ(y)dy.

The solution of the problem (30) is given by the formula

v(x, t) =

∫ ∞
0

[S(x− y, t)− S(x+ y, t)]φ(y)dy.

Similar, we can consider the Neumann problem for the diffusion equation:

ut = kux,x on [0,∞)× (0,∞)

u(x, 0) = φ(x) on [0,∞)

ux(0, t) = 0 for t > 0.

To derive a solution formula we apply the same strategy as for the Dirichlet problem.
We consider the following initial value problem for the diffusion equation on the real line:

ut = kux,x on R× (0,∞)

u(x, 0) = φeven(x) on R

where φeven is the even extension of φ to R:

φeven(x) =

{
φ(x) x ≥ 0

φ(−x) x < 0

The solution of this initial value problem will be again even in x: u(x, t) = u(−x, t).
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5.2.1. Diffusion with source term on the half line. Now we consider

ut − kux,x = f(x, t) on (0,∞)× (0,∞)

u(x, 0) = φ(x) on [0,∞)

u(0, t) = h(t) for t > 0.

(31)

for a boundary source function h : [0,∞)→ R in C1([0,∞)).

A strategy to solve this problem is the Substraction method:

We consider v(x, t) = u(x, t) − h(t). If u ∈ C2((0,∞) × (0,∞)) solves the previous problem,
then v ∈ C2((0,∞)× (0,∞)) solves

vt − kvx,x = f(x, t)− h′(t) on [0,∞)× (0,∞)

v(x, 0) = φ(x)− h(0) on [0,∞)

u(0, t) = 0 for t > 0.

To solve this problem we can apply the reflection method as we did for the equation with f ≡ 0.

Then one can check that v(x, t) + h(t) =: u(x, t) solves the problem (31).

5.3. Wave equation with a source term. Consider φ ∈ C2(R), ψ ∈ C1(R) and f ∈ C0(R ×
(0,∞)) and the inital value problem

ut,t − c2ux,x = f(x, t) on R× (0,∞),

u(x, 0) = φ(x) on R,
ut(x, 0) = ψ(x) on R.

(32)

We can interpret f as an external force that acts on an infinitely long vibrating string.

We will prove

Theorem 5.3. The unique solution of the initial value problem (32) is

u(x, t) =
1

2
[φ(x+ ct) + φ(x− ct)] +

1

2c

∫ x+ct

x−ct
ψ(y)dy +

1

2c

∫∫
∆x,t

f(y, s)dyds.

The double integral in the formula is on the characteristic space-time triangle ∆x,t corresponding
to the point (x, t) ∈ R× (0,∞). More precisely

1

2c

∫∫
∆x,t

f(y, s)dyds =
1

2c

∫ t

0

∫ x+ct

x−ct
f(y, s)dyds.

5.3.1. Deriving the solution formual via the operator method. We follow the same ideas as for the
diffusion equation.

Defining the operator A = c ∂∂x the PDE takes the form

d
dtu−A

2u = f(t) on R× (0,∞),

u(0) = φ on R,
d
dtu(0) = ψ on R.

where u(t) = u(·, t) ∈ C2(R) and f(t) = f(·, t) ∈ C0(R) for t > 0.

This equation has again the structure of an ODE of the form

d2

dt2u− a
2u = f(t) on (0,∞),

u(0) = φ ∈ R
u′(0) = ψ ∈ R.

(33)
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where f ∈ C0([0,∞)). Let us first consider the case f ≡ 0.

We consider the solutions u1 and u2 for problem with the following initial conditions

u1(0) = 0

u′1(0) = ψ
and

u2(0) = φ

u′2(0) = 0

and the sum u1 + u2 = u is a solution of (33).

Precisely u1(t) = ψ 1
a sin(at), u2(t) = φ cos(at)and u = ψ 1

a sin(at) + φ cos(at). We can define
the solution operator

S(t)ψ = ψ
1

a
sin(at) = u1(t) and

d

dt
[S(t)φ] = φ cos(at) = u2(t).

We note that S(0)ψ = 0 and d
dt

∣∣
t=0

[S(t)φ] = φ.

By Dunhammel’s principle the general solution for the inhomogeneous ODE

d2

dt2u− a
2u = f(t) 6= 0 on R× (0,∞),

u(0) = 0 ∈ R
u′(0) = ψ ∈ R.

(34)

is given by the formula

ũ1(t) = S(t)ψ +

∫ t

0

S(t− s)f(s)ds.

Indeed, since we can check that d2

dt2 [S(t)ψ]− a2S(t)ψ = 0 and

d2

dt2

∫ t

0

S(t− s)f(s)ds = f(t)− a2

[∫ t

0

S(t− s)f(s)ds

]
Now, by linearity

ũ1 + u2 = S(t)ψ +

∫ t

0

S(t− s)f(s)ds+
d

dt
S(t)φ = v

solves the inhomogeneous problem with v(0) = φ and v′(0) = ψ. The same method works for
the wave equation with source. First we solve the IVP (32) with f ≡ 0. By d’Alembert’s formula
the solution is

u1(x, t) =
1

2c

∫ x+ct

x−ct
ψ(y)dy = [S(t)ψ](x) for φ = 0 and ψ ∈ C1(R)

where [S(0)ψ](x) = 0 and

u2(x, t) =
1

2
[φ(x+ ct) + φ(x− ct)] for φ ∈ C2(R) and ψ = 0.

Observe that u2(x, t) = d
dtS(t)φ(x) with d

dt

∣∣
t=0

[S(t)φ](x) = φ(x). Then

u1 + u2 =
d

dt
S(t)φ+ S(t)ψ = u

solves the initial value problem for the homogeneous wave equation and

v(x, t) =
d

dt
S(t)φ+ S(t)ψ +

∫ t

0

S(t− s)f(s)(x)ds

is the “candidate” for a solution of the initial value problem of the inhomogeneous wave equation.

This is the formula that shows up in the theorem before. Indeed∫ t

0

S(t− s)f(s)(x)ds =

∫ t

0

1

2c

∫ x+c(t+s)

x−c(t−s)
f(y, s)dyds.
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5.3.2. Proof of the theorem. By linearity of the PDE we only need to check that the function

(x, t) ∈ R× (0,∞) 7→ 1

2c

∫∫
∆x,t

f(y, s)dyds =
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)
f(y, s)dyds

satisfies the inhomogeneous wave equation with initial conditions φ = ψ = 0.

We apply the coordinate change

ξ = x+ ct, η = x− ct.

First, we note that the operator ∂2

∂t2 − c
2 ∂2

∂x2 becomes 4c2 ∂2

∂ξ∂η . Indeed let g̃(ξ, η) be defined by

g̃(ξ, η) = g̃(x+ ct, x− ct) = g(x, t). We compute

∂

∂x
g(x, t) =

∂

∂ξ
g̃(ξ, η) +

∂

∂η
g(ξ, η),

∂

∂t
g(x, t) = c

∂

∂ξ
g̃(ξ, η)− c ∂

∂η
g(ξ, η).

It is straightforward to confirm that

gt,t − c2gx,x = −4c2
∂2

∂ξ∂η
g̃(ξ, η).

Using the transformation formula we compute the integral

1

2c

∫∫
∆x,t

f(y, s)dyds =
1

2c

∫∫
∆x.t

f̃(y + cs, y − cs)dyds.

The Jacobian determinant of the transformation Φ(x, t) = (x+ ct, x− ct) is

|detDΦ(x, t)| =
∣∣∣∣det

(
1 c
1 −c

)∣∣∣∣ = 2c.

Hence

1

2c

∫∫
∆x,t

f(y, s)dyds =
1

4c2

∫∫
∆x,t

f̃ ◦ Φ(y, s)JΦ(y, s)dyds =
1

4c2

∫∫
Φ(∆x,t)

f̃(ξ, η)dξdη.

where

1

4c2

∫∫
Φ(∆x,t)

f̃(ξ, η)dηdξ =
1

4c2

∫ ξ0

η0

∫ ξ

η0

f̃(ξ, η)dηdξ = − 1

4c2

∫ ξ0

η0

∫ η0

ξ

f̃(ξ, η)dξdη.

Hence

−4c2
∂2

∂η0∂ξ0

−1

4c2

∫ ξ0

η0

∫ η0

ξ

f̃(ξ, η)dξdη =
∂

∂η

∫ η0

ξ0

f(ξ0, η)dη = f̃(ξ0, η0) = f(x, t).

Hence, we confirmed the PDE. �

5.3.3. Consequences: Wellposedness of the wave equation with a source term.

Existence follows from the solution formula.

Uniqueness Let u be a C2 solution on R× [0,∞) for the wave equation with source and
initial values φ = ψ = 0. Then

1

2c

∫∫
∆x,t

f(y, s)dyds =
1

2c

∫∫
∆x,t

[ut,t − c2ux,x]dyds.

By the divergence theorem it follows

=
1

2c

∫
∂∆x,t

N · (−c2ux, ut)dL =
1

2c

∫
∂∆x,t

N · (−c2ux, ut)dL.

This line integral has 3 components: the bottome side

1

2

∫ x+tc

x−ct
−cut(y, 0)dy = 0
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and the side formed by curve s ∈ [0, t] 7→ x + c(t − s). Note that the normal vector on

this side is 1√
c2+1

(1, c) and line integral along this curve comes with a weight
√
c2 + 1.

1

2c

∫ t

0

cut(x+ c(t− s)− c2ux(x+ c(t− s), s)ds

=
1

2

∫ t

0

d

ds
[u(x+ c(t− s), s)]ds =

1

2
[u(x, t)− u(x+ ct, 0)] =

1

2
u(x, t).

Similar for the remaining term. Hence

u(x, t) =
1

2c

∫∫
∆x,t

f(y, s)dyds.

Stability: We claim the wave equation with source is stable. That means small pertur-
bations of the data functions f, φ and ψ result in small perturbations of the solution u.

How do we measure smallness?

Definition 5.4 (Maximums Norm on R and R× [0,∞)). Let v ∈ C0(R) and w ∈ C0(R×
[0,∞)). Define the Maximumnorms:

‖v‖ = max
x∈R
|v(x)|, ‖w‖T = max

(x,t)∈R×[0,T ]
|w(x, t)|

From the solution formula we have the following a priori estimate for the solution u on
R× [0, T ]:

|u(x, t)| ≤ 1

2
|φ(x+ ct)− φ(x− ct)|+ 1

2c

∫ x+ct

x−ct
|φ(y)|dy +

1

2c

∫∫
∆x,t

|f(y, s)|dyds

≤ ‖φ‖+ T ‖ψ‖+ T 2 ‖f‖T
Hence

‖u‖T ≤ ‖φ‖+ T ‖ψ‖T + T 2 ‖f‖T .
If we have to solution u1 and u2 with corresponding data φ1, φ2, ψ1, ψ2, f1, f2, then u1−u2

is a solution with data φ1 − φ2, ψ1 − ψ2, f1 − f2 by linearity of the problem.

Hence the estimate for the norm yields stabiltiy w.r.t. the Maximums Norm.
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lecture 14

5.4. Reflection method for wave equations. We will study the following Dirichlet problem
for the wave equation on the half-line:

vt,t = c2vx,x on (0,∞)× R
v(x, 0) = φ(x) on (0,∞)

vt(x, 0) = ψ(x) on (0,∞)

v(0, t) = 0 on R.

(35)

The reflexion method works the same way as for the diffusion equation.

We consider odd extensions φodd and ψodd of φ and ψ respectively.

Let u(x, t) be the solution of the initial value problem for the wave equation on R. We have the
formula

u(x, t) =
1

2
[φodd(x+ ct) + φodd(x− ct)] +

1

2c

∫ x+ct

x−ct
ψodd(y)dy.

Then u(x, t) is once again odd. In particular we have u(0, t) = 0 for t > 0 and we can define
the solution v on [0,∞)× R of (35) by restriction of u to [0,∞).

We observe that for x ≥ c|t| it follows that x− ct, x+ ct ≥ 0. Hence

v(x, t) =
1

2
[φ(x+ ct) + φ(x− ct)] +

1

2c

∫ x+ct

x−ct
ψ(y)dy x ≥ c|t|.

For 0 < x < c|t| we have φodd(x− ct) = −φ(−x+ ct). Hence

v(x, t) =
1

2
[φ(x+ ct) + φ(−x+ ct)] +

1

2c

∫ 0

x−ct
[−ψ(−y)]dy +

1

2c

∫ x+ct

0

ψ(y)dy 0 < x < c|t|.

We can apply a change of variable y 7→ −y to the first integral term. We obtain

v(x, t) =
1

2
[φ(ct+ x)− φ(ct− x)] +

1

2c

∫ 0

ct−x
ψ(y)dy +

1

2c

∫ x+ct

0

ψ(y)dy

=
1

2
[φ(ct+ x)− φ(ct− x)] +

1

2c

∫ ct+x

ct−x
ψ(y)dy 0 < x < c|t|.

Remark 5.5. The complete solution is given by

v(x, t) =


1
2 [φ(x+ ct) + φ(x− ct)] +

1

2c

∫ x+ct

x−ct
ψ(y)dy if x ≥ c|t|

1
2 [φ(ct+ x)− φ(ct− x)] +

1

2c

∫ ct+x

ct−x
ψ(y)dy if 0 < x < c|t|.

5.4.1. Finite Interval. Similarly we can also study the problem

vt,t = c2vx,x on (0, l)× R
v(x, 0) = φ(x) on (0, l)
vt(x, 0) = ψ(x) on (0, l)

v(0, t) = v(l, t) = 0 on R.

(36)
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5.5. Diffusion equation with continuous initial data. Let us consider once more

ut = kux,x on R× (0,∞)
limt↓0 u(x, t) = φ(x) on R

This time we assume φ ∈ C0(R) and |φ(x)| ≤M ∀x ∈ R.

The convolution formula

u(x, t) =
1√

4πkt

∫ ∞
−∞

e
−
(
x−y√

4kt

)2

φ(y)dy

still makes sense. Indeed, since |φ(x)| ≤M the integral is finite and bounded from above by M :

|u(x, t)| =
∣∣∣∣ 1√

4πkt

∫ ∞
−∞

e
−
(

z√
4kt

)2

φ(x− z)dz
∣∣∣∣ ≤ 1√

4πkt

∫ ∞
−∞

e
−
(

z√
4kt

)2

Mdz ≤M.

Remark 5.6. A refined satement is that for m ≤ φ(x) ≤M it follows

m ≤
∫ ∞
−∞

S(x− y, t)φ(y)dy ≤M ∀t > 0 (Maximum Principle).

Theorem 5.7. Let φ(x) and u(x, t) be as above. Then u ∈ C∞(R× (0,∞)) such that ut = kux,x
on R× (0,∞) and limt↓0 u(x, t) = φ(x) for every x ∈ R.

5.5.1. Proof of the theorem. We check that u is in C∞(R×(0,∞)). Let S(x, t) = 1√
4πkt

e
−
(

x√
4πkt

)2

.

We show that

∂

∂x

∫
S(x− y, t)φ(y)dy =

∫
∂

∂x
S(x− y, t)φ(y)dy.

Recall that

∂

∂x
S(x− y, t)φ(y) = lim

h→0

1

h
[S(x+ h− y, t)− S(x− y, t)]φ(y).

By the dominated convergence theorem for integrals we can pull this limit inside the integral if
the modulus of the limit is bounded by an integrable function. This is indeed the case∣∣∣∣ ∂∂xS(x− y, t)φ(y)

∣∣∣∣ ≤ ∣∣∣∣− 1√
4πkt

x− y
2kt

e−
(x−y)2

4kt

∣∣∣∣M ≤ M√
4πkt

|x− y|
2kt

e−
|x−y|2

4kt .

The term on the right hand side has a finite integral on R. Hence

∂

∂x
u(x, t) =

1√
4kπt

∫ ∞
−∞

∂

∂x
S(x− y, t)φ(y)dy.

All other derivatives of higher order in x and t will work the same way: we always get an estimate
by function of the form

C|y − x|ne−C̃(x−y)2

that has finite integral on R.

5.5.2. Checking the initial condition. We also know that u satisfies ut = kux,x because S(x, t) does.

Hence, we only need to prove that u satisfies the initial condition for t ↓ 0.

Consider

u(x, t)− φ(x) =

∫ ∞
−∞

S(x− y, t)φ(y)dy −
∫ ∞
−∞

S(x− y, t)φ(x)dy

=

∫ ∞
−∞

S(x− y, t)(φ(y)− φ(x))dy.

Since φ is continous in x, for ε > 0 we can choose δ > 0 such that

|y − x| ≤ δ ⇒ |φ(x)− φ(y)| ≤ ε
Hence
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|u(x, t)− φ(x)| ≤
∫
{y∈R:|x−y|>δ}

1√
4πkt

e−
(x−y)2

2kt |φ(x)− φ(y)|︸ ︷︷ ︸
≤2M

dy

+

∫
{y∈R:|x−y|≤δ}

S(x− y, t) |φ(x)− φ(y)|︸ ︷︷ ︸
≤ε

dy

≤ 2M√
4π

∫
{z∈R:|z|≥ δ√

kt
}
e−

z2

4 dz + ε.

It follows that

lim sup
t↓0

|u(x, t)− φ(x)| ≤ ε

Since ε > 0 was arbitrary, it follows that limt↓0 |u(x, t)− φ(x)| = 0. �

5.5.3. Additional Remarks.

• Decay of the solution for t→∞.
For φ ∈ C0(R) with |φ| ≤M we have

|u(x, t)| ≤
∫ ∞
−∞

S(x− y, t)|φ(y)|dy ≤ M√
4kπt

∫ ∞
−∞

e−
(x−y)2

4kt dy ≤ M√
4πkt

→ 0.

In particular, this means the backwards diffusion equation

ut = −kux,x on R× (0,∞)

is not well-posed because stability fails.
• About uniqueness again: Let φ1, φ2 ∈ C0(R) with |φ1|, |φ2| ≤M .

We saw that in the class of solutions with u(x, t) → 0 for |x| → ∞ we find a unique
solution.

But if we drop this assumption uniquness might fail: There are solutions of the heat
equation with u(x, t)→ 0 for t ↓ 0 for all x ∈ R.

See also exercise 10 on page 399 in Choksi’s Lecture Notes for an example that hints to
nonuniquness.
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Lecture 15

6. Separtion of Variables

6.1. Separation of Variables: Wave equation. Consider the wave equation on an interval
[0, l]:

ut,t = c2ux,x on (0, l)× R
u(x, 0) = φ(x) ut(x, 0) = ψ(x) for x ∈ (0, l).

(37)

We assume Dirichlet boundary conditions

DC: u(0, t) = u(l, t) = 0 for t ∈ R

Remark 6.1. Recall that the PDE is linear and homogeneous. Therefore, if u1 and u2 are solutions
to (37), then also u1 + u2 = u is a solution to (37).

This is called superpositon principle.

We will build the general solution for (37) from special ones that are easier to find.

The easier solutions we want to find have the following structure:

u(x, t) = X(x) · T (t)

(Separation of variables). Assuming this particular structure the PDE reduces to

X(x)T ′′(t) = c2X ′′(x)T (t)

This yields

− T ′′

c2T
= −X

′′

X
= λ.

for a constant λ ∈ R.

The last equation yields two separate differential equations for T and X:

− T ′′

c2T
= λ and − X ′′

X
= λ.

For the moment let us assume λ > 0.
Why can we do that?

If λ = 0, we have that X ′′ = 0. It follows that X(x) = C +Dx.

By the boundary condition X(0) = X(l) = 0 it follows X ≡ 0 and u ≡ 0.

If λ > 0 we set β =
√
λ > 0:

T ′′ + β2c2T = 0 & X ′′ + β2X = 0.

We can easily see that the last two equations have the following general solution

T (t) = A cos(βct) +B sin(βct) & X(x) = C cos(βx) +D sin(βx).

for real constants A,B,C,D ∈ R.
In particular, any u = T ·X with such T and X solves ut,t = c2ux,x.
Now, we would like to choose the constants A,B,C,D accordingly to given initial and boundary

conditions.

For a given time t0 ∈ R a solution u(t0, x) = T (t0)X(x) must satify the boundary condition:

0 = X(0) = C 0 = X(l) = D sin(βl)
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We are not interested in the trivial solution with D = C = 0. Hence βl = nπ for n ∈ N =
{1, 2, 3, . . . }, the roots of the sine function. Or equivalently

λn = (βn)2 =
(nπ
l

)2

.

Hence

Xn(x) = sin
(nπ
l
x
)
, n ∈ N,

is a family of distinct solutions where D = 1.

Note that each sine function may be multiplied with a function that is contant in x to obtain
another solution.

We obtain an infinite number of solutions of the form

un(x, t) =
(
An cos

(nπ
l
ct
)

+Bn sin
(nπ
l
ct
))

sin
(nπ
l
x
)

for constants An, Bn ∈ R.
Moreover, any finite sum of these solutions is also a solution:

u(x, t) =

k∑
i=1

(
Ani cos

(niπ
l
ct
)

+Bni sin
(niπ

l
ct
))

sin
(niπ

l
x
)
.

Now, assume λ < 0. We will rule out this case. We set β =
√
−λ.

Again we can easily see that the general solutions for T ′′ + λT = 0 and X ′′ + λX = 0 are given
by

T (t) = A cosh(βct) +B sinh(βct) & X(x) = C cosh(βx) +D sinh(βx)

The boundary condition again implies 0 = X(l) = D sinh(βx).

This can only occur if D = 0.

A similar argument also rules out the case λ ∈ C\(0,∞)× {0} (complex numbers).

Hence, the relevant numbers λ in the problem are positive.

We note that we also could assume Neumann boundary conditions

NC: ux(t, 0) = ux(t, l) = 0 on R.
for the PDE in the beginning.

Then the considerations for λ are similar as for Dirichlet case. We can rule out that λ < 0.

In the case λ = 0, the equation for X becomes X ′′ = 0. Again we have

X(x) = C +Dx, C,D ∈ R

Together with the Neumann boundary condition Xx(0) = Xx(l) = 0 we see that for any C ∈ R
the constant function X(x) = C is a solution. For λ = β2 > 0 we have the solutions

X(x) = C cos(βx) +D sin(βX)

The Neumann boundary condition imply that

0 = Xx(0) = −Cβ sin(β0) +Dβ cos(β0) = D

Hence D = 0 and Xx(l) = −Cβ sin(βl). Hence, we have again βl = nπ and we define a family of
solutions

X̃n(x) = cos
(nπ
l
x
)

where we set C = 1.

A family of solutions for the PDE with Neumann boundary conditions is then

un(x, t) =
(
A cos(

nπ

l
ct) +B sin(

nπ

l
ct)
)

cos
(nπ
l
x
)



MAT351 PARTIAL DIFFERENTIAL EQUATIONS – LECTURE NOTES – 55

And again finite sums of these solutions are also solultions

u(x, t) =

k∑
i=1

(
A cos(

niπ

l
ct) +B sin(

niπ

l
ct)
)

cos
(niπ

l
x
)
.

Finally, we want to bring the inital conditions φ and ψ into play.

For this we go back to the Dirichlet condition.

The solution given by the previous formula solves the initial value problem if

φ(x) = u(x, 0) =

k∑
i=1

Ani sin
(niπ

l
x
)

and

ψ(x) = ut(x, 0) =

k∑
i=1

niπc

l
Bni sin

(niπ
l
x
)

Question 6.2. Can we approximate any continuous function φ with φ(0) = φ(l) = 0 by trigono-
metric polynomials of the form

φ̃(x) =

k∑
i=1

Ani sin
(niπ

l
x
)

What does approximation mean in this context?

And do the solutions w.r.t. φ̃ approximate the solution w.r.t. φ?

Or can we maybe write any continuous function φ as series of the form
∞∑
n=1

An sin
(nπ
l
x
)
.
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Lecture 16

Last Lecture. The wave equation on [0, l]

ut,t = c2ux,x on (0, l)× R
u(x, 0) = φ(x) on [0, l]

ut(x, 0) = ψ(x) on [0, l]

(38)

and with Dirichlet boundary conditions (DC)

u(0, t) = u(l, t) = 0 ∀t ∈ R

or with Neumann boundary conditions (NC)

ux(0, t) = ux(l, t) = 0 ∀t ∈ R.

Via separation of variable we found a family of special solutions.

For (38) with DC we found special solutions of the form un(x, t) = Tn(t)Xn(t), n ∈ N, where

Tn(t) = An cos
(nπ
l
ct
)

+Bn sin
(nπ
l
ct
)

and the functions Xn(x) := sin
(
nπ
l x
)

solve the following ODE boundary problem

X ′′n +
(nπ
l

)2

Xn = 0 with Xn(0) = Xn(l) = 0, n ∈ N.

6.2. Superposition principle. Any finite linear combination of un is also a solution of (38) with
DC:

u(x, t) :=

k∑
i=1

(
Ani cos

(niπ
l
ct
)

+Bni sin
(niπ

l
ct
))

sin
(niπ

l
x
)

where n1, . . . , nk ∈ N.

u has initial conditions

φ(x) = u(x, 0) =

k∑
i=1

Ani sin
(niπ

l
x
)
, ψ(x) = ut(x, 0) =

k∑
i=1

nπc

l
Bni sin

(niπ
l
x
)

.

For (38) with NC we found that

ũn(x, t) = Tn(t)X̃n(x) ∀n ∈ N ∪ {0}.

is a solution.

The functions X̃n(x) := cos
(
nπ
l x
)
, n ∈ N, solve the following ODE boundary problem

X ′′n +
(nπ
l

)2

Xn = 0 with (Xn)x(0) = (Xn)x(l) = 0, n ∈ N ∪ {0}.

where we set X0(x) = 1.

Again we have that Tn(t) solves T ′′ +
(
nπ
l

)2
cT = 0. Therefore

Tn(t) = An cos
(nπ
l
ct
)

+Bn sin
(nπ
l
ct
)

for n ∈ N and for An, Bn ∈ R.

But also T0(t) = 1
2A0 + 1

2B0t for A0, B0 ∈ R.
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6.3. Eigenvalues and Eigenfunction. The constants λn =
(
nπ
l

)2
are called eigenvalues.

The functions Xn(x) are called eigenfunctions of the the differential operator

L : V → C0([0, l]), Lφ = − ∂2

∂x2
φ for V =

{
φ ∈ C2([0, l]) : φ(0) = φ(l) = 0

}
.

The differential equality that determines Xn has the form of an eigenvalue equation

LXn = λnXn.

Similar, the functions X̃n(x) are called eigenfunctions for the differential operator

L̃ : Ṽ → C0([0, l]), L̃φ = − ∂2

∂x2
φ for Ṽ =

{
φ ∈ C2([0, l]) : φx(0) = φx(l) = 0

}
.

The terminology is motivated from Linear Algebra:
Consider a matrix A ∈ Rn×n we say λ ∈ R is an eigenvalue of A if there exists v 6= 0 such that

Av = λv

Given an eigenvalue λ for A the set of eigenvectors Eλ is a vector space.
If we can find n different eigenvalue λ1, . . . , λn then

Eλ1
⊕ · · · ⊕ Eλn = Rn

Hence, for every vector w there are unique eigenvectors vi ∈ Eλi such that

W = v1 + · · ·+ vn.

Let us go back to (38) with the Dirichlet Boundary Condition. Consider an infinite serie of the
form

u(x, t) := lim
N→∞

N∑
n=1

un(x, t) =

∞∑
n=1

(An cos (λnct) +Bn sin (λnct)) sin (λnx) .(39)

Remark 6.3. When does such a series converge uniformily?

Since ∣∣∣∣∣
N∑
n=1

un(x, t)

∣∣∣∣∣ ≤
N∑
n=1

(|An|+ |Bn|) ≤
∞∑
n=1

|An|+
∞∑
n=1

|Bn|

the series (39) converges uniformily provided
∑∞
n=1 |An|,

∑∞
n=1 |Bn| <∞. Indeed

max
x∈[0,l]

∣∣∣∣∣
M∑
n=1

un(x, t)−
N∑
n=1

un(x, t)

∣∣∣∣∣ = max
x∈[0,l]

∣∣∣∣∣
M∑

n=N+1

un(x, t)

∣∣∣∣∣ ≤
M∑

n=N+1

(|An|+ |Bn|)→ 0

if N < M →∞. Now also recall the following theorem about differentiation of series

Theorem 6.4. Let fn(x) a sequence of functions on [0, l] that are differentiable. Assume
∑∞
n=1 fn(x)

is converging uniformily.

If
∑∞
n=1 f

′
n(x) is uniformily convergent then it follows that f is differentiable on [0, l] and

f ′(x) =

∞∑
n=1

f ′(x).

Hence, the partial derivatives ux and ut exist and satisfy

ux(x, t) =

∞∑
n=1

λn (An cos (λnct) +Bn sin (λnct)) cos (λnx)

ut(x, t) =

∞∑
n=1

λnc (−An sin (λnct) +Bn cos (λnct)) sin (λnx)
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provided
∑∞
n=1 λn|An|,

∑∞
n=1 λn|Bn| <∞.

Similar, the second partial derivatives ux,x and ut,t exist and satisfy

ux,x(x, t) =

∞∑
n=1

λ2
n (An cos (λnct) +Bn sin (λnct)) cos (λnx)

ut,t(x, t) =

∞∑
n=1

λ2
nc

2 (−An sin (λnct) +Bn cos (λnct)) sin (λnx)

provided
∑∞
n=1 λ

2
n|An|,

∑∞
n=1 λ

2
n|Bn| <∞.

Consequently, since each function

un = (An cos(λnct) +Bn sin(λnct)) sin(λnx)

satisfies the PDE (un)t,t = c2(un)x,x with the Dirichlet boundary condition, the series u satisfies
the same PDE also with Dirichlet boundary condition u(0, t) = u(l, t) = 0.

In the same way we can construct solutions to the PDE with the Neumann boundary condition.
We only have to replace

Xn, n ∈ N with X̃n, n ∈ N ∪ {0}.
Moreover u satisfies the following initial condition

u(x, 0) = lim
N→∞

N∑
n=1

An sin
(nπ
l
x
)

=

∞∑
n=1

An sin
(nπ
l
x
)

=: φ(x)(40)

and

ut(x, 0) =

∞∑
n=1

nπc

l
Bn sin

(nπ
l
x
)

=: ψ(x)(41)

Note that these series are converge uniformily and hence are well-defined because we assumed
∞∑
n=1

|An|,
∞∑
n=1

|Bn|,
∞∑
n=1

λn|An|,
∞∑
n=1

λn|Bn|,
∞∑
n=1

λ2
n|An|,

∞∑
n=1

λ2
n|Bn| <∞.

Question 6.5. What kind of data pairs φ, ψ can be expanded as series for coefficients An and Bn
as above?

In the same way we can find solutions for the PDE with NC:

u(x, t) =
1

2
(A0 +B0t) +

∞∑
n=1

(An cos(λnct) +Bn sin(λnct)) cos(λnx).

The initial conditions are 1
2A0 +

∑∞
n=1An cos(λnx) and 1

2B0 +
∑∞
n=1Bnλnc cos(λnx).

Let us consider the analogous problem for diffusion on [0, l]:

ut = kux,x on (0, l)× (0,∞)
u(x, 0) = φ(x) on (0, l)

with Dirichlet boundary conditions

u(0, t) = u(l, t) = 0 ∀t ∈ R
or with Neumann boundary conditions

ux(0, t) = ux(l, t) = 0 ∀t ∈ R.
We can again apply the methode of Separation-of-Variables: We consider a solution of the form

u(x, t) = T (t)X(x).

This leads to

− T
′

kT
= −X

′′

X
= λ.
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Again we see easily that λ must be constant and T and X solve

T ′ + λkT = 0 & X ′′ + λX = 0.

The general solution for X is the same as before. In particular, we can have λn =
(
nπ
l

)2
and the

set of solutions Xn(x) = sin
(
nπ
l x
)
. The general solution for T in this case is

T (t) = Ae−(nπl )
2
kt for A ∈ R.

Hence, as before a family of special solutions of the diffuison equation with DC is given by

un(x, t) = Ane
−(nπl )

2
kt sin

(nπ
l
x
)

︸ ︷︷ ︸
=:Xn(x)

, n ∈ N and An ∈ R.

where Xn are as before. Then

u(x, t) =

∞∑
n=1

Ane
−λ2

nkt sin(λnx)

solves the diffusion equation with DC and inital data u(x, 0) =
∑∞
n=1An sin(λnx) provided

∞∑
n=1

|An|,
∞∑
n=1

λn|An|,
∞∑
n=1

λ2
n|An| <∞.

For NC we consider λn =
(
nπ
l

)2
with n ∈ N ∪ {0} and the corresponding solutions X̃n of

X̃ ′′n + λXn = 0. Precisely, we set X̃n(x) = cos(λnx) and X0(x) = 1.

Again we also have to consider λ0 = 0. In particular, for T we also consider the solutions of

T ′ = 0 ⇔ T0(0) =
1

2
A0 ∈ R

Then, a family of special solutions of the diffusion equation with NC is given by

un(x, t) = Ane
−(nπl )

2
kt cos

(nπ
l
x
)

︸ ︷︷ ︸
=:X̃n(x)

, n ∈ N and An ∈ R.

andn u0(x, t) = 1
2A0. Again

u(x, t) =
1

2
A0 +

∞∑
n=1

Ane
−λ2

nkt cos(λnx)

is a solution to the diffusion equation with NC for the initial data

u(x, 0) =
1

2
A0 +

∞∑
n=1

An cos(λx).

provided

∞∑
n=1

|An|,
∞∑
n=1

λn|An|,
∞∑
n=1

λ2
n|An| <∞.
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7. Fourier Series

We encouter the following question

Question 7.1. Given a function φ on [0, l] can we find a sequence (An)n∈N such that

φ(x) = lim
N→∞

N∑
n=1

An sin (λnx) =

∞∑
n=1

An sin(λnx), x ∈ [0, l] ?

(where λn =
(
nπ
l

)2
). We call the series on the right hand side the Fourier sine series.

Or can we find a sequence (Bn)n∈N such that

φ(x) =
1

2
A0 + lim

N→∞

N∑
n=1

An cos (λnx) =
1

2
A0 +

∞∑
n=1

An cos(λnx), x ∈ [0, l] ?

We call the series on the right hand side the Fourier cosine series.

7.1. How can we determine the coefficients An? We perform the following forma calculations:∫ l

0

φ(x) sin(λmx)dx =

∫ l

0

∞∑
n=1

An sin(λnx) sin(λmx)dx =

∞∑
n=1

∫ l

0

An sin(λnx) sin(λmx)dx

Let consider a single term in the sum on the right hand side:

An

∫ l

0

sin(λnx) sin(λmx)dx = An

∫ l

0

1

2
(cos((λn − λm)x)− cos((λn + λm)x)) dx

Here we used the first of the following identities

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y), sin(x+ y) = cos(x) sin(y) + sin(x) cos(y).

The first identity gives

cos(x+ y)− cos(x− y) = cos(x) cos(y)− sin(x) sin(y)− cos(x) cos(−y) + sin(x) sin(−y)

= −2 sin(x) sin(y)

Then, if n 6= m, we compute

An

∫ l

0

sin(λnx) sin(λmx)dx = Am
l

2π

∫ l

0

π

l
cos

(
(n−m)π

l
x

)
− cos

(
(n+m)π

l

)
dx

=
l

2π
An

∫ π

0

(cos((n−m)x)− cos((n+m)x)) dx

=
l

2π
An

[
1

n−m
sin((n−m)x)− 1

n+m
sin((n+m)

]π
0

= 0

If n = m, then

Am

∫ l

0

sin(λmx)2dx = Am
l

2π

∫ π

0

[1− cos(2mx)] dx = Am
l

2
−Am

l

2π

[
1

2m
sin(2mx)

]π
0

=
l

2
An

Hence ∫ l

0

φ(x) sin(λmx)dx =

∫ l

0

∞∑
n=1

An sin(λnx) sin(λmx)dx

=

∞∑
n=1

An

∫ l

0

sin(λnx) sin(λmx)dx =
l

2
Am.

Remark 7.2. Am =
2

l

∫ l

0

φ(x) sin(λmx)dx =
2

l

∫ l

0

φ(x) sin
(mπ
l
x
)
dx.
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This is the Fourier sine coefficient for φ.

By the same formal calculation we also compute the Fourier cosine coefficient for φ.

Precisely: ∫ l

0

φ(x) cos(λmx)dx =

∫ l

0

∞∑
n=1

Ãn cos(λnx) cos(λmx)dx

=

∞∑
n=1

Ãn

∫ l

0

cos(λnx) cos(λmx)dx

Let us again consider a single term in the sum on the right hand side with n,m ≥ 1:

Ãn

∫ l

0

cos(λnx) cos(λmx)dx = Ãn
1

2

∫ l

0

cos

(
(n+m)π

l
x

)
+ cos

(
(n−m)π

l
x

)
dx

= Ãn
l

2π

∫ π

0

cos((n+m)x) + cos((n−m)x)dx

For n 6= m the right hand side in the last term is

= Ãn
l

2π

[
1

n+m
sin((n+m)x) +

1

n−m
sin((n−m)x)

]π
0

= 0.

For n = m we obtain

=
l

π2

∫ π

0

[cos(2mx) + 1] dx =
l

2π
Ãm

[
1

2n
sin(2mx)

]π
0

+
l

2
Ãm =

l

2
Ãm.

A computation yields the same conclusion even when n = 0 or m = 0.

We obtain that

Remark 7.3. Ã0 =
2

l

∫ l

0

φ(x)dx, Ãm =
2

l

∫ l

0

φ(x) cos(λmx)dx =
2

l

∫ l

0

φ(x) cos
(mπ
l
x
)
dx.

Definition 7.4. The Fourier sine series of φ is defined
∞∑
n=1

[
2

l

∫ l

0

φ(x) sin
(nπ
l
x
)
dx

]
sin
(nπ
l
x
)

=: S(φ)

Similar the Fourier cosine series of φ is defined
∞∑
n=1

[
2

l

∫ l

0

φ(x) cos
(nπ
l
x
)
dx

]
cos
(nπ
l
x
)

=: C(φ)

Finally the full Fourier coefficients are (we abuse notation at this point)

Remark 7.5. Bm =
1

l

∫ l

−l
φ(x) cos

(mπ
l
x
)
dx.

A0 =
1

l

∫ l

−l
φ(x)dx, Am =

1

l

∫ l

−l
φ(x) cos

(mπ
l
x
)
dx.

Definition 7.6. The Fourier series of φ is

1

2
A0 +

∞∑
n=1

[
An sin(

nπ

l
x)dx+Bn cos(

nπ

l
x)
]

= F(φ)
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7.2. Orthogonality and General Fourier Series. Consider two continuous functions f, g :
[a, b]→ R that are square integrable:

‖f‖22 =

∫ b

a

|f(x)|2dx, ‖g‖22 =

∫ b

a

|g(x)|2dx <∞

We define the inner product between f and g as the integral of their product:

(f, g) =

∫ b

a

f(x)g(x)dx(42)

The product g(x)f(x) is integrable because of the Cauchy-Schwartz inequality:∫ b

a

|f(x)g(x)|dx ≤

√∫ b

a

|f(x)|2dx
∫ b

a

|g(x)|2dx = ‖f‖2 ‖g‖2 <∞.

We say that two square integrable functions f and g are orthogonal if (f, g) = 0.

Note that a real valued continuous function f is never orthogonal to itself unless f = 0.

Recall the case of an inner product (v, w) on Rn, for instance v1w1 + · · ·+ vnwn.

The number ‖v‖ =
√

(v, v).

A basis v1, . . . , vn of V is orthonormal if ‖vi‖ = 1, i = 1, . . . , n, and (vi, vj) = 0, i 6= j. Then

w =

n∑
i=1

(vi, w)vi and ‖w‖2 =

n∑
i=1

|(vi, w)|2.

For instance, v1, . . . , vn can be the eigenvectors of a symmetric operator A : Rn → Rn. The
theory of Fourier series translates this idea to an infinite dimensional context.

Let [a, b] = [0, l]. Let us go back to the operator

Lf = − ∂2

∂x2
f for f ∈ C2([0, l]).

We saw that

sin
(nπ
l
x
)
, n ∈ N

was a set of eigenfunctions for the operator L with Dirichlet boundary conditions, and

1, cos
(nπ
l
x
)
, n ∈ N

was a set of eigenfunctions for the same operator with Neumann boundary conditions.

To determine Fourier sine coefficients we computed that∫ l

0

sin
(nπ
l
x
)

sin
(mπ
l
x
)
dx = 0 for n 6= m ∈ N.

Also we can compute that∫ l

0

cos
(nπ
l
x
)
· 1dx =

∫ l

0

cos
(nπ
l
x
)

cos
(mπ
l
x
)
dx = 0 for n 6= m ∈ N.

Hence, these eigenvectors are orthogonal w.r.t. (·, ·).
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7.2.1. General Fourier series. Let us consider two eigenfunctions X1 and X2 of L = − d2

dx2 on [a, b]
for eigenvalues λ1 6= λ2.

We don’t specify boundary conditions yet. We can compute the following

(−X ′1X2 +X1X
′
2)′ = −X ′′1X2 +X1X

′′
2

Integration over [a, b] yields∫ b

a

[−X ′′1 (x)X2(x) +X1(x)X ′′2 (x)] dx = −X ′1(x)X2(x) +X1(x)X ′2(x)
∣∣∣b
a

= −X ′1(b)X2(b) +X1(b)X ′2(b) +X ′1(a)X2(a)−X1(a)X ′2(a).

If the right hand side is 0 we have that

0 = −
∫ b

a

X ′′1 (x)X2(x)dx−
∫ b

a

X1(x)X ′′2 (x)dx = (LX1, X2)− (X1, LX2) = (λ1 − λ2)(X1, X2)

Since λ1 6= λ2, (X1, X2) = 0. Hence X1 and X2 are othogonal.

Remark 7.7. Question: When do we have

−X ′1(b)X2(b) +X1(b)X ′2(b) +X ′1(a)X2(a)−X1(a)X ′2(a) = 0 ?

Remark 7.8. For instance, for Dirichlet or Neumann boundary conditions on [0, l] = [a, b].

But also for periodic boundary conditions: f ∈ C1(R) satisfies a periodic boundary conditions
with period l > 0 if f(x+ nl) = f(x) for all x ∈ R. Hence

f(a) = f(b) & f ′(a) = f ′(b).

In general, we could consider boundary conditions of the form{
α1f(a) + β1f(b) + γ1f

′(a) + δ1f
′(b) = 0

α2f(a) + β2f(b) + γ2f
′(a) + δ2f

′(b) = 0

}
(43)

for 8 independent constants α1, α2, β1, β2, γ1, γ2, δ1, δ2 ∈ R.

Definition 7.9. The set of boundary conditions (43) are called symmetric if

f ′(x)g(x)− f(x)g′(x)
∣∣∣b
a

= f ′(b)g(b)− f(b)g′(b)− f ′(a)g(a) + f(a)g′(a) = 0

for any pair of functions that satisfy (43).

Hence, we proved the following theorem.

Theorem 7.10. Eigenfunctions of − ∂2

∂x2 with symmetric boundary conditions for eigenvalues λ1 6=
λ2 are orthogonal.

By explicite compuations we saw that this is true for L with Dirichlet boundary conditions on
[0, l] where the eigenfunctions are sin

(
nπ
l x
)
, n ∈ N.

Remark 7.11. If there are 2 eigenfunctions X1 and X2 for the same eigenvalue λ, then either X1 =
cX2 for some constant c, or they can be made orthogonal by the Gram-Schmidt orthogonalization
procedure.

Considering L = − ∂2

∂x2 with periodic boundary conditions on [−l, l]. There are eigenfunctions

sin
(nπ
l
x
)
, cos

(nπ
l
x
)

for the same eigenvalue
(
nπ
l

)2
that are orthogonal.
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But also any linear combination is again an eigenfunction for the same eigenvalue. In particular

sin
(nπ
l
x
)
, cos

(nπ
l
x
)

+ sin
(nπ
l
x
)
.

But they are not orthogonal.

7.2.2. General Fourier coefficients. If a continuous and integrable function φ is given by an infinite

converging serie
∑∞
n=1AnXn for eigenfunctions Xn of L = − ∂2

∂x2 on [a, b] with symmetric boundary
conditions, then the coefficients are determined by the formula

Am =
1

‖Xm‖22
(Xm, φ) =

1∫ b
a

(Xm)2(x)dx

∫ b

a

φ(x)Xm(x)dx.

Indeed

(φ,Xm) =

( ∞∑
n=1

AnXn, Xm

)
=

∞∑
n=1

An(Xn, Xm) = Am(Xm, Xm) = Am ‖Xm‖22 .

For instance, if we consider the set sin
(
nπ
l x
)

of eigenfunctions L = − ∂2

∂x2 with Dirichlet boundary
conditions, we computed

Am =
1∫ l

0

(
sin
(
mπ
l x
))2

dx

∫ l

0

φ(x) sin
(mπ
l
x
)
dx where

∫ l

0

(
sin
(mπ
l
x
))2

dx =
l

2
.

For periodic boundary conditions on [−l, l] the eigenfunctions are 1, cos
(
nπ
l x
)
, sin

(
nπ
l x
)

and the
Fourier coefficients are

An =
1

l

∫ l

−l
φ(x) sin

(nπ
l
x
)
, n ∈ N, Ã0 =

1

l

∫
φ(x)dx, Ãn =

1

l

∫ l

−l
φ(x) cos

(nπ
l
x
)
dx, n ∈ N.

Problem/Questions: In which sense does
∑∞
n=1AnXn converge? And why does the second equality

hold in the previous equation?

7.3. Notions of convergence.

Definition 7.12 (Pointwise and uniform convergence). We say an infinite series
∑∞
n=1 fn(x) con-

verges pointwise to a function f in (a, b) if∣∣∣∣∣f(x)−
N∑
n=1

fn(x)

∣∣∣∣∣→ 0 as N →∞ for all x ∈ (a, b).

We say the series converges uniformly to f in [a, b] if

max
x∈[a,b]

∣∣∣∣∣f(x)−
N∑
n=1

fn(x)

∣∣∣∣∣→ 0 as N →∞

Note that for the notion of uniform convergence we include a and b.

Definition 7.13 (Mean square convergence). The serie
∑∞
n=1 fn(x) converges in mean square (or

L2) sense to f in (a, b) if ∫ b

a

∣∣∣∣∣f(x)−
N∑
n=1

fn(x)

∣∣∣∣∣
2

dx→ 0 as N →∞.

Remark 7.14. We have: uniform convergence ⇒ pointwise and mean square convergence.

But in general not the other way.
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Example 7.15. Consider fn(x) = (1− x)xn−1 on [0, 1]. Then

N∑
n=1

fn(x) =

N∑
n=1

(
xn−1 − xn

)
= 1− xN → 1 as N →∞ for all x ∈ [0, 1].

But the convergence is not uniform because

max
x∈[0,1]

∣∣1− (1− xN )
∣∣ = 1 for all N ∈ N.

On the other hand, we still have mean square convergence because∫ 1

0

∣∣1− (1− xN )
∣∣ dx =

∫ 1

0

x2Ndx =
1

2N + 1
→ 0 as N →∞.
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Definition 7.16 (Pointwise and uniform convergence). We say an infinite series
∑∞
n=1 fn(x) con-

verges pointwise to a function f in (a, b) if∣∣∣∣∣f(x)−
N∑
n=1

fn(x)

∣∣∣∣∣→ 0 as N →∞ for all x ∈ (a, b).

We say the series converges uniformly to f in [a, b] if

max
x∈[a,b]

∣∣∣∣∣f(x)−
N∑
n=1

fn(x)

∣∣∣∣∣→ 0 as N →∞

Note that for the notion of uniform convergence we include a and b.

Definition 7.17 (Mean square convergence). The serie
∑∞
n=1 fn(x) converges in mean square (or

L2) sense to f in (a, b) if ∫ b

a

∣∣∣∣∣f(x)−
N∑
n=1

fn(x)

∣∣∣∣∣
2

dx→ 0 as N →∞.

Remark 7.18. We have: uniform convergence ⇒ pointwise and mean square convergence.

But in general not the other way.

Example 7.19. Consider fn(x) = (1− x)xn−1 on [0, 1]. Then

N∑
n=1

fn(x) =

N∑
n=1

(
xn−1 − xn

)
= 1− xN → 1 as N →∞ for all x ∈ [0, 1].

But the convergence is not uniform because

max
x∈[0,1]

∣∣1− (1− xN )
∣∣ = 1 for all N ∈ N.

On the other hand, we still have mean square convergence because∫ 1

0

∣∣1− (1− xN )
∣∣ dx =

∫ 1

0

x2Ndx =
1

2N + 1
→ 0 as N →∞.

Consider

fn(x) =
n

1 + n2x2
− n− 1

1 + (n− 1)2x2
on (0, l)

N∑
n=1

fn(x) =
N

1 +N2x2
=

1

N
[

1
N2 + x2

] → 0 as N →∞ if x > 0.

So the series converges pointwise to 0.

On the other hand∫ l

0

N2

(1 +N2x2)2
dx = N

∫ Nl

0

1

(1 + y2)2
dy →∞ where y = Nx

because ∫ Nl

0

1

(1 + y2)2
dy →

∫ ∞
0

1

(1 + y2)2
dy

Hence the series does not converge in mean square sense to 0.

Also it does not converge uniformily because

max
x∈(0,l)

N

1 +N2x2
= N →∞
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Recall we have an inner product

(f, g) =

∫ b

a

f(x)g(x)dx for f, g ∈ C0([a, b])

and a norm given by ‖f‖2 =
√

(f, f). Convergence of
∑N
n=1 fn(x) to f(x) in L2 sense means that∥∥∥∥∥f −

N∑
n=1

fn

∥∥∥∥∥
2

2

→ 0

that is convergence w.r.t. the norm ‖·‖2.

Theorem 7.20 (Least Square Approximation). Let Xn, n ∈ N, be a set of eigenfunctions for the

operator − ∂2

∂x2 on [a, b] with symmetric boundary condition. In particular, we have

(Xn, Xm) =

∫ b

a

Xn(x)Xm(x)dx = 0

Let f : [a, b]→ R be continuous and hence ‖f‖2 <∞ and let N ∈ N be fixed.

Among all possible choices of N constants c1, c2, . . . , cN ∈ R the choice that minimizes

EN := EN (c1, . . . , cN ) :=

∥∥∥∥∥f −
N∑
n=1

cnXn

∥∥∥∥∥
2

2

=

∫ b

a

(
f(x)−

N∑
n=1

cnXn(x)

)2

dx

is c1 = A1, . . . , cN = AN where An = 1
‖Xn‖22

(f,Xn).

Proof.
We expand EN :

EN =

∫ b

a

(
f(x)−

N∑
n=1

cnXn(x)

)2

dx

=

∫ b

a

|f(x)|2dx− 2

N∑
n=1

cn

∫ b

a

f(x)Xn(x)dx+

N∑
n,m=1

cncm

∫ b

a

Xn(x)Xm(x)dx.

By orthogonality of the eigenfunctions the last term reduces to
∑N
n=1 c

2
n

∫ b
a
|Xn(x)|2dx. Hence

0 ≤ EN = ‖f‖22−
N∑
n=1

(f,Xn)2

‖Xn‖22
+

N∑
n=1

(f,Xn)2

‖Xn‖22
− 2

N∑
n=1

cn(f,Xn) +

N∑
n=1

c2n ‖Xn‖22

= ‖f‖22 −
N∑
n=1

(f,Xn)2

‖Xn‖22
+

N∑
n=1

‖Xn‖22

(
(f,Xn)2

‖Xn‖42
− 2cn

(f,Xn)

‖Xn‖22
+ c2n

)

= ‖f‖22 −
N∑
n=1

(f,Xn)2

‖Xn‖22
+

N∑
n=1

‖Xn‖22

(
(f,Xn)

‖Xn‖22
− cn

)2

The coefficients appear only in one place and we see that the right hand side is minimal if

cn =
1

‖Xn‖22
(f,Xn) = An.

�

Corollary 7.21 (Bessel’s Inequality).

N∑
n=1

(f,Xn)2

‖Xn‖22
=

N∑
n=1

A2
n ‖Xn‖2 ≤ ‖f‖22 .
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In particular, if ‖f‖22 =
∫ b
a
|f(x)|2dx is finite then the series

∞∑
n=1

A2
n ‖Xn‖2 =

∞∑
n=1

An

∫ b

a

|Xn(x)|2dx converges absolutely.

By the theorem we have for any collection c1, . . . , cN ∈ R:∥∥∥∥∥f −
N∑
n=1

AnXn

∥∥∥∥∥
2

= EN (A1, . . . , AN ) ≤ EN (c1, . . . , cN )

If we can find a sequence of finite linear combinations

gi =

Ni∑
n=1

cinXn with Ni →∞ for i→∞

such that gi → f in L2 sense, that is ‖gi − f‖ = EN (ci1, . . . , c
i
Ni

)→ 0, then

N∑
n=1

AnXn → f in L2 sense, and

∞∑
n=1

(f,Xn)2

‖Xn‖22
=

∞∑
n=1

A2
n ‖Xn‖22 = ‖f‖22 .

We say eigenfunctions Xn, n ∈ N, are complete if this holds for every function f ∈ C0([a, b]).

7.4. Pointwise convergence. We will prove pointwise convergence of the full Fourier series on
[−l, l] = [−π, π].

That is we consider the set of eigenfunctions sin(nx), 1, cos(nx) with periodic boundary con-
dition on [−π, π], that is the functions are periodic with period 2π: Xn(x) = Xn(x + 2π) for all
x ∈ R.

Given φ ∈ C0(R) that is periodic with period 2π, its full Fourier serie is

1

2
Ã0 +

∞∑
n=1

(
Ãn cos(nx) +An sin(nx)

)
, x ∈ [−π, π]

with Fourier coefficients

An =
1

π

∫ π

−π
φ(x) sin(nx)dx, Ã0 =

1

π

∫ π

−π
φ(x)dx, Ãn =

1

π

∫ π

−π
φ(x) cos(nx)dx, n ∈ N.

We denote

SN (x) =
1

2
Ã0 +

N∑
n=1

(
Ãn cos(nx) +An sin(nx)

)
, x ∈ [−π, π], N ∈ N

the Nth partial sum. We can rewrite this as

SN (x) =
1

2π

∫ π

−π

[
1 + 2

N∑
n=1

(cos(ny) cos(nx) + sin(ny) sin(nx))

]
φ(y)dy

This simplifies as

SN (x) =
1

2π

∫ π

−π

[
1 + 2

N∑
n=1

cos(n(x− y))

]
︸ ︷︷ ︸

=:KN (x−y)

φ(y)dy

Lemma 7.22.
1

2π

∫ π

−π
KN (θ)dθ = 1 and KN (θ) = 1 + 2

N∑
n=1

cos(nθ) =
sin
[
(N + 1

2 )θ
]

sin
(

1
2θ
) .

Proof of the Lemma.
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∫ π

−π
KN (θ)dθ =

1

2π

∫ π

−π
1dθ +

N∑
n=1

1

2π

∫ π

−π
cos(nθ)dθ = 1.

This proves the first claim.

1 + 2

N∑
n=1

cos(nθ) = 1 +

N∑
n=1

(
einθ + e−inθ

)
=

N∑
n=−N

eiNθ.

Now consider for some x ∈ C(
x−N + x−(N−1) + · · ·+ 1 + · · ·+ xN−1 + xN

)
(1− x) = x−N + . . . xN −

(
x−(N−1) + . . . xN+1

)
.

Hence

x−N + · · ·+ xN =
x−N − xN+1

1− x
=
x−N−

1
2 − xN+ 1

2

x
1
2 − x 1

2

.

If we set x = ei, it follows KN (θ) =
ei(N+ 1

2 )θ − e−i(N+ 1
2 )θ

ei
1
2 θ − e−i 1

2 θ
=

sin((N + 1
2 )θ)

sin( 1
2θ)

. �

Theorem 7.23. If φ ∈ C0(R) with periodic boundary condition with period 2π, that is φ(x+2π) =
φ(x) for all x ∈ R and if φ is differentiable (not necessarily φ ∈ C1(R)) then

1

2
Ã0 +

∞∑
n=1

(
An sin(nx) + Ãn cos(nx)

)
= φ(x) for all x ∈ R.

Proof of pointwise convergence.

We want to show that SN (x)→ φ(x) for all x ∈ R. We write

SN (x)− φ(x) =
1

2π

∫ π

−π
KN (y − x) (φ(y)− φ(x)) dy

=
1

2π

∫ π

−π
sin((N +

1

2
)(y − x))

φ(y)− φ(x)

sin( 1
2 (y − x))

dy

=
1

2π

∫ π

−π
sin((N +

1

2
)θ)︸ ︷︷ ︸

=Yn(θ)

φ(x+ θ)− φ(x)

sin( 1
2θ)︸ ︷︷ ︸

=g(θ)

dθ

The functions Yn, n ∈ N, are eigenfunction for − ∂2

∂x2 on [0, π] with mixed boundary conditions

Yn(0) = 0 and d
dθYn(π) = 0. Mixed boundary conditions are symmetric. Hence, Yn are

orthogonal w.r.t. (·, ·) on [0, π]:∫ π

0

Yn(θ)Ym(θ)dθ = 0,

∫ π

0

(Yn(θ))2dθ =
π

2
.

Since Y (−θ) = −Y (θ), they are also orthogonal on [−π, π]:∫ π

−π
Yn(θ)Ym(θ)dθ = 0,

∫ π

−π
(Yn(θ))2dθ = π.

Therefore

SN (x)− φ(x) =
1

2π

∫ π

−π
Yn(θ)g(θ)dθ =

1

2
Cn for g(θ) =

φ(x+ θ)− φ(x)

sin( 1
2θ)

,

Cn in fact the Fourier coefficient of g w.r.t. the set of orthogonal eigenfunctions Yn on [−π, π].

If we can show that
∫ π
−π |g(θ)|2dθ = ‖g‖22 <∞, then by the Bessel inequality the serie

0 ≤
∞∑
n=1

C2
n ‖Yn‖︸ ︷︷ ︸

=π

≤ ‖g‖22 <∞
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converges and hence Cn → 0. The claim is true, if g is continuous on [−π, π]. For that we only
need continuity at θ = 0 of

g(θ) =
φ(x+ θ)− φ(x)

sin( 1
2θ)

=
φ(x+ θ)− φ(x)

θ

θ

sin( 1
2θ)
→ 2φ′(θ).

�

7.5. Uniform convergence.

Theorem 7.24. The full Fourier serie of φ ∈ C1(R) periodic converges uniformily on [−π, π].

Proof of uniform convergence.

Since we assume φ ∈ C1(R) with periodic boundary condition, the function φ′ is continuous and

periodic. Hence, the full Fourier coefficients A′n and Ã′n of φ are defined. By integration by parts

An =

∫ π

−π
φ(x) sin(nx)dx = − 1

n
φ(x) cos(nx)

∣∣∣π
−π

+
1

n

∫ π

−π
f ′(x) cos(nx)dx =

1

n
Ã′n

Similar Ãn = − 1
nA
′
n.

On the other hand we know that ‖φ‖2 , ‖φ′‖2 < ∞ because φ and φ′ are continuous functions
on [−π, π]. In particular

∞∑
n=1

(
|A′n|2 + |Ã′n|2

)
<∞

It follows that
∞∑
n=1

(
|An|+ |Ãn|

)
=

∞∑
n=1

1

n
|A′n|+

∞∑
n=1

1

n
|Ã′n|

(Cauchy-Schwartz) ≤

√√√√ ∞∑
n=1

1

n2

√√√√ ∞∑
n=1

(
|A′n|+ |Ã′n|

)2

(a+ b)2 ≤ 2a2 + 2b2 ≤

√√√√ ∞∑
n=1

1

n2

√√√√ ∞∑
n=1

2
(
|A′n|2 + |Ã′n|2

)
Hence

max
x∈[−π,π]

|f(x)− SN (x)| ≤
∞∑

n=N+1

|An cos(nx) + Ãn sin(nx)| ≤
∞∑

n=N+1

|An|+ |Ãn| → 0 as N →∞.

�

In fact the following stronger theorems is true

Theorem 7.25. For every f ∈ C0(R) with periodic boundary conditions and period π its full
Fourier serie converges uniformily to f on [−π, π].
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Lecture 19

Last Lecture

Theorem 7.26. Let f ∈ C1(R) be periodic with period 2π.

Then the full Fourier serie of f

1

2
Ã0 +

∞∑
n=1

[
An sin(nx) + Ãn cos(nx)

]
converges on [−π, π] uniformily to f . Recall that the coefficients are given by

An =
1

π

∫ π

−π
f(x) sin(nx)dx, Ã0 =

1

π

∫ π

−π
f(x)dx, Ãn =

1

π

∫ π

−π
f(x) cos(nx)dx.

We also showed that

1

2
|Ã0|+

∞∑
n=1

(
|An|+ |Ãn|

)
Note that

An =
1

‖Xn‖2
(f,Xn), Ãn =

1∥∥∥X̃n

∥∥∥2 (f, X̃n) for n ∈ N

where Xn(x) = sin(nx), X̃n(x) = cos(nx) and (f, g) =
∫ π
−π f(x)g(x)dx for f, g ∈ C0(R) periodic.

But for X̃0(x) ≡ 1 the definition says

1

2
A0 =

1∥∥∥X̃0

∥∥∥2 (f, X̃0).

7.6. Application to Fourier sine and cosine serie. Consider f ∈ C1([0, π]) with Dirichlet
boundary conditions: f(0) = f(π) = 0.

Let fodd be the odd periodic extension of f to R. Then fodd ∈ C1(R) because

lim
h↓

f(h)− f(0)

h
= lim

h↓0

f(h)

h
= lim

h↓0

−f(h)

−h
= lim

h↑0

fodd(h)

h
.

We know that the full Fourier series of fodd has the form

∞∑
n=1

An sin(nx) = F(f)

and converges uniformily on [−π, π] to fodd.

Recall that

1

π

∫ π

−π
fodd(x) sin(nx)dx =

1

π

∫ 0

−π
fodd(x)︸ ︷︷ ︸
−f(−x)

sin(nx)dx+
1

π

∫ π

0

f(x) sin(nx)dx =
2

π

∫ π

0

f(x) sin(nx)dx.

Hence An = Asinn where Asinn is the Fourier sine coefficient.

Therefore, the full Fourier series F(fodd) coincides with the Fourier sine series S(f) of f on [0, π]
and we have the following

Corollary 7.27. Let f ∈ C1([0, π]) with f(0) = f(π) = 0.

Then, the Fourier sine series converges uniformily to f on [0, π].
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For f ∈ C1([0, π]) with Neumann boundary conditions (f ′(0) = f ′(π) = 0) we consider the even
periodic extension feven.

Then agan feven ∈ C1(R), the full Fourier serie converges uniformily to f and Ãn = Acosn where
Acosn are the coefficients of the Fourier cosine series.

We obtain

Corollary 7.28. For f ∈ C1([0, π]) with Neumann boundary conditions, the Fourier cosine series
of f converges uniformily to f on [0, π].

Recall that more generally one has

Theorem 7.29. Let f ∈ C0(R) be periodic with period 2π.

Then the full Fourier serie of f converges uniformily on [−π, π] to f .

Corollary 7.30. Let f ∈ C0([0, π]) with f(0) = f(π) = 0. Then, the Fourier sine series converges
uniformily to f on [0, π].

For f ∈ C1([0, π]) with Neumann boundary conditions, the Fourier cosine series of f converges
uniformily to f on [0, π].

7.7. Application: Heat equation with Dirichlet boundary conditions on [0, π]. Let f ∈
C1([0, π]) with Dirichlet boundary conditions and let fodd be the odd periodic extenstion. Then
f has an expansion as Fourier sine serie:

∞∑
n=1

An sin(nx) = f(x).

Theorem 7.31. The series

u(x, t) =

∞∑
n=1

Ane
−kn2t sin(nx)

converges uniformily on [0, π]× [0,∞).

We have u ∈ C2([0, π]× (0,∞)) ∩ C0([0, π]× [0,∞)) and u solves

ut = kux,x on [0, π]× (0,∞)

u(x, 0) = f(x) on [0, π]

u(0, t) = 0 and u(π, t) = 0 ∀t > 0.

7.7.1. Proof of the theorem. First, we have for N,M ∈ N and M > N

max
(x,t)∈[0,π]×[0,∞)

∣∣∣∣∣
M∑
n=1

Ane
−ktn2

sin(nx)−
N∑
n=1

Ane
−kn2t sin(nx)

∣∣∣∣∣
= max

(x,t)∈[0,π]×[0,∞)

∣∣∣∣∣
M∑

n=N+1

Ane
−kn2t sin(nx)

∣∣∣∣∣
≤

M∑
n=N+1

|An|e−kn
2t| sin(nx)| → 0.

We use that
∑∞
n=1 |An| < ∞ is finite, what was part of the proof of uniform convergence of the

Fourier serie for f ∈ C1(R) periodic.

Therefore, the partial sums
∑N
n=1Ane

−kn2t sin(nx) are a Cauchy sequence w.r.t. to uniform
convergence, and hence, the uniform limit

u(x, t) =

∞∑
n=1

Ane
−ktn2

sin(nx)
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exists and u(x, t) is a continuous function on [0, π] × [0,∞) and u(x, t) satisfies u(x, 0) = f(x),
u(0, t) = u(π, t) = 0. In particular, u is continuous on [0, π]× [0,∞).

Moreover, each term Ane
−ktn2

sin(nx), n ∈ N, has partial derivatives w.r.t. t and x:

−Ann2ke−ktn
2

sin(nx) and Anne
−ktn2

cos(nx)

and second derivatives w.r.t. x: −Ann2e−ktn
2

sin(nx) and solves the heat equation by the

separation of variable method. Recall the serie
∑∞
n=1 n

αe−ktn
2

converges absolutely whenever
t > 0 for all α ∈ N. Hence, it follows that the series

∞∑
n=1

Anne
−ktn2

sin(nx),

∞∑
n=1

Ann
2e−ktn

2

sin(nx)

converge uniformly on [0, π]× [t0,∞) for t0 > 0. This follows because, for instance,

max
(x,t)∈[0,π]×[t0,∞)

∣∣∣∣∣
∞∑

n=N+1

Anne
−ktn2

sin(nx)

∣∣∣∣∣ ≤
∞∑

n=N+1

|An|ne−kt0n
2

(Cauchy-Schwartz inequality) ≤

√√√√( ∞∑
n=N+1

A2
n

)( ∞∑
n=N+1

n2e−2kt0n2

)
It follows that we can compute the first and second order derivatives of u(x, t) w.r.t. x and t by

computing the partial derivatives of the partial sums:

ux(x, t) =

∞∑
n=1

Ane
−ktn2

n cos(nx), ut(x, t) =

∞∑
n=1

Ankn
2e−ktn

2

sin(nx)

on [0, π]× [t0,∞) for t0 > 0 and

kux,x(x, t) = −k
∞∑
n=1

Ann
2e−ktn

2

sin(nx) = ut(x, t) for (x, t) ∈ [0, π]× (0,∞).

In particular, u ∈ C2([0, π]× (0,∞)) and solves the heat equation. �

7.8. Complex form of the full Fourier serie. Recall that

sin(nx) =
einx − e−inx

2i
, cos(nx) =

einx + e−inx

2
.

Let f ∈ C0(R) be periodic. The full Fourier serie can be written in complex form

∞∑
n=−∞

cne
inθ = F(f)

where

cn =
1

2π

∫ π

−π
f(x)e−inxdx.

To see this we introduce a Hermitien inner product.

(f, g) =

∫ π

−π
f(x)g(x)dx for f, g ∈ C0(R,C) periodic

where g(x) = Reg(x)+Img(x) and g(x) = Reg(x)−Img(x) is the complex conjugate of the complex
number g(x).

Note that C0(R,C) is complex vector space. Xn = einx, n ∈ Z, are orthogonal w.r.t. (·, ·) and∥∥einx∥∥2

2
= (einx, einx) =

∫ π

−π
einxe−inxdx = 2π.
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In particular, the general Fourier coefficients take the form

cn =
1

‖Xn‖
(f,Xn) =

1

2π

∫ π

−π
f(x)e−inxdx.

We can interpret a 2π periodic function f on R as a function f̂ on the 1D circle S1 ⊂ R2 = C:

f(x) = f̂
(
eix
)
.

We interpret the heat equation

ut = kux,x on R
u(x, 0) = f(x) on R
u(x, t) = u(x+ 2π, t) ∀x ∈ R

with f ∈ C1(R) that is 2π periodic as heat equation on S1.

The solution is given by

u(x, t) =

∞∑
n=−∞

cne
−ktn2

einx =

∞∑
n=−∞

∫ π

−π
f(y)

∞∑
n=−∞

e−ktn
2

ein(x−y)dy

where cn are the complex Fourier coefficients of f .

We can write this formula as

u(x, t) =

∫ π

−π
f(y)KS1

(x− y, t)dy

with

KS1

(θ, t) =

∞∑
n=−∞

e−ktn
2

einθ

KS1

(θ, t) is called the fundamental solution for the heat equation or heat kernel on S1.
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Lecture 20

8. Laplace and Poisson equation, Harmonic functions

Some Preliminaries Given u ∈ C2(U) for an open subset U ⊂ Rn.

• Recall that U ⊂ Rn is open if and only if for all x ∈ U we can find εx > 0 such that

{y ∈ Rn : |x− y|2 < εx} =: Bεx(x) ⊂ U
Also recall that U denote the closure of U , that is

U =
{
x ∈ Rn : ∃(xn)n∈N ⊂ U s.t. lim

n→n
xn = x

}
Then, we define U\U = ∂U .

• A set W ⊂ Rn is called connected if there don’t exist sets U1, U2 open and disjoint such
that U1 ∩W,U2 ∩W 6= ∅ and W ⊂ U1 ∪ U2.

Or in other words, W is connected if for any pair of open and disjoint sets U1, U2 such
that W ⊂ U1 ∪ U2 it follows that either W ∩ U1 = ∅ or W ∩ U2 = ∅.

• u ∈ C2(U) if and only if all partial derivatives uxi,xj , i, j = 1 . . . n, exists and are continu-
ous.

Given u ∈ C2(U) the Laplace operator is defined by

n∑
i=1

uxi,xi =: ∆u

∆ is a map between C2(U) and C0(U).

8.1. Laplace and Poisson Equation.

Remark 8.1. Laplace Equation u ∈ C2(U) satisfies the Laplace equation in U if

∆u = 0 in U.

A function u ∈ C2(U) for some open connected set U with ∆u = 0 is called harmonic.

In one dimension the Laplace equation becomes

d2

dx2
u(x) = 0

and open, connected sets are intervals of the form (a, b) with a, b ∈ R ∪ {−∞,∞}.
Hence, harmonic functions are linear functions

u(x) = Ax+B, A,B ∈ R.

Remark 8.2. Poisson Equation Given f ∈ C0(U) the inhomogeneous version of the Laplace equa-
tion

∆u = f on U

is called the Poisson equation.

If U is a domain with smooth boundary ∂U 6= ∅, then we usually require suplementary boundary
conditions. For the Laplace equation this leads to the following boundary value problems.

Remark 8.3. Dirichlet Problem Let g ∈ C0(∂U), Does there exist u ∈ C2(U) ∩ C0(U) such that

∆u = 0 in U

u(x) = g(x) for x ∈ ∂U.
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Smooth boundary: ∂U is a smooth (n− 1)-dimensional submanifold in Rn.

In this case there is a unique tangent plan Tx∂U for every x ∈ ∂U and a unique smooth normal
vector field N : ∂U → Rn: 〈N(x), v〉 = 0 for all v ∈ Tx∂U and for all x ∈ ∂U .

Recall u ∈ C1(U) can be defined by saying there exists an open set Ũ such that U ⊂ Ũ and

there exists ũ ∈ C1(Ũ) such that ũ|U = u.

Remark 8.4. Neumann Problem Let g ∈ C0(∂U), Does there exist u ∈ C2(U) ∩ C1(U) such that

∆u = 0 in U

∂

∂N
u(x) = g(x) for x ∈ ∂U.

8.2. Physical interpretion. Physically, u ∈ C2(U) with ∆u = 0 describes a distribution in
equilibrium in U .

We can think of u as steady state solution of the diffusion equation for higher dimensions:

ut = k∆u.

To see this imagine u(x, t) as the distribution of some quantity in equilibrium in U ⊂ R3, that is
there is no change over time. That is, for any subdomain V ⊂ U we have∫

V

ut(x, t)dx =
d

dt

∫
V

u(x, t)dx = 0.

On the other, d
dt

∫
V
u(x, t)dx is equal to the total flux through the boundary of V∫

∂V

〈F(x, t), N(x)〉dx

where F(x, t) ∈ R3, x ∈ U , is the flux density. As in a previous lecture we assume Fick’s law.

Remark 8.5. The the flux – or directional change of u(x, t) in a point x at time t is proportional
to the gradient ∇u(x, t)

F(x, t) = −k∇u(x, t).

Hence, by the divergence theorem

0 =
d

dt

∫
V

u(x, t)dx =

∫
ut(x, t)dx = k

∫
V

∆xu(x, t)dx

implying that 0 = ut(x, t) = k∆xu(x, t). In particular u(x, t) = u(x) does not depend on t.

Other Interpretations

• Electrostatics.

Electric current is described by a vector field E in a domain U ⊂ R3 that satisfies

Maxwell’s equations Curl(E) =

(
∂E

∂x3
− ∂E

∂x2
,
∂E

∂x2
− ∂E

∂x1
,
∂E

∂x1
− ∂E

∂x3

)
= 0, DivE = 4πρ

where ρ is the charge density of U .

CurlE = 0 in Rn is equivalent to∫ b

a

〈E ◦ γ(t), γ′(t)〉dt = 0

for any closed curve γ ∈ C1([a, b],Rn) (γ(a) = γ(b) and γ′(a) = γ′(b)).

We know that in this case there exists a potential φ ∈ C2(Rn) such that E = ∇φ.

Hence, the vector field E is the gradient of a potential −φ that satisfies the Poisson
equation:

E(x) = −∇φ(x) ⇒ ∆φ = −4πφ(x).
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• Classical Newtonian Gravity.

Let g be the gravitational force vector field in R3 according to a mass distribution ρ.
Again one has the following laws

Curlg = 0 in R3 and Divg = −4πGρ

G is the gravitational constant.

Hence, there exists a potential function φ such that ∇φ = −g and ∆φ = −4πGρ.

• Fluid dynamics.

Recall the transport equation

ut + 〈V,∇u〉

for a vector field V ∈ C1(Rn,Rn). We studied this equation a some lectures ago and
assume that

DivV = 0

which means the flow of V is incompressible and there are no sources and sinks.

Now we also ssume V describes an irrotational flow. That means again that

CurlV = 0 in Rn.

We know that in this case there exists a potential φ ∈ C2(Rn) such that V = ∇φ.

Hence, φ satisfies the Laplace equation:

DivV = ∆φ = 0.

8.3. Polar Coordinates in R2. In R2 the Laplace operator is ∆u = ux,x + uy,y = 0.

Let us express ∆ in polar coordinates

(x(r, θ), y(r, θ)) = (r cos θ, r sin θ) for (r, θ) ∈ (0,∞)× [0, 2π).

The differential of the map (r, θ) ∈ (0,∞)× (0, 2π) 7→ (r cos θ, r sin θ) and its inverse is

D(x, y) =

(
xr yr
xθ yθ

)
=

(
cos θ sin θ
−r sin θ r cos θ

)
and [D(x, y)]−1 =

1

r

(
r cos θ − sin θ
r sin θ cos θ

)
.

Consider u in the new coordinates, that is ũ := u ◦ (x, y). We compute(
ũr
ũθ

)
=

(
−ux sin θ + uy cos θ
ux cos θ + uy sin θ

)
= D(x, y)

(
ux
uy

)
.

Here ux and uy is short for ux ◦ (x, y) and uy ◦ (x, y) respectively. Hence(
ux
uy

)
= [D(x, y)]−1

(
ũr
ũθ

)
=

(
cos θũr − 1

r sin θũθ
sin θũr + 1

r cos θũθ

)
=

(
(cos θ ∂∂r −

1
r sin θ ∂∂θ )ũ

(sin θ ∂∂r + 1
r cos θ ∂∂θ )ũ

)
.

Hence, the operator ∂
∂x transform under the coordinate change x = r cos θ, y = r sin θ into

∂

∂x
= cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ

and similar for ∂
∂y = sin θ ∂∂r + 1

r cos θ ∂∂θ . Therefore, it follows

ux,x ◦ (x, y) =

(
cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ

)(
cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ

)
ũ

=
(

cos2 θ
∂2

∂r2
+

1

r2
sin θ cos θ

∂

∂θ
− 1

r
sin θ cos θ

∂2

∂θ∂r
+

1

r
sin2 θ

∂

∂r

− 1

r
sin θ cos θ

∂2

∂θ∂r
+

1

r2
sin θ cos θ

∂

∂θ
+

1

r2
sin2 θ

∂2

∂θ2

)
ũ.
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and also

uy,y ◦ (x, y) =

(
sin θ

∂

∂r
+

1

r
cos θ

∂

∂θ

)(
sin θ

∂

∂r
+

1

r
cos θ

∂

∂θ

)
ũ

=
(

sin2 θ
∂2

∂r2
− 1

r2
sin θ cos θ

∂

∂θ
+

1

r
sin θ cos θ

∂2

∂θ∂r
+

1

r
cos2 θ

∂

∂r

+
1

r
cos θ sin θ

∂2

∂r∂θ
− 1

r2
cos θ sin θ

∂

∂θ
+

1

r2
cos2 θ

∂2

∂θ2

)
ũ.

It follows that

ux,x ◦ (x, y) + uy,y ◦ (x, y) =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)
ũ = ũr,r +

1

r
ũr +

1

r2
ũθ,θ.

Corollary 8.6. The Laplace operator is invariant w.r.t. rotations of R2 at the center.

Beweis. A rotation is linear transformation w.r.t. θ in polar coordinates. �

8.4. Spherical Coordinates in R3. Let us compute the Laplace operator ux,x+uy,y+uz,z = ∆u
in R3 in spherical coordintates

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ.

For that we first consider cylindrical coordinates

x = s cosφ, y = s sinφ, z = z.

We set ũ = u ◦ (x, y, z). Similar as for polar coordinates we obtainuxuy
uz

 =

cosφũs − 1
s sinφũφ

sinφũs + 1
s cosφũφ

ũz

 and ux,x + uy,y = ũs,s +
1

s
ũs +

1

s2
ũφ,φ.

In particular, we see uz = ũz and uz,z = ũz,z.

Then, we apply cylindrical coordinates a second time setting

z = r cos θ, s = r sin θ, φ = φ,

and setting û = ũ ◦ (s, φ, z). As before we compute

ũs = sin θûr +
1

r
cos θûθ

as well as

ũs,s + ũz,z = ûr,r +
1

r
ûr +

1

r2
ûθ,θ ⇒ uz,z = ûr,r +

1

r
ûr +

1

r2
ûθ,θ − ũs,s

and in particular ũφ = ûφ and ũφ,φ = ûφ,φ. It follows

ux,x + uy,y + uz,z = ûr,r +
1

r
ûr + +

1

r2
ûθ,θ +

1

s
ũs +

1

s2
ũφ,φ

= ûr,r +
1

r
ûr +

1

r2
ûθ,θ +

1

r sin θ

(
sin θûr +

1

r
cos θûθ

)
+

1

r2 sin2 θ
ûφ,φ

= ûr,r +
2

r
ûr +

1

r2

(
ûθ,θ +

cos θ

sin θ
ûθ +

1

sin2 θ
ûφ,φ

)
.

We can now look for special solutions of the Laplace equation in R2 or in R3 that only depend on√
x2 + y2 or

√
x2 + y2 + z2, that is r > 0 in polar or spherical coordinates.

In R2 the Laplace equation for such functions reduces to

0 = ũr,r +
1

r
ũr ⇒ 0 = rũr,r + ũr = (rũr)r ⇒ c1 = rũr.
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Hence the solutions are ũ(r) = c1 log r + c2. In Euclidean coordinates

u(x, y) = c1 log
(√

x2 + y2
)

+ c2.

In R3 the Laplace equation for such functions reduces to

0 = ûr,r +
2

r
ûr ⇒ 0 = r2ûr,r + 2rûr ⇒ c1 = r2ûr.

Hence, the solutions are û(r) = − c1r + c2. In Euclidean coordinates

u(x, y, z) = − c1√
x2 + y2 + z2

+ c2.

8.4.1. Application to Newtonian Gravity. Imagine a star in an otherwise empty universe. We model
the star as the point 0 ∈ R3 with all its mass concentrated in 0.

What does Classical Newtonian Gravity tell us about the gravitational forces in the space
around the star? We can write Newton’s law as the following Poisson equation

∆φ = 4πGρ in R3\{0} ⇒ 1

4πG
∆φ = ρ in R3\{0}

where ρ is the mass density in R3\{0}.
By assumption the universe is empty in R3\{0}. Hence, the mass density ρ is 0.

Moreover, we assume the Universe is fully isotrop and homogeneous. Hence, the gravitational
forces are the same independent of the direction and hend only depend on the distance r =√
x2 + y2 + z2 to the star at 0. Hence, the Poisson equation becomes

1

4πG

[
φ̃r,r +

2

r
φ̃r

]
= 0.

A solution is

φ̃(r) = −4πGm

r
+ c2 for constants m, c2 > 0.

We also assume that very far away from the star there is almost no gravitational pull. Hence
c2 = 0 and therefore

φ(x, y, z) = − 4πGm√
x2 + y2 + z2

and g(x, y, z) = −∇φ(x, y, z)

where m describes the mass of the star.
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Lecture 21

8.5. Some Preliminaries about connected sets. A subset U ⊂ Rn is open if and only if for
all x ∈ U we can find εx > 0 such that

{y ∈ Rn : |x− y|2 < εx} =: Bεx(x) ⊂ U .

where Bε(x) = {y ∈ Rn : |y − x|2 < ε}.
Let U ⊂ Rn be arbitrary, not necessarily open. The set

U◦ = {x ∈ U : ∃εx > 0 s.t. Bε(x) ⊂ U}

is called open interior of U .

A subset A ⊂ Rn is closed if

(xn)n∈N ⊂ A and lim
n→∞

xn = x ⇒ x ∈ A.

If U ⊂ Rn is again arbitrary,

U =
{
x ∈ Rn : ∃(xn)n∈N ⊂ U s.t. lim

n→n
xn = x

}
denotes the closure of U . The closure U of U is closed.

Fact 8.7. A subset U ⊂ Rn is open if and only if Rn\U is closed.

For U open we define U\U = ∂U , the boundary of U .

Definition 8.8 (Connected Sets). A set W ⊂ Rn is called connected if there don’t exist sets
U1, U2 open and disjoint such that U1 ∩W,U2 ∩W 6= ∅ and W ⊂ U1 ∪ U2.

Or equivalently, W is connected if for any pair of open and disjoint sets U1, U2 ⊂ Rn such that
W ⊂ U1 ∪ U2 it follows that either W ∩ U1 = ∅ or W ∩ U2 = ∅.

Recall that u ∈ C2(U) if and only if all partial derivatives uxi,xj , i, j = 1 . . . n, exists and are
continuous.

Given u ∈ C2(U) the Laplace operator is defined by

n∑
i=1

uxi,xi =: ∆u

∆ is a map from C2(U) to C0(U).

Definition 8.9 (Laplace Equation). u ∈ C2(U) satisfies the Laplace equation in U if

∆u = 0 in U.

A function u ∈ C2(U) for some open set U with ∆u = 0 is called harmonic.

Remark 8.10. In 1 dimension the Laplace equation becomes d2

dx2u(x) = 0 and open, connected sets
are intervals of the form (a, b) with a, b ∈ R ∪ {−∞,∞}. Hence, harmonic functions on open
intervals are linear functions

u(x) = Ax+B, A,B ∈ R.

8.6. Maximum Principle for harmonic functions.

Theorem 8.11. Let U ⊂ Rn be open and let u : U → R be a function such that u ∈ C2(U)∩C0(U)
be harmonic. Precisely, u ∈ C0(U) and u|U ∈ C2(U).

• Weak Maximum Principle: The maximum and the minimum value of u are attained
on ∂U :

max
x∈U

u(x) = max
x∈∂U

u(x) and min
x∈U

u(x) = min
x∈∂U

u(x)
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• Strong Maximum Principle: If U is connected and there exists x0 ∈ U such that

u(x0) = max
x∈U

u(x) or u(x0) = min
x∈U

u(x)

then u ≡ const ≡ u(x0).

Remark 8.12. The strong maximum principle implies the weak one. But we will prove both
principles separately.

Proof of the weak maximum principle.

The proof is similar to the proof of the weak maximum principle for solutions of the diffusion
equation.

Define v(x) = u(x) + ε 1
2n |x|

2 for some ε > 0. We have v ∈ C2(U) ∩ C0(U).

First, let us assume v attains its maximum value in x0 ∈ U .

Then, by the second derivative test in calculus the matrix D2v(x0) is negative semi-definite.
Equivalently, all eigenvalues of A = D2v(x0) are non-positive.

It follows that the trace of the matrix A is also non-positive. Hence

tr(A) = tr(D2v(x0)) =

n∑
i=1

vxi,xi(x) = ∆v(x0) ≤ 0.

On the other hand

∆v = ∆u+ ∆(ε
1

2n
|x|2) = 0 +

ε

2n

n∑
i=1

(x2
i )xi,xi = ε > 0

This is a contradiction.

Hence v ∈ C0(U) attains its maximum value on ∂U . We obtain the following chain of inequalities

u(x) ≤ u(x) + ε
1

2n
|x|2 ≤ v(x) ≤ max

x∈∂U
v(x) ≤ max

x∈∂U
u(x) + ε

1

2n
max
x∈∂U

|x|22 ∀x ∈ U.

Since ε > 0 was arbitrary, let ε→ 0 and it follows

u(x) ≤ max
x∈∂U

u(x) ∀x ∈ U.

�

8.6.1. Mean Value property. The mean value property for harmonic functions states that the value
of a harmonic function at any point equals its average on a ball or on sphere (spherical mean)
centered at the given point. More precisely:

Theorem 8.13 (Mean Value Property). Let u ∈ C2(U) be harmonic for U ⊂ Rn open. Then

u(x0) =
1

Vol(Br(x0))

∫
Br(x0)

u(x)dx ∀x0 ∈ U and ∀Br(x0) ⊂ U.

and

u(x0) =
1

ωn−1rn−1

∫
∂Br(x0)

u(x)dSn−1
∂Br(x0) ∀x0 ∈ U and ∀Br(x0) ⊂ U.

where ωn−1 is the (n−1)-dimensional surface of Sn−1 = {x ∈ Rn : |x| = 1}. Sn−1
∂Br(x0) is the surface

measure of ∂Br(x0).
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8.6.2. Proof of the mean value property. Let x0 ∈ U and r > 0 such that Br(x0) ⊂ U . W.l.o.g. we
can assume x0 = 0 by replacing u(x) with u(x− x0). We set Br = Br(0). Consider

φ(r) =
1

ωn−1rn−1

∫
∂Br(0)

u(x)dSn−1
∂Br

We will show that φ′(r) = 0. Then φ(r) is constant. On the other hand

lim
r→0

1

ωn−1rn−1

∫
∂Br

u(x)dSn−1
∂Br

= u(0) by continuity of u.

Indeed, for ∀ε > 0 there is δ > 0 such that ∀r ∈ (0, δ) it holds |u(0)− u(x)| ≤ ε if |x| = r. Hence∣∣∣∣ 1
ωn−1rn−1

∫
∂Br

u(x)dSn−1
∂Br
− u(0)

∣∣∣∣ ≤ lim
r→0

1
ωn−1rn−1

∫
∂Br

|u(x)− u(0)|dSn−1
∂Br
≤ ε

ωn−1rn−1

∫
dSn−1

∂Br
.

Let us show that φ′(r) = 0. For that we first observe that

1

ωn−1rn−1

∫
∂Br

u(x)dSn−1
∂Br

(x) =
1

ωn−1

∫
∂B1

u(rx)dSn−1
∂B1

(x)

Then
d

dr

∫
∂B1

u(rx)dSn−1
∂B1

(x) =

∫
∂B1

〈∇u(rx),x〉dSn−1
∂B1

(x) =
1

rn−1

∫
∂Br

〈∇u(rx),
x

r
〉dSn−1

∂Br
(x)

We could exchange integration w.r.t. x and differentiation w.r.t. r, because r ∈ [0, R) 7→ u(rx) ∈
C1([0, R)) (because u ∈ C1(U)) as long as BR(0) ⊂ U .

By the divergence theorem the right hand side is equal to
∫
Br

∆u(x)dx = 0.

Hence φ′(r) = 0 for r ∈ [0, R) and R > 0 as before.

It follows that φ(r) = const = c on [0, R) and since φ(r)→ u(0) for r → 0 we have c = u(0). �
Proof of the strong maximum principle. see next lecture.
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Lecture 22.

Remark 8.14. Laplace Equation u ∈ C2(U) satisfies the Laplace equation in U if

∆u = 0 in U.

A function u ∈ C2(U) for some open set U with ∆u = 0 is called harmonic.

Maximum Principle for harmonic functions

Theorem 8.15. Let U ⊂ Rn be open and let u : U → R be a function such that u ∈ C2(U)∩C0(U)
be harmonic.

• Weak Maximum Principle: The maximum and the minimum value of u are attained
on ∂U :

max
x∈U

u(x) = max
x∈∂U

u(x) and min
x∈U

u(x) = min
x∈∂U

u(x)

• Strong Maximum Principle: If U is connected and there exists x0 ∈ U such that

u(x0) = max
x∈U

u(x) or u(x0) = min
x∈U

u(x)

then u ≡ const ≡ u(x0).

Remark 8.16. Connected sets A subset W ⊂ Rn is connected if for any pair of open and disjoint
sets U1, U2 ⊂ Rn such that W ⊂ U1 ∪ U2 it follows that either W ∩ U1 = ∅ or W ∩ U2 = ∅.

Theorem 8.17 (Mean Value Property). Let u ∈ C2(U) be harmonic for U ⊂ Rn open. Then, it
holds

u(x0) =
1

Vol(Br(x0))

∫
Br(x0)

u(x)dx ∀x0 ∈ U and ∀Br(x0) ⊂ U.

and

u(x0) =
1

ωn−1rn−1

∫
∂Br(x0)

u(x)dSn−1
∂Br(x0) ∀x0 ∈ U and ∀Br(x0) ⊂ U.

where ωn−1 is the (n− 1)-dimensional surface of ∂B1(0) = Sn−1 = {x ∈ Rn : |x| = 1}.

8.7. Proof of the strong maximum principle. Let u ∈ C2(U) ∩ C0(U) be harmonic for a
connected and open subset U ⊂ Rn.

Assume there exists x0 ∈ U such that u(x0) = maxx∈U u(x) =: M .

We define

V = {x ∈ U : u(x) = M} 6= ∅.

as well W = U\V .

Claim: V is open.

Proof of the Claim. Pick x ∈ V and r > 0 such that Br(x) ⊂ U . By the mean value property

M = u(x) =
1

vn(r)

∫
∂Br(x)

u(y)dy ≤M.

Hence

0 =
1

vn(r)

∫
∂Br(x)

(u(y)−M)dy = 0

Since u(y)−M ≤ 0, it follows u(y) = M on Br(x). Hence Br(x) ⊂ V .

Claim: W = U\V is open.
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Proof of the Claim. If x ∈ W , then |u(x) − M | > 0. Since u is continuous there exists δ

such that |y − x| < δ implies |u(y) − u(x)| ≤ |M−u(x)|
2 . Then it follows that |u(y) − M | ≥

|u(x)−M | − |u(y)− u(x)| ≥ |M−u(x)|
2 > 0. Hence Bδ(x) ⊂W and therefore W is open.

Finally, since U is connected and since V and W are open, either V = ∅ or W = ∅. But since
x0 ∈ V and therefore V 6= ∅, it follows W = ∅ and U = V . �

8.8. Poisson Formula. Our goal is to solve the Dirichlet problem on a disk Ba(0) = {x ∈ R2 :
|x|2 ≤ a} in R2.

Let Ba(0) = {x ∈ R2 : |x|2 < a}, and ∂Ba(0) = Ba(0)\Ba(0).

Definition 8.18. Dirichlet Problem for the Laplace equation on Ba(0) Let h ∈ C0(∂Ba(0)).

Find u ∈ C2(Ba(0)) ∩ C0(Ba(0)) such that

ux,x + uy,y = 0 in Ba(0)

u = h in ∂Ba(0)

For that we first consider ux,x + uy,y = 0 in polar cooardinates:

0 = ũr,r +
1

r
ũr +

1

r2
ũθ,θ

where ũ(r, θ) = u(r cos θ, r sin θ) and r > 0 and θ ∈ R.

Similar, we can rewrite the boundary data h as h̃(θ) = h(a cos θ, a sin θ).

Note that h̃(θ), θ ∈ R, is 2π-periodic. We apply the method of separation of variables to the
Laplace equation in polar coordinates (compare with exercise): Assume ũ(r, θ) = R(r)Θ(θ). Then

R′′(r)Θ(θ) +
1

r
R′(r)Θ(θ) = − 1

r2
R(r)Θ′′(θ)

Hence

r2R′′(r) + rR′(r)

R(r)
= −Θ′′(θ)

Θ(θ)
= λ = const.

The general solution for Θ is

Θ(θ) =


A cos(

√
λθ) +B sin(

√
λθ), λ > 0,

A+Bx, λ = 0,

A cosh(
√
−λθ) +B sinh(

√
−λ), λ < 0

Since Θ is periodic, we only have to consider the cases λ > 0 and λ = 0 for B = 0.

Moreover, by evaluation of the function for the points 0 and 2π we see that λ = n2, n ∈ N∪{0}.

The equation for R becomes

r2R′′(r) + rR′(r)− n2R(r) = 0.

Solutions for n ∈ N are rn, r−n and Crn +Dr−n for C,D ∈ R, and log r, C and C +D log r for
n = 0.

Since we are looking for smooth solutions u on Ba(0) that are continuous we can assume that
D = 0.

Now we consider infinite sums of the form

ũ(r, θ) =
1

2
A0 +

∞∑
n=1

rn (An cos(nθ) +Bn sin(nθ)) .(44)
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Finally, let us bring the boundary condition into play. At r = a we require

h̃(θ) =
1

2
A0 +

∞∑
n=1

an (An cos(nθ) +Bn sin(nθ)) .(45)

So, assuming that h̃ ∈ C1(R) (and 2π-periodic) this is the full Fourier series that converges
uniformily and the Fourier coefficients are uniquely determined by the formulas

A0 =
1

π

∫ π

−π
h̃(φ)dφ, An =

1

anπ

∫ π

−π
h̃(θ) sin(nφ)dφ, Bn =

1

anπ

∫ π

−π
h̃(φ) cos(nφ)dφ.

Uniform convergence of (45) implies uniform convergence of (44). By replacing An and Bn
with the Fourier coefficients of h we can rewrite the formula for u as

ũ(r, θ) =
1

π

∫ π

−π

[
1

2
+

∞∑
n=1

( r
a

)n
(sin(nθ) sin(nφ) + cos(nφ) cos(nθ))

]
h(θ)dθ

=

∫ π

−π

[
1 + 2

∞∑
n=1

( r
a

)n
cos(n(θ − φ))

]
dπ

2π

Recall cos θ = eiθ+eiθ

2 and the formula
∑∞
n=1 z

n = z
1−z for z ∈ C with |z| < 1. Hence

1 + 2

∞∑
n=1

( r
a

)n
cos(n(θ − φ)) = 1 +

∞∑
n=1

( r
a

)n
ein(θ−φ) +

∞∑
n=1

( r
a

)n
e−in(θ−φ)

= 1 +
rei(θ−φ)

a− rei(θ−φ)
+

re−i(θ−φ)

a− re−i(θ−φ)

= 1 +
rei(θ−φ)(a− re−i(θ−φ))− re−i(θ−φ)(a− rei(θ−φ))

(a− rei(θ−φ))(a− re−i(θ−φ))

=
a2 − r2

a2 − ar2 cos(θ − φ) + r2
.

We get

Remark 8.19. Poisson solution formula for the Laplace equation on the disk

ũ(r, θ) =
1

2π

∫ π

−π

h(φ)(a2 − r2)

a2 − 2ar cos(θ − φ) + r2
dφ

We can also write this formula again in Euclidean coordinates.

For that note that an infinitesimal length segement of the boundary ∂Ba(0) is given by ds = adφ
where dφ is the infinitesimal angle of the segment ds.

Also note that for x = (r, θ) and y = (s, φ) we have

|x− y|2 = r2 + s2 − 2rs cos(θ − φ)

by the cosine rule. It follows that

Proposition 8.20. Poisson formula, second version

u(x) =
a2 − |x|2

2πa

∫
∂Ba(0)

u(y)

|x− y|2
ds(y).

Theorem 8.21. Let h ∈ C0(∂Ba(0)) be given in polar coordinates by h(a cos θ, a sin θ) = h̃(θ) for

h̃ ∈ C0(R) that it 2π periodic. Then the Poisson formula provides the unique harmonic function
on Ba(0) for which

lim
x→x0

u(x) = h(x0) ∀x0 ∈ ∂Ba(0).
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Proof of the Theorem Uniqueness follows by the weak maximum principle.

Given the h̃ as in the theorem the Poisson formula yields

ũ(r, θ) =

∫ π

−π
P (r, θ − φ)h̃(φ)

dφ

2π
=

∫ π

−π
P (r, φ)h̃(θ − φ)

dφ

2π
(46)

where P (r, θ) = a2−r2

a2−2ar cos θ+r2 is the Poisson kernel.

We have 3 important facts

• P (r, θ) > 0 because 0 < r < a and a2 − 2ar cos θ + r1 ≥ a2 − 2ar + r2 = (a− r)2.
•
∫ π
−π P (r, θ) dθ2π = 1 by piecewise integration of the previous series.

• P (r, θ) solve the Laplace equation on Ba(0). Moreover P (r, θ) ∈ C2([0, a)× R).

The last fact allows us to differentiate under the integral in (46) and we can check that

ũr,r +
1

r
ũr +

1

r2
ũθ,θ =

∫ π

−π

[
∂2

∂r2
P (r, θ − φ) +

1

r

∂

∂r
P (r, θ − φ) +

1

r2

∂2

∂θ2
P (r, θ − φ)

]
︸ ︷︷ ︸

=0

h̃(φ)
dφ

2π
.

So ũ is harmonic on Ba(0). It remains to prove that ũ(r, θ)→ h(θ0) if (r, θ)→ (a, θ).

For that let us consider r ∈ [0, a) such that a− r < δ. We have

u(r, θ)− h(θ0) =

∫ π

−π
P (r, θ − φ)[h(φ)− h(θ0)]

dφ

2π

by the second fact.

But P (r, θ) is concentrated in θ = 0 in the sense that for θ ∈ (δ/2, 2π − δ/2) we have

|P (r, θ)| = a2 − r2

a2 − 2ar cos θ + r2
=

a2 − r2

(a− r)2 + 4ar sin2(θ/2)
< ε.(47)

for some δ > 0 and a− r small. (We used 1− cos θ = cos( θ2 −
θ
2 )− cos( θ2 + θ

2 ) = −2 sin2( θ2 ))

Now we break the integral into two pieces:

|u(r, θ)− h(θ0)| ≤
∫ θ0+δ

θ0−δ
P (r, θ − φ)|h(φ)− h(θ0)|dφ

2π
+

∫
|φ−θ0|>δ

P (r, θ − φ)|h(φ)− h(θ0)|dφ
2π

Given ε > 0 we can choose δ > 0 small such that |h(φ)− h(θ0)| < ε for |φ− θ0| < δ.

Hence, the first integral can be estimated by∫ θ0+δ

θ0−δ
P (r, θ − φ)ε

dφ

2π
≤
∫ π

−π
P (r, θ − φ)

dφ

2π
= ε.

For the second integral we use (47) and that h is bounded on ∂Ba(0) by a constant M :∫
|φ−θ0|>δ

P (r, θ − φ)2M
dφ

2π
≤ ε2M

provided |θ − θ0| < δ
2 .

Application: Mean Value Property, 2n Proof. Let u be harmonic on U and let Br(x0) ⊂ U .
We replace u(x) with u(x−x0) and Br(x0) and U with Br(0) with U−x0. By Poisson’s formula

u(0) =
r2 − 02

2πr

∫
∂Br(0)

u(y)

|y − 0|2
ds(y) =

r2

2πr

∫
∂Br(0)

u(y)

r2
ds(y) =

1

ω1r

∫
∂Br(0)

f(y)ds(y).
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Lecture 23
Recall the notation

Ba(0) = {x = (x1, x2) ∈ R2 : |x| < a} = Ba, Ba(0) = {x = (x1, x2) ∈ R2 : |x| ≤ a} = Ba.

Moreover Ba\Ba =: ∂Ba.

Definition 8.22 (Dirichlet Problem for the Laplace equation on Ba). Let h ∈ C0(∂Ba).
Find u ∈ C2(Ba) ∩ C0(Ba) such that

∆u = ux1,x1 + ux2,x2 = 0 in Ba & u = h in ∂Ba.(48)

Polar coordinates: (x1, x2) = (r cos θ, r sin θ), r ∈ (0,∞), θ ∈ R.

Definition 8.23 (Dirichlet Problem for the Laplace equation on Ba in polar coordinates). Let

h̃(θ) ∈ C0(R) with h̃(θ + 2π) = h̃(θ) (for isnstance we choose h̃(θ) = h(a cos θ, a sin θ)).

Find ũ ∈ C2((0, a)× R) ∩ C0((0, a]× R) such that

∆̃ũ = ũr,r +
1

r
ũr +

1

r2
ũθ,θ = 0 in (0, a)× R & ũ(a, θ) = h̃(θ) for θ ∈ R.(49)

and

ũ(r, θ) = ũ(r, θ + 2π) for r ∈ (0,∞), θ ∈ R & lim sup
r→0

|ũ(r, θ)| <∞.

Theorem 8.24 (Poisson Formula in Polar coordinates). The unique solution of the Dirichlet
Problem (49) is given by the Poisson formula

ũ(r, θ) =
a2 − r2

2π

∫ 2π

0

h̃(φ)

a2 − 2ar cos(θ − φ) + r2
dφ =

∫ 2π

0

P (r, θ − φ)h̃(φ)
dφ

2π
.

where

P (r, θ) =
a2 − r2

a2 + r2 − 2ar cos(θ)

is called the Poisson kernel.

Theorem 8.25 (Poisson Formula in Euclidean coordinates). The unique solution u ∈ C2(Ba) ∩
C0(Ba) of (48) is given by

u(x) =
a2 − |x|2

2πa

∫
∂Ba

h(y)

|x− y|2
ds(y).

In particular, we showed that

ũ(r, θ)→ h̃(θ0) if (r, θ)→ (a, θ0).

In fact, from the proof we can see that this convergence is uniform w.r.t. θ:

sup
θ0

|ũ(r, θ0)− h̃(θ0)| → 0 if r → a.

8.9. Consequences of the Poisson formula in polar coordinates. Recall the L2 or mean
square norm ∥∥∥h̃∥∥∥

2
=

√∫ 2π

0

(h̃(θ))2dθ.

for h̃ ∈ C0(R) that is 2π-periodic.
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Theorem 8.26 (Mean square convergence of the Full Fourier series). Let h̃ ∈ C0(R) that is 2π-

periodic. Then, the full Fourier serie of h̃ converges in L2 or mean square sense to h̃. More
precisely ∥∥∥h̃− SN∥∥∥

2
→ 0 for N →∞.

where SN are the partial sums of the full Fourier series of h̃.

Proof. In the proof of the Poisson formula we saw that

P (r, θ − φ) = 1 + 2

∞∑
n=1

( r
a

)n
(sin(nθ) sin(nφ) + cos(nθ) cos(nφ))

uniformily in φ, θ ∈ R and r ∈ [c, d] ⊂ (0, a).

We insert this back into Poisson’s formula. By uniform convergence we can exchange integration
w.r.t. φ and summation w.r.t. n ∈ N. It follows

ũ(r, θ) =

∫ 2π

0

h(φ)
dφ

2π︸ ︷︷ ︸
=A0(r)

+

∞∑
n=1

(( r
a

)n ∫ 2π

0

h̃(φ) cos(nφ)
dφ

π

)
︸ ︷︷ ︸

=:An(r)

cos(nθ)

+

∞∑
n=1

(( r
a

)n ∫ π

0

h̃(φ) sin(nφ)
dφ

2π

)
︸ ︷︷ ︸

=:Bn(r)

sin(nθ).(50)

The right hand side is still a uniformily converging series in θ ∈ R. Hence, after multiplying with
sin(kθ), k ∈ N, cos(kθ), k ∈ N or 1, and then integrating w.r.t. θ over [0, 2π] we get that An(r)
and Bn(r) are the Fourier coefficients of θ 7→ ũ(r, θ) and (50).

We denote the Fourier partial sums SN (r, θ) = A0(r) +
∑N
n=1 (An(r) cos(nθ) +Bn(r) sin(nθ)) .

SN (r, ·) converges uniformily to ũ(r, ·) if 0 < r < a.

Note that An(a), Bn(a) become the Fourier coefficients of h̃ and that

An(r) =
(
r
a

)n
An(a), Bn(r) =

(
r
a

)n
Bn(a), n ∈ N.

Hence SN (a, ·) = SN (·) are the partial sums of the Fourier serie of h̃.

But we don’t know if SN converges uniformily to h̃.
Recall ∥∥∥h̃∥∥∥

2
=

√∫ 2π

0

(h̃(θ))2dθ ≤ sup
θ∈R
|h̃(θ)|.

It follows

0 <
∥∥∥h̃− SN (·)

∥∥∥
2
≤

∥∥∥h̃− ũ(r, ·)
∥∥∥

2︸ ︷︷ ︸
≤supθ∈R|h̃(θ)−ũ(r,θ)|

+
∥∥ũ(r, ·)− SN (r, ·)

∥∥
2︸ ︷︷ ︸

≤supθ∈R|ũ(r,θ)−SN (r,θ)|

+
∥∥SN (r, ·)− SN (·)

∥∥
2︸ ︷︷ ︸

≤|( ra )
n−1|‖SN (·)‖2

.

Given η > 0 we pick r ∈ (0, a) close to a such that

sup
θ

∣∣∣h̃(θ)− ũ(r, θ)
∣∣∣ ≤ η &

∣∣∣( r
a

)n
− 1
∣∣∣ ≤ η

Moreover, by Bessel’s inequality, we have∥∥SN (·)
∥∥2

2
= A2

0 +

N∑
n=1

(A2
n +B2

n) ≤
∥∥∥h̃∥∥∥2

2
.
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Hence ∥∥∥h̃− SN (·)
∥∥∥

2
≤ η + sup

θ∈R
|ũ(r, θ)− SN (r, θ)|+ η

∥∥∥h̃∥∥∥
2

Therefore

lim sup
N→∞

∥∥∥h̃− SN (·)
∥∥∥

2
≤ lim sup

N→∞

(
η + sup

θ∈R
|ũ(r, θ)− SN (r, θ)|+ η

∥∥∥h̃∥∥∥
2

)
≤ η(1 +

∥∥∥h̃∥∥∥
2
).

Since η > 0 was arbitrary, lim supN→∞

∥∥∥h̃− SN (·)
∥∥∥

2
= limN→∞

∥∥∥h̃− SN (·)
∥∥∥

2
= 0. �

More Consequences. Let Ω ⊂ R2 be open. u ∈ C2(Ω) harmonic if and only if ∆u = 0 on Ω.

Theorem 8.27. Mean value property Let u ∈ C2(Ω) be harmonic. Then

u(x) =
1

2πa

∫
∂Ba(x)

u(y)ds(y) =
1

vol(Ba(x))

∫
Ba(x)

u(y)dy

for any a > 0 such that Ba(x) ⊂ Ω.

Theorem 8.28. Liouville theorem Let u ∈ C2(R2) be harmonic and sup |u| ≤ C <∞.

Then u(x) ≡ const.

Theorem 8.29. Let Ω ⊂ R2 open and u ∈ C0(Ω) such that the mean value property holds:

u(x) =
1

2πa

∫
∂Ba(x)

u(y)ds(y) for a > 0 whenever Ba(x) ⊂ Ω.

It follows u ∈ C∞(Ω) and u is harmonic.
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Lecture 24

Let h ∈ C0(R) 2π-periodic. We showed that the full Fourier series of h converges in L2-sense
to h.

Remark 8.30. More generally, the following holds.
If h is a 2π-periodic function that is integrable on [0, 2π] (or on any interval of length 2π) s.t.∫ 2π

0
(h(x))2dx <∞ then the full Fourier series of h converges in L2-sense to h.

This follows because we can approximate any 2π-periodic function that is integrable on [0, 2π]

with
∫ 2π

0
h(x)2dx <∞ in L2-sense by a sequence of 2π periodic, continuous functions. I will omit

details.

Corollary 8.31 (Parseval Identity).

(
1

2
A0)2

∫ 2π

0

1dx+

∞∑
n=1

A2
n

∫ 2π

0

cos(nx)2dx+

∞∑
n=1

B2
n

∫ 2π

0

sin(nx)2dx =

∫ 2π

0

[h(x)]2dx.

Proof. Follows directly from the Least Square Approximation Theorem. �

Application. Let h(x) be the periodic extension of x on [−π, π]. Then∫ 2π

0

h(x)2dx =

∫ π

−π
x2dx =

2

3
π3 <∞

Moreover, since x is an odd function on [−π, π], we compute that An = 0 and

Bn =

∫ 2π

0

h(x) sin(nx)dx = (−1)n+1 2

n
, B2

n =
4

n2
.

Hence, by Parseval’s inequality it follows
∑∞
n=1

1
n2 = π2

6 .

Theorem 8.32 (Liouville Theorem). Let u ∈ C2(R2) be harmonic s.t. |u(x)| ≤ C <∞ ∀x ∈ R2.
Then u ≡ const.

Proof. We pick x = x,y = x ∈ R2, r > 0 and set R = r+|x−y|2 where |x−y|2 =
√∑2

i=1(xi − y)2.

It follows Br(x) ⊂ BR(y).
Since u is harmonic and −C ≤ u ≤ C, û = u+ C > 0 is harmonic as well.
Applying the mean value property for û yields

û(x) =
1

vol(Br(x))

∫
Br(x)

û(z)dz

(û ≥ 0) ≤ 1

vol(Br(x))

∫
BR(y)

û(z)dz =
vol(BR(y))

vol(Br(x))
û(y) =

(r + |x− y|2)2

r2
û(y)→ û(y).

Hence u(x) ≤ u(y). Exchanging the role of x and y yields u(x) = u(y), and since x and y were
arbitrary we obtain the result. �

Theorem 8.33. Let Ω ⊂ R2 be open and u ∈ C0(Ω) satisfy the mean value property

u(x) =
1

vol(Br(x))

∫
Br(x)

u(z)dz ∀x ∈ Ω and ∀r > 0 s.t. Br(x) ⊂ Ω.

Then u ∈ C∞(Ω) and u is harmonic.

Proof. Pick φ ∈ C∞0 (B1) s.t.
∫
R2 φ(x)dx =

∫
B1
φ(x)dx = 1 whereB1 = B1(0) =

{
x ∈ R2 : x2

1 + x2
2 < 1

}
and radial φ(x) = ψ(|x|).

Applying the transformation formula for polar coordinates we see

1 =

∫
φ(x)dx =

∫ 2π

0

∫ 1

0

φ(r cos θ, r sin θ)rdrdθ = 2π

∫ 1

0

rψ(r)dr.
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We also define φε(x) = 1
ε2φ(x/ε). In particular φε ∈ C∞0 (Bε).

Let us pick y ∈ Ω and ε > 0 s. t. Bε(y) ⊂ Ω. Then∫
R2

u(z)φε(z − y)dy =

∫
Bε(y)

u(z)φε(z − y)dz =

∫
Bε

u(z + y)︸ ︷︷ ︸
=:f(z)

φε(z)dz

[
f̃(r, θ) := f(r cos θ, r sin θ)

]
=

∫ 2π

0

∫ ε

0

(̃r, θ)
1

ε2
ψ(r/ε)rdrdθ

=

∫ ε

0

∫ 2π

0

f̃(r, θ)rdθ︸ ︷︷ ︸∫
∂Br(0)

f(z)ds(z)=2πrf(0)

1

ε2
ψ(r/ε)dr = u(y).(51)

Since φε ∈ C∞0 (Bε), for the left hand side we compute

∂

∂yi

∫
R2

u(z)φε(z − y)dy =

∫
R2

u(z)
∂

∂yi
[φε(z − y)]dy, i = 1, 2.

Hence, all partial derivatives of u exist in y. The right hand side of (51) is continuous w.r.t. y
because y 7→ ∂

∂yi
[φε(· − y)] is continuous w.r.t. uniform convergence. Hence u ∈ C1(Ω).

Similarly, we can compute all higher order partial derivatives and hence u ∈ C∞(Ω).
u is harmonic. x ∈ Ω. By the mean value property

u(x) =
1

2πr

∫
∂Br

u(y)ds(y) =
1

2πr

∫ 2π

0

u(r cos θ, r sin θ)rdθ ∀r > 0 s.t. Br(x) ⊂ Ω.

We set u(y + x) = f(y). we compute

0 =
d

dr

∫ 2π

0

f(r cos θ, r sin θ)dθ =

∫ 2π

0

〈∇f(r cos θ, r sin θ),

(
cos θ
sin θ

)
〉dθ

=
1

r

∫ 2π

0

〈∇f(r cos θ, r sin θ), N(r cos θ, r sin θ)〉rdθ =
1

r

∫
∂Br(x)

〈∇u,N〉ds(x) =
1

r

∫
Br(x)

∆udx.

where N(r cos θ, r sin θ) =

(
cos θ
sin θ

)
is the unite normal for ∂Br(0) in (r cos θ, r sin θ). �

Remark 8.34. The previous results hold in any dimension n ≥ 1.

9. Green Identities and Green function

9.1. Green Identities. Let Ω ⊂ Rn be open with smooth boundary. Let u ∈ C2(Ω) and v ∈
C1(Ω). One computes the following

∇ · (v∇u) = Div(v∇u) =

n∑
i=1

∂

∂xi

(
v
∂u

∂xi

)
= 〈∇v,∇u〉+ v∆u in Ω.

(1) First Green Identity. For u ∈ C2(Ω) and v ∈ C1(Ω) it holds∫
Ω

〈∇v,∇u〉dx+

∫
Ω

v∆u =

∫
Ω

Div(v∇u)dx =

∫
∂Ω

〈N, v∇u〉ds =

∫
∂Ω

v〈N,∇u〉ds

where N is the unite normal vector field along the boundary of Ω.
We used the divergence theorem for the second equality.

(2) Second Green Identity. If u, v ∈ C2(Ω), then∫
U

v∆udx−
∫
u∆vdx =

∫
∂U

v
∂u

∂N
ds−

∫
∂U

u
∂v

∂N
ds

where ∂u
∂N (x) = 〈N(x),∇u(x)〉 and the same for v.
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9.2. Dirichlet Principle. Physical Idea: Among all functions u on Ω that describe a possible
state of physical system, the prefered state is the one with minimal kinetic energy.

States of the system: u ∈ C1(Ω).

Boundary condition: u|∂Ω = h, h ∈ C1(Ω).

Kinetic Energy: E(u) =
1

2

∫
Ω

|∇u|2dx (Dirichlet energy).

Theorem 9.1. Let Ω ⊂ Rn be open with smooth boundary ∂Ω. A function u ∈ C2(Ω) is the unique
harmonic function with u|∂Ω = h if and only if it minimizes E w.r.t. all w ∈ C1(Ω) s.t. u|∂Ω = h.
More precisely

E(u) ≤ E(w) ∀w ∈ {w ∈ C1(Ω) : w|∂Ω = h} =: E .

Proof. Let u ∈ E be harmonic and w ∈ E . Set v := u − w. Then v|∂Ω = 0. With Green’s first
identity we compute

E(w) =
1

2

∫
Ω

|∇(u− v)|2dx =
1

2

∫
Ω

[
|∇u|2 − 2〈∇u,∇v〉+ |∇v|2

]
dx

= E(u) + E(v)︸ ︷︷ ︸
≥0

+

∫
Ω

v∆udx−
∫
∂Ω

v
∂u

∂N
dx ≥ E(u).

Now, assume u ∈ E minimizes the Dirichlet energy. Let φ ∈ C1
c (Ω). Then u+ tφ ∈ E ∀t ∈ R and

E(u+ tφ) = E(u) +
1

2
t

∫
Ω

〈∇u,∇φ〉dx+ t2E(φ).

Hence t 7→ E(u + tφ) is a Polynomial and continuously differentiable. Since u minimizes E, it
follows

0 =
d

dt

∣∣∣
t=0

E(u+ tφ) =
1

2

∫
〈∇u,∇φ〉dx = −1

2

∫
Ω

φ∆udx+

∫
∂Ω

φ
∂u

∂N
ds︸ ︷︷ ︸

=0

∀φ ∈ C2
c (Ω).

The fundamental theorem of Calculus of Variations yields ∆u = 0 on Ω. �

Remark 9.2.

Ck0 (Ω) =
{
φ ∈ Ck(Ω) : φ|∂Ω = 0

}
, Ckc (Ω) =

{
φ ∈ Ck(Ω) : {x ∈ Ω : φ(x) 6= 0} ⊂ Ω compact

}
.
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9.3. Representation formula.

Theorem 9.3 (Representation formula). Let n = 3 and Ω ⊂ R3 with smooth boundary. Let
u ∈ C2(Ω) and x ∈ Ω. Then

u(x) =

∫
∂Ω

[
−u(y)

∂

∂N

(
1

|y − x|

)
+

1

|y − x|
∂u

∂N
(y)

]
ds

4π
.

Proof. Recall Φ(x) := − 1
4π

1
|x| is harmonic on R3\{0}. Especially Φ(y − x) =: v(y) is harmonic on

R3\{x}.
Pick ε > 0 and such that Bε(x) ⊂ Ω and define Ωε = Ω\Bε(x). Hence Ωε is open and has

smooth boundary.
By Green’s second identity

0 =

∫
Ωε

(v∆u− u∆v) dx =

∫
∂Ωε

(
v
∂u

∂N
− u ∂v

∂N

)
ds

=

∫
∂Ω

(
v
∂u

∂N
− u ∂v

∂N

)
ds+

∫
∂Ωε

(
v
∂u

∂N
− u ∂v

∂N

)
ds.

The first integral on the RHS is minus the RHS of the displayed equation in the theorem. For the
second term on the RHS we compute

2n term, RHS =

∫
∂Bε(0)

[
− 1

4π|y|
∂u

∂N
(y + x)︸ ︷︷ ︸

=:f(y)

+u(y + x)︸ ︷︷ ︸
=:g(y)

∂

∂N

1

4π|y|

]
ds(y) = (∗)

Let us introduce spherical coordinates (r cos θ sinφ, r sin θ sinφ, r cosφ) and define f̃(ε, θ, φ) =
f(ε cos θ sinφ, ε sin θ sinφ, ε cosφ) and similarly for g. Note that for inward point normal field
N on ∂Bε(0) one has ∂

∂N = − d
dr . Then

(∗) =

∫ 2π

0

∫ π

0

[
− 1

4πε
f̃(θ, φ)− g̃(ε, θ, φ)

∂

∂r

∣∣∣
r=ε

(
1

4πr

)]
ε2 sinφdφdθ

=

∫ 2π

0

∫ π

0

[
− 1

4πε
f̃(ε, θ, φ) + g̃(ε, θ, φ)

1

4πε2

]
ε2 sinφdφdθ

=
ε

4π

∫ 2π

0

∫ π

0

−f̃(ε, θ, φ) sinφdφdθ +
1

4πε2

∫ 2π

0

∫ π

0

g̃(ε, θ, φ)ε2 sinφdφdθ︸ ︷︷ ︸
→ 1

4π

∫ 2π

0

∫ π
0
u(x) sinφdφdθ = u(x)

We will show that the first integral tends to 0. First, we observe that

|f(y)| = | ∂u
∂N

(y + x)| = |〈N(y + x),∇u(y + x)〉| ≤ |∇u(y + x)|.

Since u ∈ C2(Ω), |∇u| is continuous. Hence, given C > 0 we can pick ε0 > 0 such that

|∇u|(y + x) ≤ |∇|(x) + C ∀y ∈ ∂Bε(0) and ε ∈ (0, ε0).

Hence, for the first integral on the RHS we estimate

ε

4π

∣∣∣∣∫ 2π

0

∫ π

0

f̃(ε, θ, φ) sinφdφdθ

∣∣∣∣ ≤ ε

4π

∫ 2π

0

∫ π

0

|f̃(ε, θ, φ)| sinφdφdθ

≤ ε

4π

∫ 2π

0

∫ π

0

(|∇(x)|+ C) sinφdφdθ = ε(|∇u|(x) + C).

So when ε tends to 0, this proves the claim. �
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Representation formula in 2D. Let Ω ⊂ R2 with smooth boundary and let u ∈ C2(Ω) be
harmonic. Then

u(x) =

∫
∂Ω

[
u(y)

∂

∂N
log |y − x| − log |y − x| ∂u

∂N
(y)
]ds(y)

2π
.

Definition 9.4 (Fundamental solution). The harmonic function

x ∈ Rn\{0} 7→ Φn(x) =

{
1

2π log |x|,
− 1
n(n−2) vol(B1(0))

1
|x|n−2

is called the fundamental solution for the Laplace equation.

Remark 9.5. Using Φn(x) one derives a Representation formula for any n ∈ N.

9.4. Green’s function. Goaol: Given Ω ⊂ Rn with smooth boundary, we want to modify Φn
s.t. the second term in the Repres. Formula vanishes.

Definition 9.6 (Green’s function). Let Ω ⊂ Rn be open with smooth boundary.
The Green’s function G(x) for the operator ∆ and the domain Ω at a point x0 ∈ Ω is a function

G : Ω\{x0} → R s.t.

(i) G ∈ C2(Ω\{x0}) and ∆G = 0 on Ω\{x0}
(ii) G|∂Ω = 0
(iii) G(x)− Φn(x− x0) =: H(x) is finite at x0 and H ∈ C2(Ω) with ∆H = 0 on Ω.

Remark 9.7. It can be shown that the Green’s function always exists.
The idea is to solve the problem

∆Hx0 = 0 on Ω,

Hx0 |∂Ω = −Φn(· − x0) on ∂Ω

and define Gx0 = Hx0(x) + Φn(x− x0).

Notation: Gx0(x) = G(x, x0).

Theorem 9.8. Let Ω ⊂ Rn open with smooth boundary and let h ∈ C2(∂Ω). Let u ∈ C2(Ω) be a
solution of the Dirichlet problem

∆u = 0 on Ω,

u|∂Ω = h on ∂Ω.

Then

u(x0) =

∫
∂Ω

h(x)
∂

∂N
G(x, x0)dx.

Proof. We write G(x, x0) − Hx0(x) = Φn(x − x0). Then, by the Repres. formula and Green’s
second identity applied for u and Hx0 we obtain

u(x0) =

∫
∂Ω

[
u(y)

∂

∂N
Φn(y − x0)− Φn(y − x0)

∂u

∂N
(y)
]
ds(y)

=

∫
∂Ω

h(y)
∂

∂N
G(x, x0)ds(y)−

∫
∂Ω

[
u(y)

∂

∂N
Hx0(y)−Hx0(y)

∂u

∂N
(y)
]
ds(y)

=

∫
∂Ω

h(y)
∂

∂N
G(x, x0)ds(y)−

∫
Ω

[
u(y)∆Hx0(y)−Hx0(y)∆u(y)

]
dy︸ ︷︷ ︸

=0

.

�
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Theorem 9.9. Let Ω ⊂ R3 open with smooth boundary, let f ∈ C0(Ω). Let u ∈ C2(Ω) be a
solution of the Dirichlet problem

∆u = f on Ω,

u|∂Ω = 0 on ∂Ω.

Then

u(x0) =

∫
Ω

G(x, x0)f(x)dx.

Proof. Let ε > 0 s.t. Bε(x0) ⊂ Ω and set Ωε\Bε(x0). Green’s second identity yields∫
Ω

G(x, x0)f(x)dx−
∫
Bε(x0)

G(x, x0)f(x)dx =

∫
Ωε

G(x, x0)∆u(x)dx

=

∫
∂Ω

[
G(x, x0)

∂u

∂N
(x)− u(x)

∂

∂N

∣∣∣
x
G(·, x0)

]
dx

+

∫
∂Bε(x0)

[
G(x, x0)

∂u

∂N
(x)− u(x)

∂

∂N

∣∣∣
x
G(·, x0)

]
dx.(52)

The first term on the RHS of the previous equality is 0. Since G(x, x0) = Hx0(x) + Φ(x− x0), the
second term on the RHS rewrites as∫
∂Bε(x0)

[
Φ(x− x0)

∂u

∂N
(x)− u(x)

∂

∂N

∣∣∣
x
Φ(·, x0)

]
dx+

∫
∂Bε(x0)

[
Hx0(x)

∂u

∂N
(x)− u(x)

∂

∂N

∣∣∣
x
Hx0(·)

]
dx.

The second term is 0 since Hx0 and u are harmonic on Bε(x0) and because of Green’s 2nd identity.
The first term converges to u(x0) as ε → 0. This is exactly what we showed in the proof of the
Representation formula for the Laplace equation.

Finally, the second term on the LHS in (52) is∫
Bε(x0)

G(x, x0)f(x)dx =

∫
Bε(x0)

(Φ(x− x0) +Hx0(x))f(x)dx.

Since Hx0(x) and f are continuous in x0, there exists ε0 > 0 and C > 0 such that

|Hx0(x)f(x)| ≤ C if |x− x0| ≤ ε and ε ∈ (0, ε0).

Hence, for ε ∈ (0, ε0)∣∣∣∣∣
∫
Bε(x0)

Hx0(x)f(x)dx

∣∣∣∣∣ ≤
∫
Bε(x0)

Cdx ≤ C vol(Bε(x0))→ 0.

Moreover∣∣∣∣∣
∫
Bε(x0)

Φ(x− x0)f(x)dx

∣∣∣∣∣ ≤ sup
x∈Bε(x0)

|f(x)|︸ ︷︷ ︸
≤M

∫
Bε(0)

|Φ(x)|dx ≤M
∫ 2π

0

∫ π

0

∫ ε

0

1

4π

1

r
r2dr sinφdφdθ︸ ︷︷ ︸

=M 1
2 ε

2→0

.

We used that n = 3 to compute the integral.
In particular, it follows that the inetral

∫
Ω
G(x, x0)f(x)dx is welldefined. Hence, when ε → 0,

(52) yields the result. �

Theorem 9.10 (Symmetry of Green’s function). Let Ω as before. Then, the corresponding Green’s
function satisfies G(a, b) = G(b, a) ∀a, b ∈ Ω.

Proof. We assume again n = 3.
Set v(x) = G(x, b) and u(x) = G(x, a). Let ε > 0 s.t. Bε(a), Bε(b) ⊂ Ω and Bε(a) ∩Bε(b) = ∅.
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Set Ωε\Bε(a) ∪Bε(b). With Green’s 2nd identity we compute

0 =

∫
Ωε

(v∆u− u∆v) dx

=

∫
∂Ω

(
v
∂u

∂N
− u ∂v

∂N

)
ds︸ ︷︷ ︸

=0

+

∫
∂Bε(a)

(...)ds+

∫
∂Bε(b)

(...)ds

Consider∫
∂Bε(a)

(
v
∂u

∂N
− u ∂v

∂N

)
ds =

∫
∂Bε(a)

(
v
∂Φ(· − a)

∂N
− Φ(· − a)

∂v

∂N

)
ds+

∫
∂Bε(a)

(
v
∂Ha

∂N
−Ha ∂v

∂N

)
ds︸ ︷︷ ︸

=
∫
Bε(a)

(v∆Ha−Ha∆v)dx=0

The first term on the RHS in the last equation converges to v(a), exactly as in the proof of the
Representation formula.

In the same way, one proves that
∫
∂Bε(b)

(...)ds→ −u(b). It folllows

G(a, b) = v(a) = u(b) = G(b, a).

�

9.5. Green’s function for the upper half space. Let H = {x ∈ Rx : x3 > 0}. For a point
y = (y1, y2, y3) ∈ H one define its refrection at ∂H as y∗ = (y1, y2,−y3).

Theorem 9.11. The function Hy(x) = 1
4π|x−y∗| is in C2(H and solves

∆Hy = 0 on H,
Hy|∂H = −Φ|∂H.

Hence, the Green function of H is G(x, y) = − 1
4π|x−y| + 1

4π|x−y∗| .

Proof. (1) Hy ∈ C∞(H),
(2) ∆Hy = 0 on H.,
(3) If x = (x1, x2, 0) ∈ ∂H then Hy(x) = 1

4π|x−y∗| = 1
4π|x−y| .

Hence G(x, y) := − 1
4π

(
1
|x−y| −

1
|x−y∗|

)
is the Green function of H. �
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9.6. Green function for the ball Ba(0). Recall

Ba = Ba(0) =

{
x ∈ R3 :

√
x2

1 + x2
2 + x3

3 < a

}
& ∂Ba =

{
x ∈ R3 :

√
x2

1 + x2
2 + x3

3 = a

}
and for x ∈ Ba we define

x∗ =
a2

|x|2
x.

It follows that |x∗||x| = a2.

Theorem 9.12. The function Hy(x) = a
|y|

1
4π

1
|x−y∗| is in C2(Ba) and solves

∆Hy = 0 on Ba,

Hy|∂Ba = −φ(x− y) =
1

4π

1

|x− y|
on ∂Ba.

Hence, the Green function of Ba is

G(x, y) = φ(x− y) +Hy(x) = − 1

4π

1

|x− y|
+

1

4π

a

|y|
1

|x− y∗|
.

Proof. (1) Hy ∈ C∞(Ba),
(2) ∆Hy = 0 on Ba,

(3) Let x ∈ ∂Ba, that is |x| = a. Claim. |y|a |x− y
∗| = |x− y|.

It follows Hy
∣∣∣
∂Ba

= −φ(x− y).

�

Corollary 9.13 (Poisson formual in 3D). Let u ∈ C2(Ba) be a solution of

∆u = 0 on Ba,

u|∂Ba = h on ∂Ba

then

u(x) =
a2 − |x|2

4πa

∫
∂Ba

h(y)

|x− y|3
ds(y).

Proof. Recall

u(x) =

∫
∂Ba

h(y)
G(·, x)

∂N

∣∣∣
y
ds(y).

We compute for x ∈ ∂Ba

∇G(·, y)
∣∣∣
x

= ∇
(

1

4π

1

|x− y|
− 1

4π

a

|y|
1

|x− y∗|

) ∣∣∣
x

=
1

4π

1

|x− y|3
(x− y)− 1

4π

a3

|y|3|x− y∗|3
(
|y|2

a2
x− |y|

2

a2
y∗)

=
1

4π

(
1

|x− y|3
(x− y)− 1

|x− y|3
(
|y|2

a2
x− y)

)
=

1

4π

1

|x− y|3

(
x− y − a2

|y|2
x+ y

)
=

1

4π

1

|x− y|3

(
x− |y|

2

a2
x

)
Now, we have that the unit normal vector in x is x

a . Hence

〈N,∇G(·, y)〉 =
1

4π

1

|x− y|3
(〈x
a
, x〉 − |y|

2

a2
〈x
a
, x〉) =

a2 − |y|2

4πa

1

|x− y|3
.

�
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Remark 9.14. The Green function for Ba ⊂ Rn is

G(x, y) =
−1

n(n− 2) voln(B1)

(
1

|x− y|n−2
− a

|y|
1

|x− y∗|n−2

)
The Poisson formula for Ba ⊂ Rn, n > 3, is

u(x) =
a2 − |x|2

n voln(B1)a

∫
∂Ba

h(y)

|x− y|n
ds(y).

Theorem 9.15. Let h ∈ C0(∂Ba) with Ba ⊂ Rn. Let

u(x) =

{
a2−|x|2

n voln(B1)a

∫
∂Ba

h(y)
|x−y|n ds(y) x ∈ Ba

h(x) x ∈ ∂Ba.

Then u ∈ C2(Ba) ∩ C0(Ba) and u is the unique solution of ∆u = 0 on Ba and u|∂Ba = h.
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9.7. Consequences.

Corollary 9.16 (Harnack inequality). Let BR(x0) ⊂ Rn and x0 6= x ∈ BR(x0) with |x− x0| = r.

Let u ∈ C2(BR(x0)), u ≥ 0 and ∆u = 0 on BR(x0). Then

1− r
R(

1 + r
R

)n−1u(x0) ≤ u(x) ≤
1− r

R(
1 + r

R

)n−1u(x0).

In particular, if r ∈ (0, R2 ) then 1
2nu(x0) ≤ u(x) ≤ 2nu(x0).

Proof. Recall the Poisson formula u(y) = R2−r2

n vol(B1)R

∫
∂BR(x0)

u(y)
|y−x|n ds(y) and observe

R− r = |x0 − y| − |x− x0| ≤ |y − x| ≤ |x0 − x|+ |x− x0| = R− r

Hence

(R+ r)(R− r)
(R+ r)n

≤ R2 − r2

|y − x|
≤ (R+ 1)(R− 1)

(R− r)n

Then u ≥ 0 together with the mean value property imply the statement. �

.

Corollary 9.17. Let Ω ⊂ Rn open and connected, u ∈ C2(Ω) and ∆u = 0. Assume there exists

V ⊂ Rn open s.t. V ⊂ Rn and there exists R > 0 and x1, . . . , xn ∈ V with V ⊂
⋃N
i=1BR/2(xi) and

BR(xi) ⊂ Ω for i = 1, . . . , N . Then

u(y) ≤ 22nNu(x) ∀x 6= y ∈ Ω.

In particular ∃C > 0 s.t. supV u ≤ C infV u.

Proof. Given x, y ∈ V . Since V is connected, we can find z0, z1, . . . , zl−1, zl with l ≤ N such that
z0 = x and zl = y and {zk−1, zk} ⊂ BR/2(xik) for all k ∈ {1, . . . , l}. This can be seen by induction
as follows. Pick i1 s.t. x ∈ BR/2(xi1). Since V is connected there exists i2 ∈ {1, . . . , N}\{i1}
such that BR/2(xi2) ∩ BR/2(xi1) 6= ∅. Hence we pick z1 ∈ BR/2(xi1) ∩ BR/2(xi2). Similar, there
exists i3 ∈ {1, . . . , N} such that BR/2(xi1) ∩ BR/2(xi2) ∩ BR/2(xi3) 6= ∅ and we can pick z2 ∈
BR/2(xi1) ∩ BR/2(xi3) or z2 ∈ BR/2(xi2) ∩ BR/2(xi3). We continue inductively til we find il for
l ≤ N such that y ∈ BR/2(xil).

With the Harnack inequality, it follows

u(x) ≤ 2nu(xi1) ≤ 22nu(zi1) ≤ 24nu(xi2) ≤ · · · ≤ 22lnu(y).

�

Some more Remarks on the Green functions. Let Ω ⊂ Rn be open, bounded with smooth
∂Ω. The Green function was given by G(x, y) = Φn(x − y) + Hy(x) where Hy ∈ C2(Ω) and Hy

solves

∆Hy = 0 on Ω ⊂ Rn,

Hy
∣∣∣
∂Ω

= −Φn(· − y)
∣∣∣
∂Ω
.

• If Ω is not connected, that is Ω = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = ∅ and y ∈ Ω1, then G(·, y) ≡ 0
on Ω2.

This follows, since −Φ(· − y) solves ∆Hy = 0 on Ω2 with Hy ∈ C2(Ω) and Hy|∂Ω2
=

−Φn(· − y)|∂Ω2 .
• If Ω is connected, it follows by the strong Maximum principle that G(x, y) < 0 for x, y ∈ Ω

(Exercise).
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• ∂G(·,y)
∂N

∣∣∣
x

= Ky(x) for x ∈ ∂Ω is called Poisson kernel of Ω.

It follows Ky(x) ≥ 0, since G(x, y) = 0, x ∈ ∂Ω and y ∈ Ω, and since G(x, y) ≤ 0 for all
x, y ∈ Ω.

Theorem 9.18. If Ω open, bounded with smooth ∂Ω and connected, then Ky < 0 everywhere on
∂Ω.

Proof. Let x ∈ ∂Ω and let N be the unit normal vector in x. Since ∂Ω is smooth there exists
h0 < 0 such that for x0 = x+ h0N we have that B|h0|(x0) ⊂ Ω\{y} and ∂B|h0|(x0) ∩ ∂Ω = {x}.

If −h ∈ (−h0, 0), then z = x + hN and |x0 − z| = |h0 − h| = −h0 + h = |h0| − |h|. From the
Harnack inequality, it follows

G(x+ hN, y)

h
=
−G(x+ hN)

|h|
≥

1 + |h0|−|h|
|h0(

1 + |h0|−|h|
|h0|

)n−1

1

|h|
(−G(x0, y)) ≥ 1

|h0|
1

2n−1
(−G(x0, y)) > 0.

Hence ∂G(·,y)
∂N

∣∣∣
x

= limh↑0
G(x+hN,y)

h > 0. �
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Let Ω ⊂ Rn be open and bounded with ∂Ω smooth.

Theorem 9.19 (Boundary Maximum Principle). Assume Ω is connected. Let u ∈ C2(Ω) be
harmonic. If x ∈ ∂Ω s.t. u(x) = maxΩ u = M , then ∂u

∂N (x) > 0 or u ≡M . (N is the unit normal
vectorfield of ∂Ω.)

Proof. Exercise �

Theorem 9.20 (Local estimates). Let Ω be open and let u ∈ C2(Ω) be harmonic. If x0 ∈ Ω such

that Br(x0) ⊂ Ω. Then

|∇u|(x0) ≤ C

rn+1

∫
Br(x0)

|u(x)|dx

for some constant C = C(n) > 0.

Remark 9.21. • The local gradient estimate generalizes the mean value property. Indeed

MVP: u(x0) =
1

vol(Br(x0))︸ ︷︷ ︸
∼C(n)

rn

∫
Br(x0)

u(x)dx ⇒ |u(x0)| ≤ C(n)

rn

∫
Br(x0)

|u(x)|dx.

• Similarly, one can derive higher estimates of the form

|∇ku|(x0) ≤ C(n)

rn+k

∫
Br(x0)

|u(x)|dx

Proof. Since u is harmonic on Ω, u ∈ C∞(Ω). Hence 0 = (∆u)xi = ∆(uxi) and uxi is harmonic
∀i = 1, . . . , n.

By the mean value property it follows

uxi(x0) =
1

vol(Br/2(x0))

∫
Br/2(x0)

uxi(x)dx

Note that uxi = ∇ · V where V = (0, . . . , 0, u︸︷︷︸
i

, 0, . . . , 0). Hence

=⇒
∫
Br/2(x0)

uxi(x)dx =

∫
∂Br/2(x0)

〈V,N〉ds =

∫
∂Br/2(x0)

uNids

where Ni ith component of the unit normal vector field N along ∂Br/2(x0). In particular |uNi| ≤
|u|. It follows

|uxi(x0)| =

∣∣∣∣∣ 1

vol(Br/2(x0))

∫
Br/2(x0)

uxi(x)dx

∣∣∣∣∣ ≤ 1

vol(Br/2(x0))

∫
∂Br/2(x0)

|u(x)|dx ≤
vol(∂Br/2(x0))

vol(Br/2(x0)︸ ︷︷ ︸
2n
r

sup
∂Br/2(x0)

|u|

At the same time we know that ∂Br/2(x) ⊂ Br(x0) and therefore by the mean value property
again

|u(x)| ≤ 1

vol(Br/2(x))

∫
Br(x)

|u(y)|dy ≤ (2/r)n

vol(B1)

∫
Br(x)

|u(y)|dy ⇒ sup
∂Br/2(x0)

|u| ≤ (2/r)n

vol(B1)

∫
Br(x)

|u(y)|dy.

The previous estimates together yield

|uxi(x0)| ≤ n

vol(B1(x0))

(
2

r

)n+1 ∫
Br(x0)

|u(y)|dy ∀i = 1, . . . , n.

Since |∇u| =
√∑n

i=1(uxi)
2. �

Corollary 9.22 (Liouville Theorem). Let u ∈ C2(Rn) s.t. ∆u = 0 with |u| ≤ C ⇒ u = const.
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Proof. For any x ∈ Rn and any R > 0, it holds BR(x) ⊂ Rn. =⇒ |∇u|(x) ≤ C
R → 0. �

9.8. Direct Method of Calculus of Variations. Let Ω ⊂ Rn be open, bounded, connected
with smooth boundary. Let w ∈ C1(Ω) and let h = w|∂Ω (the restriction of w to ∂Ω). To find a
solution u for the equation

∆u = 0 on Ω,

u|∂Ω = h on ∂Ω

one can apply the Dirichlet principle: Find a minimizer of the energy

E(v) =
1

2

∫
Ω

|∇v|2dx, v ∈ {v ∈ C1(Ω) : v|∂Ω = h} =: Eh

E ≥ 0 on Eh.
Hence, an infinimum I = infv∈E E(v) exists and a sequence vn ∈ E such that E(vn)→ I.

Claim. ṽn = vn − w is a Cauchy sequence w.r.t. the norm ‖v‖1,2 =
√∫

Ω
v2dx+ E(v).

Indeed

E(ṽn − ṽm) = E(vn − vm) = E(vn) + E(vm)−
∫

Ω

〈∇vm,∇vn〉dx

≤ 2E(vn) + 2E(vm)− 4E(
1

2
(vn + vm))

≤ 2E(vn) + 2E(vm)− 4I → 0 as n,m→∞.

With the Poincaré inequality
∫

Ω
v2dx ≤ CΩ

∫
Ω
|∇v|2dx for v ∈ E0 = {v ∈ C1(Ω) : v|∂Ω = 0} it

follows ‖ṽn − ṽm‖1,2 → 0. Hence ṽn is a Cauchy sequence w.r.t. ‖·‖1,2 in E0.

Let E = H1,2
0 (Ω) be the completion of E0 w.r.t. ‖·‖1,2. Then there exists v ∈ E such that vn → v

w.r.t. ‖·‖1,2.

Questions: What is the space E? Can we define E on E? Is it true that E(vn) → E(v)? Is v
harmonic?

we write u ∈ L2(Ω) if |u|2 is integrable on Ω.

Definition 9.23. A function f : Ω→ R in L2(Ω) has a weak derivative f̂xi : Ω→ R w.r.t. xi if∫
Ω

fφxidx = −
∫

Ω

f̂xiφdx ∀φ ∈ C1
c (Ω).

If f has a weak derivative w.r.t. xi for all i = 1, . . . , n and fxi is in L2(Ω), then we write
f ∈W 1,2(Ω).

In particular, if f ∈ W 1,2(Ω), the weak gradient ∇̂f = (f̂x1
, . . . , f̂xn) satisfies |∇̂f | ∈ L2(Ω),

and we can define E(f) = 1
2

∫
Ω
|∇̂f |2dx.

Example 9.24. • For f ∈ C1(Ω) the weak derivatives exists and coincide with the classical
derivatives. This follows directly by the product rule for partial derivatives. In particular
f ∈W 1,2(Ω). Also the energy E w.r.t. ∇̂ is the same as w.r.t. ∇.

• Define

f(x) =

{
x x < 0

0 x ≥ 0
=⇒ f 6= C1([−1, 1]) but f ∈W 1,2(Ω) (Check!)

We cite the following result.

Theorem 9.25. H1,2
0 (Ω) ⊂W 1,2(Ω) is a closed subset w.r.t. ‖·‖1,2.

Since E ≥ 0 on H1,2
0 (Ω), we can define Î = inf E(v) ≥ 0 where v ∈W 1,2(Ω) s.t. v−w ∈ H1,2

0 (Ω)

where w ∈ C1(Ω) is as before.
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Dirichlet principle (revisited). Let v ∈W 1,2(Ω) s.t. E(v) = Î, and let φ ∈ C1
0 (Ω). Then

0 =
d

dt

∣∣∣
t=0

E(v + tφ) =

∫
Ω

〈∇̂v,∇φ〉dx.

Definition 9.26. v ∈ W 1,2(Ω) is a weak solution of the Laplace equation with boundary value
h = w|∂Ω for w ∈ C1(Ω) if ∫

Ω

〈∇v,∇φ〉dx = 0 ∀φ ∈ C1
0 (Ω)

v − w ∈ H1,2
0 (Ω).

Theorem 9.27 (Weyl Lemma). If u is a weak solution of the Laplace equation then u ∈ C∞(Ω)
and ∆u = 0 in Ω.

More precisely, for every ball B ⊂ Ω that is sufficiently small, there exists v ∈ C∞(B) such that
∆v = 0 and

∫
B
|v − u|dx = 0.

Proof. Let φ ∈ C∞c (B1(0)) with 1 =
∫
B1(0)

φ(x)dx and φ(x) = φ(−x), and set φε(x) = 1
εnφ(x/ε).

Then φε ∈ C∞(Bε(0)) and 1 =
∫
Bε(0)

φε(x)dx.

We define Ωr = {x ∈ Ω : |x− y| > r ∀y ∈ ∂Ω}. Then Bε(x) ⊂ Ω ∀x ∈ Ωr and ε ∈ (0, r/2).

We define uε(x) =
∫
Bε(x)

u(y)φε(y − x)dy, x ∈ Ωr.

Claim. uε ∈ C∞(Ωr).
We compute

∂uε
∂xi

(x) = lim
h→0

uε(x+ h)− uε(x)

h

= lim
h→0

∫
Bε(x)

u(y)
φε(y − x− h)− φε(y − x)

h︸ ︷︷ ︸
uniformily→ u(y) ∂φε∂xi

(y−x)

dy =

∫
Bε(x)

u(y)
∂φε
∂xi

(x− y)dy.

Similarly, we can also compute all higher derivatives. Hence uε ∈ C∞(Ωr).
Morover, since φε(· − x) ∈ C1

0 (Ω), it follows by the definition of weak derivatives and since u is
a weak solution of the Laplace equation

∆uε(x) =

∫
Bε(x)

u(y)∆φε(y − x)dy = −
∫
Bε(x)

〈∇̂u,∇φε(y − x)〉dx = 0

This proves the claim.

The local gradient estimate yields

|∇uε|(x) ≤ C(n)

rn+1

∫
Br(x)

|uε(y)|dy ≤ C(n, r)

∫
Ω

|uε(y)|dy

≤ C(n, r)

∫
Ω

∫
Ω

|u(z)|φε(z − y)dzdy

= C(n, r)

∫
Ω

|u(z)|
∫

Ω

φε(z − y)dy︸ ︷︷ ︸
=1

dz ≤ C(n, r)

∫
Ω

|u(z)|dz =: C.

By the mean value theorem for differentiable functions in n dimensions we see that uε is C-Lipschitz
for all ε > 0.

Now, we cite the following classical theorem.
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Theorem 9.28 (Arzela-Ascoli). Let K ⊂ Rn be compact and let (ui)i∈N ⊂ C0(K). Then (ui) has
uniformily converging subsequence if and only if

(1) ∃M > 0 : |ui(x)| ≤M ∀x ∈ K,∀i ∈ N
(2) ∀ε > 0,∃δ > 0 s.t. |ui(x)− ui(y)| < ε ∀x, y ∈ K with |x− y| < δ and ∀i ∈ N.

We apply the theorem to a sequence uεi |B =: ui for εi → 0 and an arbitrary ball B such that

B ⊂ Ωr.

Property 1. and 2. in the Arzela-Ascoli theorem for ui follow since uε is C-Lipschitz for C
independent of ε.

Hence, there exists v ∈ C0(B) such that ui → v uniformily. At the same time ui is harmonic
on B ⊂ Ωr and hence satisfies the mean value property

ui(x) =
1

vol(Bη(x))

∫
Bη(x)

ui(y)dy, Bη(x) ⊂ B.

Uniform convergenc implies that the right and the left hand side of this identity converges to

v(x) =
1

vol(Bη(x))

∫
Bη(x)

v(y)dy.

Hence v ∈ C∞(B) and v is harmonic.
Now, we claim without proof that

∫
B
|uεi −u|dx→ 0. This implies

∫
B
|v−u|dx = 0 on B ⊂ Ωr.

Since r > 0 was arbitrary, we obtain the statement. �
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lecture 30

10. Wave equation in 3D and higher dimensions

We consider the higer dimensional wave equation

ut,t = c2∆u on Rn × [0,∞) where c > 0.(53)

Recall that ∆u =
∑n
i=1 uxi,xi =

∑n
i=1

∂2u
∂x2
i
.

Let u ∈ C2(Rn × [0,∞)) be a solution of (53).

10.1. Principle of Causality. Let u ∈ C2(Rn × [0,∞) be a solution of (53). Assume u(x, 0) =
φ(x) and ut(x, 0) = ψ, x ∈ Rn, for φ, ψ ∈ C2(Rn).

Theorem 10.1. Let (x̄, t̄) ∈ Rn× (0,∞) and u a before. Then u(x̄, t̄) is completely determined by

the values of φ and ψ in the ball Bct̄(x̄).

Remark 10.2. • The ball Bct̄(x̄) in the 0 time slice is more precisely given by

Bct̄(x̄)× {0} = {(x, t) ∈ Rn × [0,∞) : |x− x̄| ≤ c|t− t̄|}︸ ︷︷ ︸
Ĉ(x̄,t̄)

∩Rn ∩ {0}.

• Recall that for n = 1 the solution u is represented by D’Alambert’s formula

u(x̄, t̄) =
1

2
[φ(x̄+ ct̄) + φ(x̄− ct̄)] +

1

2c

∫ x̄+ct̄

x̄−ct̄
ψ(s)ds︸ ︷︷ ︸

= 1
vol(Bct̄(x̄))

∫
Bct̄(x̄)

ψ(s)ds

.

Hence, for n = 1 we have already observed that the theorem is correct.

Proof. First, we have

0 = (ut,t − c2∆u)ut = ut,tut︸ ︷︷ ︸
= 1

2 (u2
t )t

−c2∇(ut∇u) + 〈∇ut,∇u〉︸ ︷︷ ︸
= 1

2 (|∇u|2)t

=

(
1

2
u2
t +

c2

2
|∇u|2

)
t

− c2Divn(ut∇u) =

(
1

2
u2
t +

c2

2
|∇u|2

)
t

+

n∑
i=1

c2
∂

∂xi

(
−ut

∂u

∂xi

)
.

Hence, the last equation takes the following form

0 = Divn+1V

for a vectore field V defined on Rn+1 by V =


−ut ∂u∂x1

. . .
−ut ∂u∂xn

1
2u

2
t + c2

2 |∇u|
2

.

Now, we apply the divergence theorem in Rn+1 to V on the frustum

F = {(x, t) ∈ Rn × [0,∞) : |x− x̄| ≤ c|t− t̄| and t ∈ [0, s]}

where s ∈ (0, t̄).
Note that we need a version of the divergence theorem that allows regular corner and edges.

The boundary ∂F of F has three parts:

T = {(x, s) ∈ Rn × [0,∞) : |x− x̄| ≤ c|s− t̄|}
B = {(x, 0) ∈ Rn × [0,∞) : |x− x̄| ≤ ct̄}

K = {(x, t) ∈ Rn × [0,∞) : |x− x̄| = c|t− t̄| & t ∈ [0, s]}
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The divergence theorem yields

0 =

∫
∂F

〈N,V 〉dS =

∫
B

+

∫
T

+

∫
K

where S denotes the n-dimensional surface measure on ∂F (that is B, T and K respectively) and
N is the corresponding uni normal vector field.
For T one has N = (0, . . . , 0, 1), and for B one has N = (0, . . . , 0,−1). Hence, taking the formula
for V into account, it follows∫

T

(
1

2
u2
t +

c2

2
|∇u|2

)
dS +

∫
K

〈N,V 〉dS ≤
∫
B

(
1

2
u2
t +

c2

2
|∇u|2

)
dS

Claim.
∫
K
〈N,V 〉dS ≥ 0.

To prove the claim we compute the unit normal vectore field N along K. Consider the function
Φ(x1, . . . , xn, t) =

∑n
i=1(xi − x̄i)2 − c2(t− t̄)2. Then, since

{(x, t) ∈ Rn × [0,∞) : |x− x̄|2 = c2|t− t̄|2} = ∂Ĉ(x̄, t̄) =: C

and C = Φ−1(0), it follows K ⊂ Φ−1(0).
The unit normal vector field along the level set of smooth function Φ is given by N = ∇Φ

|∇Φ| . We

therefore compute

1

|∇Φ|
∇Φ(x1, . . . , xn, t) =

1

2
√∑n

i=1(xi − x̄i)2 − c4(t− t̄)2
2


x1 − x̄1

. . .
xn − x̄n
−c2(t− t̄)

 =
c√

1− c


x1−x̄1

cr
. . .

xn−x̄n
cr

− t−t̄
|t−t̄|


where we have set

∑n
i=1(xi − x̄i)2 =: r2 = c2(t− t̄). Since t ∈ (0, t̄), −(t− t̄) = |t− t̄|.

For x ∈ K it follows

〈N,V 〉(x) = −
n∑
i=1

xi − x̄i
cr

c2utuxi︸ ︷︷ ︸
cut

∑n
i=1

xi−x̄i
r uxi

+
1

2
u2
t +

c2

2
|∇u|2.

Setting r̂ = 1
|x−x̄| (x− x̄) = 1

r

x1 − x̄1

. . .
xn − x̄n

 we get that

n∑
i=1

xi − x̄i
r

uxi = 〈r̂,∇u〉 =
∂u

∂r̂
=: ur.

Hence

〈N,V 〉(x) = −cutur +
1

2
u2
t +

c2

2
|∇u|2

=
1

2
(cur − ut)2︸ ︷︷ ︸
≥0

+

(
c2

2
|∇u|2 − c2

2
u2
r

)

By the Cauchy-Schwarz inequality one has

ur = 〈r̂,∇u〉 ≤ |r̂| · |∇u| = |∇u|

Hence, c2

2

(
|∇u|2 − u2

r

)
≥ 0 and therefore 〈N,K〉(x) ≥ 0 for x ∈ K.

We can conclude that∫
T

(
1

2
u2
t +

c2

2
|∇u|2

)
dS ≤

∫
B

(
1

2
u2
t +

c2

2
|∇u|2

)
dS
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Now, we assume there is a solution u of the wave equation such that φ and ψ vanish on B. Then

0 ≤
∫
T

(
1

2
u2
t +

c2

2
|∇u|2

)
dS ≤

∫
B

(
1

2
u2
t +

c2

2
|∇u|2

)
dS =

∫
B

(
1

2
ψ2 +

c2

2
|∇φ|2

)
dS = 0.

Hence, all the previous inequalities become equalities, and since 1
2 (ut)

2 + c2

2 |∇u|
2 ≥ 0, it follows

that 1
2u

2
t + c2

2 |∇u|
2 = 0.

Then, since u2
t ≥ 0 and |∇u|2 ≥ 0, it follows ut = 0 and |∇u|2 = 0 (⇒ ∇u = 0) on T =

Ĉ(x̄, t̄) ∩ Rn × {s} for s ∈ (0, t0).

Since s ∈ (0, t0) was arbitrary, ut = 0 and ∇u = 0 on Ĉ(x̄, t̄). It follows that ∇n+1u = 0 on

Ĉ(x̄, t̄)\∂Ĉ(x̄, t̄). So u ≡ constant on Ĉ(x̄, t̄). Since φ = u(x, 0) = 0 and since u is continuous, it

follows u ≡ 0 on Ĉ(x̄, t̄).
Hence u(x̄, t̄) = 0.

If u and v are two solutions that coincide on B, we consider u − v that is also a solution by
linearity of the wave equation. Then u− v vanishes on B, this implies u(x̄, t̄) = v(x̄, t̄). �

Remark 10.3. • Ĉ(x̄, t̄) is also called the domain of dependence of (x̄, t̄).
• One can see that the initial data φ and ψ in a point (x̂, 0) can influence the solution only

in the light cone

{(x, t) ∈ Rn × [0,∞) : |x− x̂| ≤ ct} =: Ĉ+(x̂, 0).

Indeed, assume there are solutions u and v such that u(x̂, 0) 6= v(x̂, 0) but u(·, 0) = v(·, 0)

on Ĉ(x̄, t̄) ∩ Rn × {0} = B for a point (x̄, t̄) such that (x̄, t̄) /∈ Ĉ+(x̂, 0). In particular

Ĉ(x̄, t̄) ∩ Ĉ+(x̂, 0) = ∅.
Assume the chance in x̂ from u to v causes a change of the value of the solutions in

(x̄, t̄). This means u(x̄, t̄) 6= v(x̄, t̄). But this contradicts u = v on B.

Conservation of Energy. Let u ∈ C2(Rn × [0,∞)) be a solution of the wave equation. Assume
φ = u(·, 0) ∈ C2

c (Rn), then u(·, t) ∈ C2
c (Rn) for all t > 0.

To see this assume φ(x) = 0 for x 6= BR(0) for some R > 0. Then, for y /∈ BR+ct(0) it follows
that u(y, t) = 0 because of the causality principle.

Corollary 10.4. Let u ∈ C2(Rn×R) be a solution of the wave equation with u(·, 0) = φ ∈ C2
c (Rn).

Then, the total energy

E(u) =

∫
Rn

(
1

2
u2
t +

c2

2
|∇u|2

)
d(x1, . . . , xn)

is constant.

Proof. We saw before that

0 =

(
1

2
u2
t +

c2

2
|∇u|2

)
t

− c2∇ · (ut∇u)

Integration over a ball BR(0) such that u(·, t) ≡ 0 outside of BR(0) yields

0 =

∫
Rn

(
1

2
u2
t +

c2

2
|∇u|2

)
t

d(x1, . . . , xn)− c2
∫
∂BR(0)

〈N,∇u〉utds

where we applied the divergence theorem for V = ut∇u on the ball BR(0). Since u ≡ 0 on ∂BR(0),
the last integral vanishes.

Morover

0 =

∫
Rn

(
1

2
u2
t +

c2

2
|∇u|2

)
t

d(x1, . . . , xn) =
d

dt

∫
Rn

(
1

2
u2
t +

c2

2
|∇u|2

)
d(x1, . . . , xn) =

d

dt
E(u(·, t)

where we could pull the derivative w.r.t. t out of the integral because u(·, t) are compactly sup-
ported and smooth in t. �
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Remark 10.5. The integral
∫
Rn

1
2u

2
tdx is called the total kinetic energy of u at time t, and the

integral
∫
Rn

c2

2 |∇u|
2dx is the total potential energy at time t.

Kirchhoff’s formula in 3D (see also subsecton 10.3)

Theorem 10.6. Let u ∈ C2(R3 × [0,∞) be solution of ut,t = c2∆u with initial condition φ and
ψ. Then, for (x̄, t̄) ∈ R3 × (0,∞), it holds

u(x̄, t̄) =
1

4πc2t̄

∫
∂Bct̄(x̄)

φ(x)ds(s) +
∂

∂t̄

[
1

4πc2t̄

∫
∂Bct̄(x̄)

φ(x)ds(x)

]
Remark 10.7. Hence, u(x̄, t̄) does not depend on Bct̄(x̄) but only ∂Bct̄(x̄).

This is also known as Huygen’s principle. Any solution of the 3D wave equation propagates
exactly at the speed (of light, or sound) c. At any time t̄ a listener (or observer) hears (or sees)
exactly what has occured at the time t− d/c where d is the distance to the source.
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Lecture 32

10.2. Deriving the wave equation (for sound waves in 3D). We start with the equations of
motions of a compressible fluid/gas.

The compressible Euler equations:

∂

∂t
u+ u · ∇u = −1

ρ
∇(f ◦ ρ)(54)

∂

∂t
ρ+ Div(ρu) = 0(55)

where

• u(x, y, z, t) ∈ R3 the velocity of a particle in (x, y, z) ∈ R3 and at time t ∈ R,
• ρ(x, y, z, t) ∈ R density of particle in (x, y, z) and at t.

The function f : [0,∞)→ R models the internal pressure that is a function of ρ (for an ideal gas)
One also assumes that f is an increasing function w.r.t. ρ, that is f ′′ ≥ 0.

Remark 10.8. For air one assume that f(ρ) = p0

(
ρ
ρ0

)γ
where

• γ is the adeabatic intex (→ 1.4),
• p0 sea level atmospheric pressure,
• ρ0 density w.r.t. a reference temperature.

Assumptions 10.9. The absolute value of ρ0 − ρ and the absolute value of its derivatives are small
(∼ ε). Also the absolute value of u and its derivatives are small (∼ ε).

Then, in the following, we neglect all terms of orrder ∼ ε2.

(55):

0 = ρt + Div(ρu)

= ρt + Div((ρ− ρ0)u)︸ ︷︷ ︸
〈∇(ρ− ρ0), u〉︸ ︷︷ ︸

∼ε2

+ (ρ− ρ0) Div u︸ ︷︷ ︸
∼ε2

+ρ0 Div u

Hence, we replace (55) with

0 = ρt + ρ0 Div u

(54): u · ∇u ∼ ε2 and

∇(f ◦ ρ) = f ′(ρ)︸ ︷︷ ︸
f ′(ρ0)+f ′′(ρ0) (ρ− ρ0)︸ ︷︷ ︸

∼ε2

+o(|ρ− ρ0|)︸ ︷︷ ︸
∼ε2

∇(ρ− ρ0)︸ ︷︷ ︸
∼ε

1

ρ
=

1

ρ0
− 1

ρ2
0

(ρ− ρ0)︸ ︷︷ ︸
∼ε

+ o(|ρ− ρ0|)︸ ︷︷ ︸
∼ε

Hence, we replace 1
ρ∇(f ◦ ρ) with f ′(ρ0)

ρ0
∇(ρ− ρ0), and therefore replace (54) with

ut = −f
′(ρ0)

ρ0
∇(ρ− ρ0) = −f

′(ρ0)

ρ0
∇ρ

Now, we can compute

ρt,t = −ρ0(Div u)t = −ρ0 Div(ut) =
f ′(ρ0)

ρ0
Div∇ρ =

f ′(ρ0)

ρ0
∆ρ.

Setting c =
√

f ′(ρ0)
ρ0
≥ 0 then ρ satisfies the wave equation.
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10.3. Kirchhoff’s formula.

Theorem 10.10. Let u ∈ C2(R3 × [0,∞) be solution of ut,t = c2∆u with initial condition φ and
ψ. Then, for (x̄, t̄) ∈ R3 × (0,∞), it holds

u(x̄, t̄) =
1

4πc2t̄

∫
∂Bct̄(x̄)

φ(x)ds(s) +
∂

∂t̄

[
1

4πc2t̄

∫
∂Bct̄(x̄)

φ(x)ds(x)

]

Remark 10.11. Hence, u(x̄, t̄) does not depend on Bct̄(x̄) but only ∂Bct̄(x̄).

We first prove the following Lemma

Lemma 10.12 (Euler-Poisson-Darboux equation). Let u ∈ C2(Rn× [0,∞)) be a solution of ut,t =
c2∆u on Rn×[0,∞) with initial conditions φ and ψ. Define ū(r, t) = 1

vol(∂Br(0))

∫
∂Br(0)

u(x, t)ds(x).

Then ū ∈ C2((0,∞)× [0,∞)) and ū solves the Euler-Poisson-Darboux equation

ūt,t, = c2
(
ūr,r −

n− 1

r
ūr

)
ū(r, 0) = φ̄(r), ūt(r, 0) = ψ̄(r).

where φ̄(r) = 1
vol(∂Br(0))

∫
∂Br(0)

φds(x) and ψ̄(r) = 1
vol(∂Br(0))

∫
∂Br(0)

ψ(x)ds(x).

Remark 10.13. Recall that

d2

dr2
− n− 1

r

d

dr

is the radial part of the Laplace operator in polar coordinates.

Proof of the lemma. We observe

ū(r, t) =
1

vol(∂Br(0))

∫
∂Br(0)

u(x, t)ds(x) =
rn−1

vol(∂Br(0))︸ ︷︷ ︸
=:C(n)

∫
∂B1(0)

u(rx, t)ds(x)

where the constant C(n) > 0 only depends on n.
We also have u(rx, t) ≤ max

B2r0
(0)×{t}

u(x, t) and d
dru(rx, t) = 〈∇u(rx, t), x〉 ≤ max

B2r0
(0)×{t}

|∇u|(x, t)

for all r ∈ (0, r0). Hence

⇒ d

dr
ū(r, t) = C(n)

∫
∂B1(0)

∂

∂r
u(rx, t)ds(x)

Similarly for higher derivatives w.r.t. r and derivatives w.r.t. t. Hence ū ∈ C2((0,∞)× [0,∞)).
Now

d

dr
ū(r, t) = C(n)

∫
∂B1(0)

〈∇u(rx), x〉ds(x)

=
1

vol(∂Br(0))

∫
∂Br(0)

〈∇u(x),
x

r︸︷︷︸
=:N

〉ds(x)

=
r

n

1

vol(Br(0))︸ ︷︷ ︸
α(n)rn

∫
∂Br(0)

∆u(x)︸ ︷︷ ︸
= 1
c2
ut,t

ds(x)
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Hence

d

dr

(
rn−1 d

dr
ū(r, t)

)
=

1

nα(n)

d

dr

∫
∂Br(0)

ut,t(x, t)ds(x)

=
1

nα(n)

∫
∂Br(0)

ut,t(x, t)ds(x)

= rn−1 1

vol(∂Br(0))

∫
∂Br(0)

ut,t(x, t)ds(x) = rn−1(ū)t,t(r, t)

It follows

(n− 1)rn−2(ū)r + rn−1(ū)r,r = rn−1ūt,t

Deviding by rn−1 gives the desired equation. �

Proof. Proof of the theorem Recall we have n = 3. The previous lemma implies

ūt,t = c2
(
ūr,r −

2

r
ūr

)
Let us define v(r, t) = rū(r, t). Then

vr = ū+ rūr

⇒ vr,r = ūr + ūr + rūr,r =
1

c2
ūt,t =

1

c2
ūt,t

Since u is continuous in 0, it follows that ū(r, t) = 1
4πr2

∫
∂Br(0)

u(x)ds(x)→ u(0) for r → 0.

⇒ v(r, t)→ 0 as r → 0

Hence v solves the half line problem

vt,t = c2vr,r on (0,∞)× [0,∞)

lim
r→0

v(r, t) = 0 for t ≥ 0

v(r; 0) = rφ̄(r) = φ∗(r), vt(r, 0) = rψ̄(r) = ψ∗(r) for r > 0

The solution for this problem is given by the following formula

v(r, t) =

{
1
2 [φ∗(ct+ r)− φ∗(ct− r)] + 1

2c

∫ ct+r
ct−r ψ

∗(s)ds for 0 ≤ r ≤ c|t|,
1
2 [φ∗(r + ct)− φ∗(r − ct)] + 1

2c

∫ r+ct
r−ct ψ

∗(s)ds for r ≥ c|t|.

Therefore

u(0, t) = lim
r→0

ū(r, t) = lim
r→0

1

r
v(r, t)

= lim
r→0

(
1

2r
[φ∗(ct+ r)− φ∗(ct− r)] +

1

2cr

∫ ct+r

ct−r
ψ∗(s)ds

)
= (φ∗)′(ct) +

1

c
ψ∗(ct)

=
d

dr

(
rφ̄(r)

) ∣∣
ct

+ tψ̄(ct) =
d

dt

(
tφ̄(ct)

)
+ tψ̄(ct).

That is the desired formula for x = 0. The case x 6= 0 is derived easily since a translation of u
satisfies the wave equation as well. �



112 MAT351 PARTIAL DIFFERENTIAL EQUATIONS – LECTURE NOTES –

10.4. Formula in 2D (Poisson formula). Let u ∈ C2(R2 × [0,∞)) s.t.

ut,t = c2∆u on R2 × [0,∞)

u(x, y, 0) = φ(x, y) and ut(x, y, 0) = ψ(x, y)

Define v(x, y, z, t) = u(x, y, t). Then v solves the wave equation in 3D and we can apply Kirchhoff’s
formula:

v(x0, y0, 0︸ ︷︷ ︸
=o

, t) =
1

4πc2t

∫
∂Bct(0)

ψ(x, y, t)ds(x, y, z) + . . . .

We use this formula to derive a formula that only involves integral in R2. This is also called
Hadamard’s method of decent.

Note that ∂Bct(o) = S+∪S− with (x, y, z) ∈ S± if and only if z = ±
√
c2t2 − (x− x0)2 − (y − y0)2.

Hence S+ (and S−) respectively are parametrized by the graph of z = z(x, y). Hence, we can

compute a surface integral over S+ using the transformation ds(x, y, z) =
√

1 + (zx)2(x, y) + (zy)2(x, y)dxdy.

⇒ v(o, t) =
2

4πc2t

∫
{(x,y):(x−x0)2+(y−y0)2≤c2t2}

ψ(x, y)
√

1 + (zx)2 + (zy)2dxdy.

Note that

1 + (zx)2 + (zy)2 = 1 +
(
−x
z

)2

+
(
−y
z

)2

=
c2t2

z2
=

c2t2

c2t2 − (x− x0)2 − (y − y0)2

Hence

v(o, t) =
1

2πc

∫
{(x,y):(x−x0)2+(y−y0)2≤c2t2}

ψ(x, y)√
c2t2 − (x− x0)2 − (y − y0)2

dxdy

+
d

dt

1

2πc

∫
{(x,y):(x−x0)2+(y−y0)2≤c2t2}

φ(x, y)√
c2t2 − (x− x0)2 − (y − y0)2

dxdy.

This is Poisson’s formula for solutions of the wave equation in 2D.

Remark 10.14. In particular, we see that Huygen’s principle does not hold for the case of two space
dimensions.



MAT351 PARTIAL DIFFERENTIAL EQUATIONS – LECTURE NOTES – 113

Lecture 33

Remark 10.15. An alternative form of Kirchhoff’s formula is deduced as follows. Let u ∈ C2(R3×
[0,∞)) a solution of the wave equation with initial conditions φ and φ. Set

φ̄(x, t) = −
∫
∂Bct(x)

φ(y)ds(y) and ψ̄(x, t) = −
∫
∂Bct(x)

ψ(y)ds(y).

Then Kirchhoff’s formula takes the form

u(x, t) = tψ̄(x, t) +
∂

∂t
(tφ̄(x, t))

We compute

∂

∂t
(tφ̄(x, t)) =

∂

∂t

(
1

4πc2t

∫
∂Bct(x)

φ(y)ds(y)

)

=
∂

∂t

(
t

4πc2t2

∫
∂B1(0)

φ(x+ cty)c2t2ds(y)

)

=
1

4π

∫
∂B1(0)

φ(x+ cty)ds(y) +
t

4π

∫
∂B1(0)

∂

∂t
φ(x+ cty)ds(y)

=
1

4πc2t2

∫
∂B1(0)

φ(x+ cty)c2t2ds(y) +
tc

4π

∫
∂B1(0)

〈∇φ(x+ cty), y〉ds(y)

=
1

4πc2t2

∫
∂Bct(x)

φ(y)ds(y) +
tc

4πc2t2

∫
∂Bct(x)

〈∇φ(y),
y − x
ct
〉ds(y)

= −
∫
∂Bct(x)

(φ(y) + 〈∇φ(y), y − x〉) ds(y).

Hence

u(x, t) = −
∫
∂Bct(x)

(tψ(y)φ(y) + 〈∇φ(y), y − x〉) ds(y).

Similar for n = 2 the formula can be written as

u(x, t) =
1

2
−
∫
Bct(x)

tψ(y) + φ(y) + t〈∇φ(y), y − x〉√
t2 − |y − x|2

ds(y).

10.5. Solution of the wave equation in 3D.

Theorem 10.16 (Solution to the wave equation in 3D). Let n = 3. φ, ψ ∈ C2(R3). Define u by
Kirchhoff’s formula. Then u ∈ C2(R3 × [0,∞)) and u solves

ut,t = c2∆u on R3 × (0,∞)

lim
(x,t)→(x0,0)

u(x, t) = φ(x), lim
(x,t)→(x0,0)

u(x, t) = ψ(x) for x ∈ R3.

Proof. For simplicity we assume φ = 0. Then

u(x, t) = tψ̄(x, t) = t−
∫
∂Bct(x)

ψ(y)ds(y) = t
1

4π

∫
∂B1(0)

ψ(x+ tcy)ds(y).

By techniques we used before we immediately get that C2(R3 × [0,∞)).
Now observe for (x, t) ∈ R3 × (0,∞)

ut(x, t) = ψ̄(x, t) + tψ̄(x, t)

ut,t(x, t) = ψ̄(x, t) + ψ̄t(x, t) + tψ̄t,t(x, t) =
1

t

d

dt

(
t2ψ̄t(x, t)

)
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Consder ψ̄t(x, t):

ψ̄t(x, t) =
1

4π
c

∫
∂B1(0)

〈∇ψ(x+ cty), y〉ds(y)

=
c

4πc2t2

∫
∂Bct(x)

〈∇ψ(y),
y − x
ct︸ ︷︷ ︸

=N

〉ds(y) =
c

4πc2t2

∫
Bct(x)

∆ψ(y)dy

where N is the normal vectore along ∂Bct(x). Hence

d

dt

(
t2ψ̄t(x, t)

)
=

d

dt

1

4πc

∫ ct

0

∫
∂B1(x)

∆̃ψ(r, z)ds(z)r2dr

=
1

4πc
c

∫
∂B1(x)

∆̃u(ct, z)c2t2ds(z) =
1

4π

∫
∂B1(0)

∆ψ(x+ y)c2t2ds(y)

Therefore
1

t

d

dt

(
t2ψ̄t(x, t)

)
=

1

t4π

∫
∂B1(0)

∆ψ(x+ y)c2t2ds(y)

=
1

t4π
∆

∫
∂B1(0)

ψ(x+ y)c2t2ds(y)

= c2∆t
1

4πc2t2

∫
∂Bct(x)

ψ(y)dy

= c2∆
(
tψ̄(x, t)

)
.

Let us check the initial conditions. We have ut(x, t) = ψ̄(x, t) + tψ̄t(x, t). Now we compute

ψ̄(x, t) =
1

4π

∫
∂B1(0)

ψ(x+ tcy)ds(y)→ ψ(x0) for (x, t)→ (x0, 0).

Here we could move the limit inside the integral because f(y) := ψ(x + cty) → ψ(y) as t → 0
uniformily on ∂B1(0). Because of the same reason we have

|tψ̄(x, t)| =

∣∣∣∣∣ t4π
∫
∂B1(0)

〈∇ψ(x+ tcy), y〉ds(y)

∣∣∣∣∣
≤ t 1

4π

∫
∂B1(0)

|∇ψ|(x+ tcy)ds(y)︸ ︷︷ ︸
→|∇ψ|(x)

→ 0 as (x, t)→ (x0, 0).

Moreover

tψ̄(x, t)→ 0 as (x, t)→ (x0, 0).

Hence, the initial conditions are satisfied. �

Remark 10.17 (Kirchhoff’s formula for n = 2k + 1 ≥ 3).

u(x, t) =
1

γn

∂

∂t

[(
1

t

∂

∂t

)n−3
2

(
tn−2 −

∫
∂Bct(x)

φ(y)dy

)]
+

(
1

t

∂

∂t

)n−3
2

(
tn−2 −

∫
∂Bct(x)

ψ(y)dy

)
where γn = 1 · 3 · 5 · · · · (n− 2).

Remark 10.18. The solution of the wave equation involves derivatives of φ. This suggests that for
n ≥ 3 the solution need not to be as smooth as the initial condition, it may be less regular.
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10.6. Wave equations with a source term. We consider

ut,t − c2∆u = f(x, t)

u(x, 0) = 0,0ut(x, 0)

For φ, ψ the solution of the homogeneous problem is

u(x, t) = tψ̄(x, t)︸ ︷︷ ︸
L(t)ψ(x)

+
d

dt

(
tφ̄(x, t)

)
︸ ︷︷ ︸

d
dtL(t)φ(x)

By Dunhamel’s principle the solution for the inhomogeneous problem is

v(x, t) =

∫ t

0

L(t− s)f(x, s)ds =

∫ t

0

(t− s)f̄(x, t− s, s)ds

=

∫ t

0

(t− s) 1

4πc2(t− s)

∫
∂Bc(t−s)

f(y, s)ds(y)ds

Since |y − x| = c(t− s) for x ∈ ∂Bc(t−s)(x), it follows that

v(x, t) =
1

4πc

∫ t

0

∫
∂Bc(t−s)(x)

f(y, t− |y − x|/c)
|y − x|

ds(y)ds =
1

4πc

∫
Bct(x)

f(ξ, t− |ξ − x|/c)
|ξ − x|

dξ

This formul has a very similar structure as the solution formula for the Laplace equation on a ball.

10.7. Relativistic geometry. A light ray is the path of a particle moving along x(t) = x0 + v0t.
Note that x(t) ∈ R3. The speed of x(t) is

d

dt
x(t) = v0 ∈ R3 with |v0| = c

Characteristic surfaces. Let S ⊂ R4 be any 3D surface in R4 and set for t ∈ R fixed

St = S ∩ {(x, t) : x ∈ R3} ⊂ R3 2D surface.

Definition 10.19. A surface S ⊂ R4 is called characteristic surface if it is a union of light rays of
which each is orthogonal to St in R3.

Consider g(x), x ∈ R3 and f(x, t) = t− g(x) and set S = {(x, t) ∈ R4 : f(x, t) = k} for k ∈ R.

Theorem 10.20. A surface S = {(x, t) ∈ R4 : f(x, t) = k} = S is a characteristic surface ∀k ∈ R
if and only if g satisfies the eikonal equation |∇g| = 1

c .

Proof. Assume S is characteristic (fo all k ∈ R). Let x0 ∈ R3 and consider (x0, 0) ∈ R4. Set
k0 = f(x0, 0) = g(x0) and consider S = {(x, t) ∈ R4 : f(x, t) = k0}.

By assumption ∃(x(t), t) ∈ R4 a light ray such that x(0) = x0 and (x(t), t) ∈ S ∀t and d
dtx(t) =

v0 ⊥ St for all t ∈ R.
Since t = g(x(t)) = k0

⇒ 0 = 1− 〈∇g(x(t)), v0〉 ⇒ 〈∇g(x0), v0〉 = 1.

The gradient of g is orthogonal to its level sets. Hence ∇g(x0) ⊥ S0 = {x ∈ R3 : g(x) = k0}.
On the other v0 is orthogonal to S0 by assumption. Therefore ∇g(x0) and v0 are parallel. It

follows that

1 = 〈∇g(x0), v0〉 = |∇g(x0)||v0| = c|∇g(x0)|.

since x0 was arbitrary, we have one direction.
The other direction is left as an exercise. �
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Example 10.21. Consider g(x) =
∑3
i=1

ai
c xi with a2

1 + a2
2 + a2

3 = 1. Then ∇g(x) =

a1/c
a2/c
a3/c

.

Hence |∇g|2 = 1
c and S = {(x, t) ∈ R4 : t − g(x) = b/c} is a characteristic surface with

St = {x ∈ R3 :
∑3
i=1 aixi = b+ ct}.

Definition 10.22. (1) If (v, t) ∈ R4 satisfies t > c|v|, (v, t) is called timelike
(2) If t < c|v|, (v, t) is called spacelike, and
(3) If t = c|v|, (v, t) is called null.

R4 equipped with the bilinear form 〈(v, t), (w, s)〉1 = c
∑3
i=1 viwi− ts is called Minkowski space

time.

Lemma 10.23. S = {(x, t) ∈ R4 : t− g(x) = k} ⊂ R4 is a characteristic surface if and only if a
normal vector field N along S is a null vector field.

Proof. The normal vectors along S are given by ∇f =

(
−∇g

1

)
. Then

∇f is null ⇔ c|∇g| = 1

This proves the lemma by the previous theorem. �

Definition 10.24. A surface F = {(x, t) ∈ R4 : f(x, t) = t− g(x) = k} is spacelike if |∇g| < 1
c on

S. That is normal vectors along S are timelike.
For instance, if g = const then f(x, t) = t− const on S, then |∇g| = 0 < 1

c .

Theorem 10.25 (without proof). Let S = {(x, t) : t− g(x) = k} ⊂ R4 be spacelike for a smooth
function g : R3 → R. Then there exists a unique solution u ∈ C2(R4) of

c2∆u = ut,t with u = φ and
∂u

∂N
= ψ on S

where φ, ψ ∈ C2(R3) and N is the unit normal vector field along S.

Since N = 1√
|∇g|2+1

(
−∇g

1

)
the second initial condition becomes

∂u

∂N
=

1√
|∇g|2 + 1

〈∇u,
(
−∇g

1

)
〉 =

−1√
|∇g|2 + 1

〈∇R3

u,∇g〉+
1√

|∇g|2 + 1
ut.

Hence ut − 〈∇R3

u,∇g〉 =
√
|∇g|2 + 1ψ.

Example 10.26. In 1D we have ut,t = c2ux,x. S = {(x, t) : γ(x) = t} for γ : R→ R smooth.
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Singularities.

Theorem 10.27 (without proof). Singularities of a a solution of ut,t = c2∆u can only be carried
on characteristic surfaces.

Example 10.28. Recall the plucked string solution of the wave equation.

Example 10.29. Assume we have a solution in R2 of the form

u(x, t) =

{
1
2v(x, t) [t− g(x)]

2
if g(x) ≤ t

0 if g(x) ≥ t.

for g ∈ C2(R) and v ∈ C2(R× R).
Let us compute the partial derivatives:

ut = v(t− g(x)) +
1

2
vt(t− g(x))2

ux = −v(t− g(x)) +
1

2
vx(t− g(x))2

We see that u ∈ C1(R2). Moreover

ut,t = v + 2vt(t− g) +
1

2
vt,t(t− g)2

ux,x = vg2
x − vgx,x(t− g)− 2gxvx(t− g) +

1

2
vx,x(t− g)2

Since u solves the wave equation on g(x) < t, we have on {(x, t) : g(x) < t}
0 = ut,t − c2ux,x

=
1

2
(t− g)2(vt,t − c2vx,x) + v(1− c2g2

x) + (t− g)
(
2vt + c2vgx,x + c22gxvx

)
On g(x) > t the wave equation holds trivially. Hence for u being a solution across the surface
{g(x) = t} the right hand side in the previous equation has to be 0 on {g(x) = t}.

⇒ |gx| =
1

c
⇒ S = {g(x) = t} is a characteristic surface.

Moreover, given g that satisfies the eikonal equation, deviding by (t− g) it follows

−1

2
(t− g)(vt,t − c2vx,x) = 2(vt + gxvx) + v · gx,x on {g(x) = t}

Consequently v has to satisfy the following transport equation vt + c2gxvx = − c
2

2 vgx,x .
the information contained in v is transported along characteristic surfaces.

11. Schroedinger equations and stationary Schroedinger equations

A quantum mechanical system is described by the Schroedinger equation

−iut = 1
2k∆u+ V u on R3 × R

u(x, t)→ 0 if |x| → ∞
u(x, 0) = φ(x) on R3

(56)

where V : R3 → R is a potential function that describes an external force. Instead of the boundary
condition u(x, t)→ 0, |x| → ∞ , we also can could assume

∫
R3 u(x, t)2dx <∞.

We consider the following choices for V :

(1) V ≡ 0: the free Schroedinger equation.
(2) V (x) = −|x|2: the harmonic oscilator.
(3) V (x) = 1

|x| : the hydrogen atom (on R3\{0} × R).
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Separation of variables for (56) yields (u(x, t) = T (t)X(x)):

−iTt(t)
T (t)︸ ︷︷ ︸
(a)

=
1
2k∆X(x) + V (x)X(x)

X(x)︸ ︷︷ ︸ = −λ.

We assume λ ∈ R. Then

(a) T (t) = e−λit = cos(λt) + i sin(λt) that is T behaves like a wave.
(b)

−1

2
k∆X − V X︸ ︷︷ ︸

=:LX

= λX on R3(57)

This is an eigenvalue equatin for the operator L : C2(R3)→ {v : R3 → R} with “boundary
conditions at infinity”

X(x)→ 0 for |x| → 0 or

∫
R3

|X(x)|2dx <∞.

If V ≡ 0, (57) has no solution. Hence, the method of separation of variables is not
applicable.



MAT351 PARTIAL DIFFERENTIAL EQUATIONS – LECTURE NOTES – 119

Lecture 36

11.1. Diffusion equation on Rn. Before we study the case V = 0, we consider the diffusion
equation

ut = k∆u on Rn & u(x, t)→ 0 if |x| → ∞
u(x, 0) = φ(x), φ ∈ C0

b (Rn)(58)

for higher space dimensions.

Theorem 11.1. The solution of (58) is given by

u(x, t) =
1

(4πkt)
n
2

∫
Rn

e−
|x−y|2

4tk dy.

Remark 11.2. Define

Sn(x, t) =
1

(4πtk)
n
2
e−|x|

2/4tk = Πn
i=1

1√
4πtk

e−(xi)
2/4tk︸ ︷︷ ︸

=S(x,t)

where S(x, t) is the fundamental solution of the heat equation in one space dimension. Then

u(x, t) =

∫
Rn
Sn(x− y, t)φ(y)dy = Πn

i=1

∫
R
S(xi − yi, t)φi(yi)dyi.

if φ(x) = Πn
i=1φi(xi).

Proof. One can check that

• ∂
∂tSn(x, t) = k∆Sn(x, t) for x ∈ Rn and t > 0.

• u ∈ C2(Rn × (0,∞)) and ut = k∆u on Rn × (0,∞). (Because of the exponential decay
of Sn for |x| → 0, we can exchange differentiation and integration for x ∈ Rn and t > 0,
exactly as in the 1D case.)

• u ∈ C0(Rn × [0,∞)) and u(x, 0) = φ(x) (Exercise).

�

Remark 11.3. The solution formula still holds if k = Re(k) + iIm(k) ∈ C with Re(k) > 0. A hint
to see this is that Re( 1

k ) > 0 and∣∣∣e−|x|2/4kt∣∣∣ =
∣∣∣e−Re(1/k)|x|2/4te−iIm(1/k)|x|2/4t

∣∣∣ ≤ e−Re(1/k)|x|2/4t.

But will not give a proof.

If we consider k = i+ ε and let ε→ 0 one gets

Theorem 11.4. The solution of the free Schrödinger equation on R3 for u(x, 0) = φ(x) ∈ C0
c (Rn)

is given by

u(x, t) =
1

(2πkit)
3
2

∫
R3

e−|x−y|
2/2iktφ(y)dy

11.2. Time independent Schroedinger equation. Separation of variables for the Schroedinger

equation (56) yields Tλ(t) ∈ C that satisfies iλ = Tλ(t)
Tλ(t) and

∆X + V ·X + λX = 0 on R3

X(x)→ 0, |x| → ∞(59)

This equation is also called the time independent Schroedinger equation.
If (59) is solvable for λ, λ is called an energy level of the QM system described by the operator
L = −∆− V .
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Goal: Find energy levels λk and corresponding eigenfunctions vk that solve (59). If the system vk
is complete, then a general solution of the Schrödinger equation (56) is given by

u(x, t) =

∞∑
k=0

Tλk(t)vk(x).

Harmonic oscillator: V (x) = −|x|2. Assume first n = 1 (space dimension). Equation (59)
implies

v′′ − x2v + λv = 0.

For λ = 1 a solution is e−x
2/2 and it satisfies the boundary condition at infinity e−x

2/2 → 0 for
|x| → ∞.

For λ 6= 1, we assume v(x) = w(x)e−x
2/2 and derive an equation for w as follows

v′ = w′e−x
2/2 − x · we−x

2/2

v′′ = w′′e−x
2/2 − xw′e−x

2/2 − xw′e−x
2/2 − we−x

2/2 + x2we−x
2/2

Then

(x2 − λ)we−x
2/2 = (w′′ − 2xw′ − w + x2w)e−x

2/2

⇒ 0 = w′′ − 2xw′ + (λ− 1)w

The last equation is known as Hermite’s differential equation. To find solutions we apply the
power series method.

Assume w(x) =
∑∞
k=0 akx

k and pluck it into Hermite’s differential equation.

0 =

∞∑
k=0

akk(k − 1)xk−2

︸ ︷︷ ︸
=
∑∞
k=2 akk(k−1)xk−2

−
∞∑
k=0

ak2xkxk−1 +

∞∑
k=0

(λ− 1)akx
k

Replacing k with k + 2 in the first sum yields

0 =

∞∑
k=0

ak+2(k + 2)(k + 1)xk −
∞∑
k=0

ak2kxk +

∞∑
k=0

(λ− 1)akx
k.

Since the coefficients of a power series determine the power series uniquely, it follows that

0 = ak+2(k + 2)(k + 1)− ak2k + ak(λ− 1) ⇒ ak+2(k + 2)(k + 1) = (2k + 1− λ)ak

From this recursive formula for the coefficients we deduce first that

a0 = 0 ⇒ ak = 0 ∀k = 2, 4, . . .

a1 = 0 ⇒ ak = 0 ∀k = 3, 5, . . .

Moreover, if λ = 2k + 1 we get that 0 = ak+2i for all i ∈ N. Hence

If a0 6= 0, a1 = 0 and λ = 2k + 1 for k even ⇒ w is a even polynom of degree k.

If a0 = 0, a1 6= 0 and λ = 2k + 1 for k odd ⇒ w is an odd polynom of degree k.

In particular

H0(x) = 1 λ = 1 a0 = 1 a1 = 0
H1(x) = 2x λ = 3 a0 = 0 a1 = 2

H2(x) = 4x2 − 2 λ = 5 a0 = −2 a1 = 0 ⇒ a2 = −5+1
2·1 (−2) = 4

The set of polynomials Hk is called Hermite polynomials. It follows that solutions of (59) are

vk(x) = Hk(x)e−x
2/2 for λk = 2k + 1 and ∀k ∈ N ∪ {0}
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Remark 11.5. (1) vk satisfies the boundary conditon at infinity because P (x)e−x
2/2 → 0 as

|x| → ∞ for any polynomial P .
(2) If λ 6= 2k + 1, no power series solution satisfies the condition at infinity.
(3) the following formual holds

Hk(x) = (−1)kex
2 d

dk
e−x

2

(4) vk(x) = Hk(x)e−x
2/2 are mutually orthogonal:∫

R

Hk(x)Hl(x)e−x
2

dx = 0 if k 6= l.

(5) The set vk is complete: ∀f : R → R such that
∫
|f |2dx < ∞ it holds f =

∑∞
k=0Akvk in

L2 sense (mean square sense) where Ak = (vk, f)/(vk, vk) and (u, v) =
∫
u · vdx.

−→ “the spectrum of −∆ + |x|2 is λk, k ∈ N ∪ {0}.

Higher dimensions. The LHS of the equation

∆v − |x|2v = λv on Rn

factorizes as
n∑
i=1

(vxi,xi − x2
i v) = λv

This allows us to apply the separation of variables method w.r.t. to x1, . . . , xn and solutions are
given by

vk(x) =

n∏
j=1

Hkj (xj)e
−x2

j/2

for λk =
∑n
j=1 λkj =

∑n
j=1(2kj + 1) and k = (k1, . . . , kn) ∈ Nn..

11.3. Energy levels of the hydrogen atom: V (x) = 1
|x| . Assume k = 1:

−∆v − 2

|x|
v − λv = 0 on R3.

After a transformation with spherical coordinates the equation becmes

−ṽr,r −
2

r
ṽr −

1

r2
( partial derivatives of φ and θ )− 2

r
ṽ − λṽ = 0 r ∈ (0,∞), φ ∈ (0, 2π), θ ∈ (0, π)

where ṽ(r, φ, θ) = v(r cosφ cos θ, r sinφ cos θ, r sin θ).

Assume that λ < 0. That is only study the negative part of the specturem of the operator
L = −∆− 2

|x| .

Assume also that v is spherical symmetric. Then partial derivatives w.r.t. φ and θ in the
equation above vanish and it reduces to

⇒ R′′ +
2

r
R′ + λR+

2

r
R = 0

this equation is known as Laguerre’s differential equality. We have the following boundary condi-
tions

R(0) <∞ and R(r)→ 0 asr →∞.

The assymptotic behaviour of Laguerre’s equations is R′′ + λR = 0 with solution R(r) = e±βr

for β =
√
−λ. Therefore, taking into account the boundary condition at infinity, we make the

following ansatz

R(r) = w(r)e−βr
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As for the harmonic oscillator we can deduce an ODE for w:

−w′′ + 2(β − 1

r
)w′ + 2(β − 1)

1

r
w = 0

This yields

1

2
rw′′ − βrw′ + w′ + (β − 1)w = 0

The power series methode yields for this equation that

0 =
1

2

∞∑
k=0

ak(k − 1)krk−1 − β
∞∑
k=0

kakr
k +

∞∑
k=0

kakr
k−1 + (1− β)

∞∑
k=0

akr
k

If relabel k to k − 1 in the second and fourth series. we obtain

0 =

∞∑
k=0

ak(
1

2
(k − 1)k + k)rk−1 +

∑
k=1

ak−1 ((1− β)− β(k − 1)) rk−1

Consequently

ak
k(k + 1)

2
= (βk − 1)ak−1 ∀k ∈ N

If β = 1
k for some k ∈ N then ak+i = 0 ∀i ∈ N. Hence wk is a polynomial of degree k. We also

define

wk(r)e−βkr = Rk(r) = ṽk(r)

A special family of spherical symmetric solutions of the Schroedinger equation is therefore given
by

u(x, t) =

∞∑
k=0

e−2λktvk(x) with λk = β2
k =

1

k2

The set {− 1
k2 }k∈N are the energy levels of the hydrogen atom as experimentally observed by Bohr.

Remark 11.6. (1) The functions vk are not complet. There are two reasons for that. First, we
assumed spherical symmetry (no angular momentum of the the atom). Second, Besides
λk < 0 the specturm of the operator −∆ − 1

|x| has a positive and continuous part that is

[0,∞) (free electrons).
(2) If β 6= 1

k , then w is an infinite power series. For large k the coefficients behave assymptot-
ically as follows

k(k + 1)

2
ak = (βk − 1)ak−1 ⇒ kak =

(
β

2k

k + 1
− 2

k + 1

)
ak ⇒ ak = β

2

k
ak−1

for large k. Hence w ∼ e2βr that does not satisfy the boundary condition at infinity.
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Lecture 37

12. Fourier method

12.1. introducton. We have considered different types of equations

(1) −iut =
1

2
k∆u+ V u︸ ︷︷ ︸
−Lu

on Rn

(2) ut = k∆︸︷︷︸
−Lu

on Ω ⊂ Rn or Rn

(3) ut,t = c2∆u︸ ︷︷ ︸
−Lu

on Ω ⊂ Rn or Rn.

We assume the factor in front of ∆ is always 1.

Seperation of Variables: Assume u(x, t) = T (t)X(x). This yields equations for T (for instance
T ′ + λT = 0 in case of (2)) and

for X(x) : LX = λX on Ω ⊂ Rn or Rn together with a boundary condition.(60)

for a constant λ and with solutions Tλ and Xλ.

Goal: If possible, find λk, k ∈ N, and solutions vk of (60) s.t. φ(x) =
∑∞
k=0Akvk(x) in L2-

sense or stronger for many initial conditions φ(x) = u(x, 0).

=⇒ u(x, t) =

∞∑
k=0

Tλk(t)AkVk(x) solves problem (1) and (2)

for the initial condition φ.

In case of (3) one has a pair of initial conditions φ =
∑
Akvk and ψ =

∑
Bkvk and Tλ(t) =

A cos(λt) +B sin(λt).

=⇒ u(x, t) =

∞∑
k=0

(Ak cos(λt) +Bk sin(λt))vk.

In general: The existence of solutions of (60) depends on V and Ω.

12.2. Orthogonality of eigenfunctions. Assume Ω is bounded and ∂Ω is smooth, and that
g, f : Ω ⊂ R→ C continuous. An inner product between f and g is defined by∫

Ω

fgdx =: (f, g)

where c is complex conjugate of c ∈ C. Hence g = Re(g) + iIm(g) = Re(g)− iIm(g).

In particular ‖f‖2 = (f, f) =
∫

Ω
(Re(f)2 + Im(f)2)dx.

Remark 12.1. The PDEs make sense for C value v: ∆v = ∆Re(v) + i∆Im(v) = (Re(λ) +
iIm(λ))(Re(v) + iIm(v)).

Assume from now on that V = 0. If u, v are R-valued Green’s identity yields∫
Ω

uLvdx−
∫

Ω

vLudx =

∫
Ω

u∆vdx−
∫

Ω

v∆udx =

∫
∂Ω

(
u
∂v

∂N
+ v

∂u

∂N

)
dx

One can check: homogeneous Dirichlet, Neumann or Robin conditions imply (u, Lv) = (v, Lu).
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If u, v are C valued, note that

∆u · v = (∆Re(u) + i∆Im(u))(Re(v)− iIm(v))

= ∆Re(u)Re(v) + ∆Im(u)Im(v) + i∆Im(u)Re(v)− i∆Re(u)Im(u).

Hence, it is straightforward to see that Green’s identity again shows that (Lu, v) = (u, Lu) provided
one has Dirichlet, Neumann or Robin boundary conditions (for the Real and Imaginary part of u
respectively).

We say L = −∆ on Ω with the corresponding boundary condition is a symmetric
operator.

Corollary 12.2. • If u, v are eigenfcts for real eigenvalues λ1 6= λ2 then 0 = (u, Lv) −
(v, Lu) = (λ2 − λ1)︸ ︷︷ ︸

=λ2−λ1

(u, v). Hence u and v are orthogonal.

• If u is an eigenfunction for an eigenvalue λ ∈ C, then 0 = (λ− λ) (u, u)︸ ︷︷ ︸
>0

.

Hence λ = λ and therefore λ ∈ R.

In particular, since ∆u = ∆Re(u) + i∆Im(u), Re(u) and Im(u) are R valued eigen-
functions for the real EV λ.

Remark 12.3 (Eigenvalues with multiplicity). If there are 2 linear independent eigenfunctions
u, v for the same eigenvalue λ, the Gram-Schmidt algorithm finds ṽ s.t. (u, ṽ) = 0 and u, ṽ span
the same linear space as u and v.

Theorem 12.4. If φ(x) =
∑∞
k=0Akvk (in L2 sense or stronger) for orthogonal functions vk, then

Ak = (φ,vk)
(vk,vk) .

Proof. We have

(φ, vn) =

∫
Ω

φvndx =

∫
Ω

( ∞∑
k=0

Akvkvn

)
dx =

∞∑
k=0

Ak

∫
Ω

vkvndx = Ak(vn, vn)

where L2 converges allows to pull the sum outside of the integral. �

Completeness. Consider L = −∆ with hom. Dirichlet, Neumman or Robin bdy conditions on
∂Ω. Then there exist infinitely many eigenfcts vk, k ∈ N0 and

φ =
∞∑
k=0

Akvk in L2-sense ∀φ ∈ C0(Ω)

(
or ∀φ with

∫
Ω

φ2dx <∞
)
.
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Lecture 38

Let Ω ⊂ Rn be bouned with ∂Ω smooth.

Theorem 12.5. If L = −∆ (that is V = 0) on Ω with hom. Dirichlet bdy conditions, then all
eigenvalues are positive.

For hom. Neumann or hom. Robin bdy conditions all eigenvalues are non-negative.

Proof. For the Dirichlet case: Let u 6= 0 be an eigenfct. Green’s first identity yields

λ(u, u) =

∫
Ω

u∆udx =

∫
Ω

|∇u|2dx−
∫

Ω

(. . . )dx =

∫
Ω

|∇u|2dx ≥ 0

If
∫

Ω
|∇u|2dx = 0, then ∇u = 0, Hence u is constant on every connected component of Ω and by

the homogeneous Dirichlet bdy condition is must be 0. �

Example 12.6. Let Ω = Q = [0, π]n. We want to find a complete set of eigenfunctions for −∆ on
Q with homog. Dirichlet BC. Note that

−∆v = −
n∑
i=1

uxi,xi = −
n∑
i=1

∆1Du(. . . , xi, . . . ).

For the 1D problem we found eigenfunctions vk = sin(kx), k ∈ N, with EV k2. Then a complete
set of eigenfunctions for the n-dimensional problem is given by

vk(x1, ,̇xn) =

n∏
i=1

vki(xi), k = (k1, . . . , kn) ∈ Nn for the EV

n∑
i=1

k2
i .

12.3. Vibration of 2D disk. We study the following problem

utt = c2∆u on Ω
u(·, t) = 0 on ∂Ω
u(x, 0) = φ(x) ut(x, 0) = ψ(x).

(61)

where Ω = Ba(0).

Separation of Variables yields the following eigenvalue equation (compare with previous lecture):

−c2∆v︸ ︷︷ ︸
=:Lv

= λ on Ω for λ > 0 v(·, t) = 0 on ∂Ω.(62)

The symmetry of the domain Ω suggests to introduce polar coordinates: ṽ(r, θ) = v(r cos θ, r sin θ).
Then

∆ṽ = vr,r +
1

r
vr +

1

r2
vθ,θ

Another separation of variables equation yields for ṽ(r, θ) = R(r)Θ(θ)(
R′′ +

1

r
R′ + λR

)
Θ =

(
− 1

r2
Θ′′
)
R

It follows

R′′ + 1
rR
′ + λR

1
r2R

= −Θ′′

Θ
= γ ∈ R.

The equation for Θ is

Θ′′ + λΘ = 0 together with periodic boundary condition Θ(θ + 2π) = Θ(θ).

We saw before that the general solution is given by Θ(θ) = A cos(nθ) + B sin(nθ) and necessarily
γ = n2 for n ∈ N. Hence the equation for R is

R′′ +
1

r
R+

(
λ− n2

r2

)
R = 0 on [0, a] with R(0) <∞ and R(a) = 0.
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Observe that because the eigenvalue equation comes with Dirichlet boundary condition, we have
λ > 0 (see previous lecture).

Hence we can introduce a new variable ρ =
√
λr and R̃(ρ) = R(ρ/

√
λ). It follows

λR̃′′ +

√
λ

r
R̃′ +

(
λ− n2

r2

)
R̃ = 0⇒ R̃′′ +

1

ρ
R̃′ +

(
1− n2

ρ2

)
R̃ = 0

The last equation is known as Bessel’s differential equation.

Remark 12.7. The coefficients of this ODE are singular at ρ = 0. But ρ = 0 is a so-called regular
singular point. This implies that R̃ ∼ Cρα for ρ→ 0 for some α ∈ R.

Therefore we make the following ansatz. We assume that

R̃(ρ) = w(ρ)ρα where w is given as a power series: w(ρ) =

∞∑
k=0

akρ
k.

Here we will not derive an equation for w, but we will write

R̃(ρ) =

∞∑
k=0

akρ
α+k

and plug it into the differential equation for R̃:

0 = ρα
∞∑
k=0

ak(α+ k)(α+ k − 1)akρ
k−2 + (α+ k)akρ

k−2 + akρ
k − n2akρ

k−2.

⇒ k = 0 :
(
α(α− 1) + α− n2

)
a0 = 0,

k = 1 :
(
α(α+ 1) + α+ 1− n2

)
a1 = 0,

k ≥ 2 :
(
(α+ k)(α+ k − 1) + (α+ k)− n2

)
ak = −ak−2

Hence

first equ. : ⇒ α = ±n, a0 ∈ R. Assume n ≥ 0,

second equ. : ⇒
(
(α+ 1)2 − n2

)
a1 = 0 ⇒ a1 = 0,

third equ. : ⇒ ak = − ak−2

(α+ k)2 − n2
= − ak−2

(α+ k − n)(α+ k + n)
= − ak−2

k(2n+ k)
.

In particular, it follows that ak = 0 for k ∈ N odd.
Hence, it follows that

a2j = − a2j−2

2j · 2(n+ j)

if a0 = 1 then (−1)j
1

j!22j(n+ 1) · · · (n+ j)
,

if a0 =
1

2n
1

n!
then (−1)j

1

j!22j+n(n+ j)!

⇒ R̃(ρ) =

∞∑
j=0

(−1)j
(

1

2
ρ

)n+2j
1

j!(n+ j)!
= Jn(ρ)

Jn(ρ) is called the Bessel function of order n.

Remark 12.8. (1) The solutions for α = −n look like ρ−n for ρ → 0 or they look like log ρ.

Hence, since we require R̃(0) <∞ we dismiss them.
(2) The series above converges on [0,∞) and hence Jn(ρ) solves the Bessel equation. ⇒ R(r) =

cJn(
√
λr) for some c ∈ R.
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(3) It holds Jn(ρ) ∼ Cρα for C = const for ρ→ 0 and

Jn(ρ) ∼
√

2

πρ
cos(ρ− π

4
− nπ

2
) + o(

1

ρ3/2
) for ρ→∞.

For the homogeneous Dirichlet boundary condition we require Jn(
√
λa) = 0. The function

λ 7→ Jn(
√
λa) has infinitely many, countably many roots 0 < λn,1 < λn,2 < . . . .

Theorem 12.9. Solutions for the eigenvalue equation (62) are given by

ṽn,m(r, θ) = Jn(
√
λn,mr) · cos(nθ), w̃n,m(r, θ) = Jn(

√
λn,mr) · sin(nθ)

This is a complete orthonormal system of eigenfunctions for the operator L = −∆ on Ba(0) (λn,m,
(n,m) ∈ N2 are the eigenvalues of L with multiplicity 2)

Together with Fourier method from the previous lecture we can solve (61). Lets do this for a
particular case.

Example 12.10. We want to find the solution ũ with ũ(r, θ, 0) and ũt(r, θ, 0) = ψ̃(r) (ψ only depends

on the radius variable r). If we expand φ̃ with the eigenfunction, we found, then we get

ψ̃(r) =

∞∑
m=1

β0,mC0,mJ0(β0,mr)

where β0,m =
√
λ0,β . Hence

ũ(r, θ, t) =

∞∑
m=1

C0,mJ0,m(β0,mr) sin(β0,mt)

where

β0,mC0,m =

∫ a

0

ψ̃(r)J0(β0,mr)rdr/

∫ a

0

(J0(β0,mr))
2rdr.

Remark 12.11. Note that ṽn,m, w̃n,m is indeed an orthornormal set. For instance we can compute∫ 2π

0

∫ a

0

ṽn,mṽk,lrdrdθ =

∫ 2π

0

cos(nθ) cos(kθ)dθ ·
∫ a

0

Jn(βn,mr)Jk(βk,lr)rdr

where the first integral is 0 if and only if m 6= k and the second integral is 0 if and only if
(n,m) 6= (k, l).

12.4. Vibrations of a 3D ball. Consider the eigenvalue problem

−∆v = λv on Ω
v = 0 on ∂Ω

(63)

where Ω = Ba(0) ⊂ R3.

By Spherical coordinates the PDE becomes

0 = ∆v + λv = ṽr,r +
2

r
ṽr +

1

r2

[
1

(sin θ)2
vφ,φ +

1

sin θ
(sin θṽθ)θ

]
+ λṽ

where ṽ(r, φ, θ) = v(r cosφ sin θ, r sinφ sin θ, r cos θ), r ∈ [0, a], φ ∈ [0, 2π], θ ∈ [0, π].
With another separation of variables ṽ(r, φ, θ) = R(r)Y (φ, θ) we get

R′′ +
2

r
R′ + (λ− γ

r2
)R = 0 for γ ∈ R and with R(0) <∞ and R(a) = 0.

and
1

sin2 θ
Yφ,φ +

1

sin θ
(sin θYθ)θ︸ ︷︷ ︸

=∆∂B1(0)Y

+γY = 0

with boundary conditions Y (φ+ 2π, θ) = Y (φ, θ) and Y (φ, 0), Y (φ, π) <∞.
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Remark 12.12. ∆∂B1(0) is the Laplace operator on ∂B1(0) in spherical coordinates.

Defininng
√
rR(r) = w(r), then w satisfies

w′′ +
1

r
w′ +

(
λ−

γ + 1
4

r2

)
w = 0.

Then a change of variable R̃(ρ) = w(ρ/
√
λ) yields that R̃ satisfies again Bessel differential equality.

Hence w(r) = J√
γ+ 1

4

(
√
λr) and R(r) = 1√

r
J√

γ+ 1
4

(
√
λr) with boundary conditions R(0) finite

and R(a) = 0.
Angular funciton Y (φ, θ). We assume one more time separated variables: Y (φ, θ) = q(φ)p(θ).
It follows

1

(sin θ)2
q′′(φ)p(θ) +

1

sin θ
(sin θq′(θ))

′
p(φ) + γq(φ)q(θ) = 0

⇒ q′′

q
= − sin θ(sin θp′)′

p
− γ(sin θ)2 =: −α ∈ R.

Recall the periodic boundary condition for Y in the variable φ. Hence, we know that

α = m2 with m ∈ N0 and q(φ) = A cos(mφ) +B sin(mφ).

⇒ (sin θp′)′

sin θ
+

(
γ − m2

(sin θ)2

)
p = 0

with boundary conditions p(0), p(π) <∞.

Another variable change s = cos θ (→ sin θ =
√

1− s2) yields

d

ds

(
(1− s2)

dp

ds

)
+

(
γ − m2

1− s2

)
p = 0

with p(−1), p(1) finite. This equation is known as (asssociated) Legendre equation. Its eigenvalues
are l(l + 1) for l ∈ N, l ≥ m with eigenfunctions

Pml (s) =
(−1)m

2ll!
(1− s2)

m
2
dl+m

dsl+m
[
s2 − 1

]l
This are the associated Legendre functions.

Conclusion: The function

ṽ(r, φ, θ) = R(r)q(φ)p(θ) = J√
γ+ 1

4

(
√
λr)

1

λ
(A cos(mφ) +B sin(mφ))Pml (cosφ)

solves the eigenvalue equation (63) where l ≥ m, γ = l(l + 1). It follows
√
l(l + 1) + 1

4 = l + 1
2 .

One can also replace the sin and cos term with eimφ for m ∈ Z.
Moreover, let λl,i be the roots of Jl+ 1

2
(
√
λa). Then

ṽl,m,i(r, φ, θ) =
1√
λ
Jl+ 1

2
(
√
λr)P

|m|
l (cos θ)eimφ,m ∈ Z, l ≥ |m|, i ∈ N.

is a complete set of orthogonal eigenfunctions with EV λl,i that has multiplicity 2l + 1 because
there 2l + 1 m’s such that l ≥ |m|.
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12.5. Bessel’s differential equation. Bessel’s differential equation is

u′′ +
1

z
u′ +

(
1 +

s2

z2

)
u = 0 for z > 0.

For s ∈ N and u(0) <∞ we derived by the power series method that

Jn(z) =

∞∑
j=0

(−j)j 1

j!(n+ j)!

(z
2

)2j+n

where the coefficients ak are defined recursively with a0 = 1
2nn! .

Now let s ∈ (0,∞) and let Γ(s) =
∫∞

0
ts−1e−tdt is the Gamma function. Γ satisfies

• Γ(n+ 1) = n! ∀n ∈ N.
• Γ(s+ 1) = sΓ(s) = s(s− 1) · . . . , ·(s− n)Γ(s− n) ∀n ∈ N with n > s.

Setting a0 = 1
2sΓ(s+1) the previous recursion formula for the coefficients yields

Js(z) =

∞∑
j=0

(−1)j

Γ(j + 1)Γ(j + s+ 1)

(z
2

)2j+1

This is the Bessel function of order s > 0 and it solves Bessel’s differential equation.
Further extension to s ∈ (−1, 0) is possible. Then Js and J−s are linear independent solutions

for Bessl’s differential equation, but J−s(z)→∞ for z → 0.

• Assymptotic behavior:

Js(z) ∼
√

2

πz
cos(z − sπ

2
− π

4
) + o(z−

3
2 )

• Recursion formula:

Js±1 =
s

z
Js ∓ J ′s(z)

In particular, for s = 1
2 + n− 1 one has

J 1
2 +n(z) = (−1)z

1
2 +n d

dz

(
z−

1
2−nJ 1

2 +n−1(z)
)

= (−1)nzn+ 1
2

(
z−1 d

dz

)n (
z−

1
2 J 1

2
(z)
)

• For s = 1
2 , v(z) =

√
zJ 1

2
(z) solves v′′ + v = 0 with v(0) = 0. Hence v(z) = c · sin z and

J 1
2
(z) =

√
2

πz
sin(z)

Similar J− 1
2
(z) =

√
2
πz cos(z). Therefore, we obtain the following nice formula

Jn+ 1
2
(z) = (−1)n

√
2

π
zn+ 1

2

(
z−1 d

dz

)n(
sin z

z

)
.

12.6. Legendre functions. Eigenfunction of −∆ on Ba(0) ⊂ R3 with Dirichlet BC are

ṽl,m,j(r, φ, θ) =
1√
r
J 1

2 +l(
√
λl,jr)P

|m|
l (cos θ)eimφ with m ∈ Z, l ∈ N0 s.t. l ≥ |m| and j ∈ N.

The corresponding eigenvalue is λl,j where (λl,j)j∈N are the roots of the function λ 7→ J 1
2 +l(
√
λa).

Remark 12.13. The functions Pml (s) for m, l ∈ N with l ≥ m are the associated Legndre functions

given by Pml (s) = (−1)m

2ll!
(1− s2)

m
2
dm

dsm
dl

dsl
(s2 − 1)l︸ ︷︷ ︸

=:qml

where qml are Polynomials of degree l −m.
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• Pml (s) solves the associated Legendre equation ((1− s2))P ′)′ +
(
l(l + 1)− m2

1−s2

)
P = 0.

• 1
2l!

dl

dsl
(1 − s2)l are called Legndre polynomials and they solve the Legendre differential

equation

((1 + s2)v′)′ + l(l + 1)v = 0.

Orthogonality

(ṽl,m,j , ṽk,n,t) =

∫ a

0

∫ 2π

0

∫ π

0

ṽl,m,j(r, φ, θ)ṽk,n,t(r, φ, θ) sin θr2drdφdθ

=

∫ a

0

J 1
2 +l(

√
λl,jr)J 1

2 +k(
√
λk,jr)rdr︸ ︷︷ ︸

=0 if (l,j) 6=(k,t)

∫ 2π

0

ei(m−n)φdφ︸ ︷︷ ︸
=0 if m 6=n

∫ 2π

0

P
|m|
l (cos θ)P

|n|
k (cos θ) sin θdθ︸ ︷︷ ︸

=0 if (m,l)6=(n,k)

Spherical Harmonics The set of functions Y ml (φ, θ) = P
|m|
l (cos θ)eimφ m ∈ Z, l ∈ N with

l ≥ |m| is a complete orthogonal set of eigenfunctions for the Laplace operator on the sphere
∂B1(0) =: S2 ⊂ R3. In spherical coordinates the Laplace operator on the sphere is

1

sin2 θ
Yφ,φ +

1

sin θ
(sin θYθ)θ .

Example: Laplace equation with non-homogeneous Dirichlet BC

∆u = 0 on Ba(0)

u = g on ∂Ba(0)

Expand g =
∑∞
l=0

∑l
m=−lA

m
l Y

m
l (φ, θ).

Assuming ũ(r, φ, θ) = R(r)Y (φ, θ) the equation becomes

R′′ +
2

r
R′ +

γ

r2
R = 0

with γ = l(l + 1) for l ≥ m and spherical harmonic Y ml = Y .
The equation for R is not a Bessel equation of the form we saw before but of Euler type:

uv′ +
β

r
v′ +

γ

r2
v = 0.

Then: If s and t are the roots of x(x− 1) + βx+ γ = 0, solutions are given by v(t) = Ctr +Dts.

In our case β = 2 and the quadratic equation x2 + x + l(l + 1) = (x − l)(x + (l + 1)) = 0 has
exactly 2 roots. The positive root is l and a solution for our Euler type Equation is R(r) = rl or

(r/a)
l
.

Hence u(r, φ, θ) =
∑∞
l=0

∑l
m=−lA

m
l

(
r
a

)l
Y ml (φ, θ) is a solution of the problem.
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12.7. Hydrogen atom revisited. Consider Schroedinger’s equation

iut = −1

2
∆u+ V · u

for a radial potential function V = Ṽ (r) with r2 = x2
1 + x2

2 + x2
3 and u = u(x, y, z, t) ∈ C. We

assume the global boundary condition∫
R3

|u(x, t)|2dx <∞.

A separation of variables yields solutions of the form u(x1, x2, x3, t) = v(x1, x2, x3)e−iλt/2 where

−∆v + 2V · v = λv

Let assume that λ ∈ R and v(x1, x2, x3) ∈ R.
After introducing spherical coordinates another separation of variables yields solutions of the

eigenvalue equation of the form ṽ(r, φ, θ) = R(r) · Y (φ, θ) where

λr2 − 2r2Ṽ (r) +
r2R′′ + 2rR′

R
= γ = − 1

Y

{
1

sin2 θ
Yθ,θ +

1

sin θ
(sin θYθ)θ

}
for constant γ ≥ 0. We observed that the expression inside { } on the RHS is the Laplace operator
on ∂B1(0) in spherical coordinates.

Hence, the second equation corresponds to an eigenvalue equation of the Laplace operatore on
∂B1(0). The eigenvalues are given by γ = l(l + 1) > 0 where l ∈ N with l ≥ |m| for m ∈ Z. The
corresponding eigenfunctions are the spherical harmonics given by

Y ml (φ, θ) = eimφP
|m|
l (cos θ).

The equaton for R becomes

R′′ +
2

r
R′ +

(
λ− 2Ṽ (r)− l(l + 1)

r2

)
R = 0.

For the hydrogen atom where Ṽ (r) = − 1
r we obtain

R′′ +
2

r
R′ +

(
λ+

2

r
− l(l + 1)

r2

)
R = 0

where we assume the boundary conditions R(0) <∞ and R(r)→ 0 for r →∞.
As in our previous treatment of the hydrogen atom we set w(r) = eβrR(r) with β =

√
−λ.

Recall that we assumed that λ < 0.

=⇒ w′′ + 2

(
1

r
− β

)
w′ +

[
2(1− β)

r
− l(l + 1)

r2

]
w = 0.

Power series method: Assume w(r) =
∑∞
k=0 akr

k. Then∑
k(k − 1)akr

k−2 + 2
∑

kakr
k−2 − 2β

∑
kakr

k−1 + 2(1− β)
∑

akr
k−1 − l(l + 1)

∑
akr

k−2 = 0

or
∞∑
k=0

[k(k − 1) + 2k − l(l + 1)]︸ ︷︷ ︸
=k(k+1)−l(l+1)

akr
k−2 +

∞∑
k=1

[−2β(k − 1) + (2− 2β)]︸ ︷︷ ︸
=2(1−kβ)

ak−1r
k−2 = 0

We can conclude that

l(l + 1)a0 = 0 and [k(k + 1)− l(l + 1)]ak = −2(1− kβ)ak−1.

We see that for k < l it must follow that ak = 0. Then al is completely arbitrary, the following
coefficients are computed using the recursion formula.

Finally the series is polynomial if β = 1
n for some n ∈ N since the recursion formula implies

that ak = 0 for k ≥ n.
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Thus the eigenvalues are λ = − 1
n2 and the corresponding eigenfunctions are

vnlm(r, φ, θ) = e−r/nLln(r) · Y ml (φ, θ)

where Lln are the polynomials of the form Lln(r) =
∑n−1
k=l akr

l.

Remark 12.14. The eigenfunctions vnlm are still not complete because we cannot consider λ ≥ 0
which corresponds to the case of a free electron.

Angular Momentum in QM. In Newton mechanic, given a particle x(t) ∈ R3, the angular
momentum is defined as x(t)× ẋ(t) (here × is the cross product between vectors).

The angular momentum of QM system is the operator L = −ix×∇ = i

x2∂3 − x3∂2

x3∂1 − x1∂3

x1∂2 − x2∂1

 =

L1

L2

L3

.

In spherical coordinates:

L1 = i(cot θ cosφ∂φ + sinφ∂θ), L2 = i(cot θ sinφ∂θ − cosφ∂θ), L3 = −i∂φ

=⇒ |L|2 = L2
1 + L2

2 + L2
3 = − 1

sin2 θ
∂φ,φ −

1

sinφ
∂θ (sin θ∂θ) = −“Laplace operator on ∂B1(0)”

Hence, the eigenfunctions of |L|2 are the spherical harmonics. Moreover, one can check that

L3Y
m
l = mY ml , L±Y

m
l = (L1 ± iL2)Y ml = ((l ∓m)(l ±m))

1
2 Y ml .

Hence the spherical harmonics is a (complete) set of eigen functions for the operator L.

Remark 12.15. In QM one cannot have a pure rotation around a single axis (for instance x3).
This would correspond to the existence of eigenfunctions Y ml (φ, θ) that depends on φ but not on

θ. Hence P
|m|
l (cos θ) = const, ⇒ l = 0 ⇒ |m| = 0 and therefore Y ml (φ, θ) = const.
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13. General eigenvalue problems

Let Ω ⊂ Rn be open, bounded and connected with ∂Ω smooth (n = 3 or n ∈ N).
We consider the general eigenvalue problem

−∆u = λu on Ω(64)

with Dirichlet boundary condition u|∂Ω = 0.
We saw before that for this problem λ ≥ 0. How can we find the eigenvalues and the solutions

of the corresponding eigenvalue problem?
Dirichlet Energy:

E(u) =

∫
Ω

|∇u|2dx for u ∈ C1(Ω) (We drop the 1
2 in front of the integral)

The minimizers u of E on C1(Ω) are harmonic (Dirichlet principle). Hence if u|∂Ω = 0, the maxi-
mum principle implies u = 0. Therefore λ = 0 is not an eigenvalue.

New Minimization problem (with additional constraints):
Find the minimizer of E on C1(Ω) on E0 := {u ∈ C1(Ω) : u|∂Ω = 0} with

∫
Ω
u2dx = 1.

⇐⇒ Find minimizer of
E(u)

‖u‖22
= R(u) on E0\{0}.(65)

R(u) is called the Rayleigh quotient of u.

Theorem 13.1 (Minimum principle for the first EV). Assume u ∈ C2(Ω) ∩ E0 solves the mini-
mization problem (65). Then u solves the EV problem (64) with λ = R(u) =: λ1.

Moreover, assuming that any solution of the EV problem (64) for some λ is in C2(Ω)∩E0, then
λ1 is the smallest eigenvalue of −∆ on Ω with homogeneous Dirichlet BC.

Proof. Let φ ∈ C1(Ω) with compact support in Ω. Then u + εφ = w(ε) ∈ E0 ∀ε ∈ (−δ, δ). The
functions w(ε) are called trial functions.

We set

f(ε) = E(w(ε)) =

∫
Ω

|∇u|2dx+ 2ε

∫
Ω

〈∇u,∇φ〉dx+ ε2
∫

Ω

|∇φ|2dx,

g(ε) = ‖w(ε)‖22 =

∫
Ω

u2dx+ 2ε

∫
Ω

uφdx+ ε2
∫

Ω

φ2dx

=⇒ f ′(0) = 2

∫
Ω

〈∇u,∇φ〉dx, g′(0) = 2

∫
Ω

uφdx

Since u is a minimizer of R on E0\{0}, we have

=⇒ 0 =
d

dε
R(w(ε))

∣∣
ε=0

=
f ′(0)g(0)− f(0)g′(0)

g2(0)
.

Since g(0) = ‖w(0)‖22 = ‖u‖22 6= 0, it follows

0 =

∫
Ω

〈∇u,∇φ〉dx ‖u‖22 −
∫

Ω

u · φdx · E(u).

=⇒ R(u)

∫
Ω

uφdx =
E(u)

‖u‖22

∫
Ω

uφdx =

∫
Ω

〈∇u,∇φ〉dx 1st Green Id
= −

∫
Ω

∆uφdx.

Since this holds for any function φ ∈ C1(Ω) with compact support in Ω, the Fundamental theorem
of Calculus of Variations implies

−∆u = λu on Ω.
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If λ2 is any other eigenvalue with an eigenfunction v ∈ C2(Ω) ∩ E0, then

−
∫

Ω

v∆vdx =

∫
Ω

|∇v|2dx = λ2

∫
Ω

v2dx.

Hence

λ2 = R(v) ≥ R(u) = λ1.

�

Recall (u, v) =
∫

Ω
uvdx.

Theorem 13.2 (Minimum principle for the nth EV). Assume we found the first n − 1 EVs
0 < λ1 ≤ λ2 ≤ · · · ≤ λn−1 with the corresponding eigenfunctions v1, . . . , vn ∈ C2(Ω) ∩ E0.

Then the nth EV of −∆ on Ω with homogeneous Dirichlet BC is given by the following minimum
with additional constraints

λn = min
E(w)

‖w‖22
where w ∈ E0\{0}, 0 = (w, v1) = · · · = (w, vn−1).(66)

If u ∈ C2(Ω)∩E0 solves the minimization problem (66) then u solves (64) for the λ = R(u) = λn.

Proof. Let u ∈ C2(Ω) ∩ E0 be a minimizer of (66) and let φ ∈ C1(Ω) with compact support in Ω.
Note we can choose v1, . . . , vn−1 to be orthogonal. Then, we define

φ̃ = φ−
n−1∑
k=1

ckvk where ck =
(φ, vk)

(vk, vk)

The definition of φ̃ is such that (φ̃, vk) = 0 ∀k = 1, . . . , n− 1. Moreover, φ̃ ∈ C1(Ω) ∩ E0. We also

set w̃(ε) = u+ εφ̃. Then w(ε) ∈ E0 ∩ C1(Ω) and

(w̃(ε), vk) = (u+ εφ̃, vk) = (u, vk) + ε(φ̃, vk) = 0.

Hence w̃(ε) are trial functions for the minimization problem (66) and we can define f, g has before
and compute

f ′(0) = 2

∫
Ω

〈∇u,∇φ̃〉dx, g′(0) = 2

∫
Ω

uφ̃dx

and

0 =
d

dε

∣∣∣
ε=0

f(ε)

g(ε)
.

=⇒
∫

Ω

〈∇u,∇φ̃〉dx = λ∗
∫

Ω

uφ̃dx

where λ∗ = R(u) = E(u)

‖u‖22
. Hence

=⇒ −
∫

Ω

∆uφ̃dx = λ∗
∫

Ω

uφ̃dx

=⇒ −
∫

Ω

(∆u− λ∗u)φdx = −
n−1∑
k=1

ck

∫
Ω

(∆u− λ∗u) vkdx

2nd Green Id =−
n−1∑
k=1

ck (∆vk − λ∗vk)udx =

n−1∑
k=1

ck

∫
Ω

(λk − λ∗)vkudx = 0.

Hence

−
∫

Ω

∆uφdx = λ∗
∫

Ω

uφdx
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and since φ ∈ C1(Ω) with compact support in Ω was arbitrary, we get that −∆u = λ∗u on Ω and
λk ≤ λ∗.

Moreover, since {v1, . . . , vn−1, u} are linear independent, λ∗ = λn is the nth EV. �

How can we compute the eigenvalues?

13.1. Min-Max principle for the nthe eigenvalue. Let v1, . . . , vn be orthogonal eigenfunctions
for the first n EV λ1, . . . , λn. Assume ‖vi‖2 = 1 and set

V = span {v1, . . . , vn} ⊂ E0

that is linear space of dimension n. Assume (vi), i = 1, . . . , n, are orthogonal.
If w =

∑n
k=1 ckvk ∈ V , then

E(w) =

n∑
l,k=1

ckcl

∫
Ω

〈∇vk,∇vl〉dx =

n∑
k=1

c2k

∫
Ω

|∇vk|2dx =

n∑
k=1

c2kλk.

Hence, on V the energy E is represented by the matrix A = Diag(λ1, . . . , λk), Precisely

E(w) = (c1, . . . , cn)A(c1, . . . , cn)T for w =

n∑
k=1

ckvk.

Linear Algebra tells us

λn = max
c∈Rn

cAcT

|c|22
= max

w∈V

E(w)

‖w‖22
.

Now, consider arbitrary w1, . . . , wn ∈ E0 that are linear independent and W = span{w1, . . . , wn}.

We want to find w =
∑n
k=1 xkwk ∈W such that (w, vi) = 0 ∀i = 1, . . . , n− 1. For this consider

the set of equations

(w, vi) =

n∑
k=1

xk(wk, vi), i = 1, . . . , n− 1

or equivalently A · xT = 0 for the n× (n− 1) matrix A = ((wk, vi))k=1,...,n;i=1,...,n−1. Clearly, we

always find a solution x ∈ Rn\{0}.
Hence, there exists w ∈W\{0} such that

R(w) =
E(w)

‖w‖22
≥ λn.

Hence

max
w∈W\{0}

R(w) ≥ λk

where W = span(w1, . . . , wn). This proves the following theorem.

Theorem 13.3 (MinMax principle for EVs). The nth EV of −∆ on Ω with hom. Dir. BC is
given by

λn = min
w1,...,wn∈E0, lin.indep.

(
max
w∈W

E(w)

‖w‖22

)
.

Ritz-Rayleigh approximation.
The MinMax principle is useful to approximate EVs. For instance, if we have that v1, . . . , vn are
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linear independent in E0, then we define

ai,j =

∫
Ω

〈∇vi,∇vj〉dx =⇒ A = (ai,j)i,j=1,...,n

bi,j =

∫
Ω

vivkdx =⇒ B = (bi,j)i,j=1,...,n

For wl =
∑l
k=1 c

l
kvk we write R(wl) = λ∗l = clA(cl)T

clB(cl)T
≥ λl where cl = (cl1, . . . , c

l
k, 0, . . . , 0) ∈ Rn.

=⇒ clA(cl)T − clB(cl)T = (cl) (A− λ∗lB) (cl)T = 0 with cl 6= 0 =⇒ det(A− λ∗lB) = 0

Hence, by solving 0 = P (λ) = det(A− λB) we find λ∗1, . . . , λ
∗
n that approximate the first n EVs .

13.2. Homogeneous Neumann Boundary conditions. Consider

−∆u = λ̃u on Ω with
∂u

∂N
= 0 on ∂Ω

where N is the unit normal vector along Ω.

In contrast to the Dirichlet problem u = c 6= R solves the equation for λ̃ = 0. Hence, the
smallest eigenvalue is λ̃1 = 0.

The all previous considerations hold as well for the Neumann boundary problem where the set
of trial functions is E = C1(Ω) instead of E0. For instance the minimization problem for the second
eigenvalue is

min
E(w)

‖w‖22
where w ∈ C1(Ω) with

∫
Ω

wdx = 0.

Remark 13.4. Since there is no boundary condition for the trial functions one calls the Neumann
boundary condition also free boundary condition

The minimization principle for higher eigenvalues and the MinMax principle are left as an
exercise.

13.3. Completeness.

Theorem 13.5. Let (vn)n∈N be a set of eigenfunctions (orthogonal) for EVs λn of −∆ on Ω with
hom. Dir. BC. If f is L2-integrable (square integrable) (

∫
Ω
f2dx <∞), then

f =

∞∑
n=1

cnvn in mean square sense, where cn =
(f, vn)

(vn, vn)

Proof. We assume λn → ∞ for n → ∞. We prove the theorem only for f ∈ C2(Omega) (as we
did for Fourier series).

Let rN = f −
∑∞
n=1 cnvn. It follows

(rN , vj) = (f, vj)−
N∑
n=1

cn(vn, vj) = (f, vj)− cj(vj , vj) = 0

Hence

R(rn) =
E(rN )

‖rN‖22
≥ λN+1.

Then

E(∇rn) =

∫
Ω

|∇(f −
N∑
n=1

cnvn)|2dx =

∫
Ω

(
|∇f |2 + 2

N∑
n=1

cn〈∇f,∇vn〉+

n∑
n,m=1

cncm〈∇vn,∇vm〉

)
dx
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Since vn, f ∈ C2(Ω) it follows with Green’s first identity that∫
Ω

〈∇f,∇vn〉dx = −
∫

Ω

f∆vndx = λn

∫
Ω

fvndx∫
Ω

〈∇vm,∇n〉dx = −
∫

Ω

vm∆vn = λn

∫
Ω

vmvndx = δm,nλn

∫
Ω

v2
ndx

Hence

E(rN ) =

∫
Ω

(
|∇f |2 − 2

N∑
n=1

cnλn(f, vn) +

N∑
n=1

c2nλn(vn, vn)

)
dx =

∫
Ω

(
|∇f |2 −

N∑
n=1

c2nλn(vn, vn)

)
dx ≤ E(∇f)

and therefore

λN+1 ≤
E(∇rn)

‖rN‖22
≤ E(∇f)

‖∇rn‖22
=⇒ ‖rn‖22 ≤

E(∇f)

λN+1
→ 0.

�
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Lecture 42
Let 0 < λ1 ≤ λ2 ≤ . . . be the eigenvalues of −∆ on Ω with homegeneous Dirichlet BC where

Ω ⊂ Rn is open and bounded with ∂Ω smooth. Let (vn)n∈N be the corresponding Eigenfunctions.
In the follwing we always will assume that these eigenfunctions exist and are in E0 ∩ C2(Ω).

Minimum principle for the nth eigenvalue. We showed that if u ∈ E0 ∩ C2(Ω) satisfies

R(u) = minR(w) w ∈ E0\{0}, 0 = (w, vi) ∀i = 1, . . . , n− 1

then u = vn and λn = R(u).

Now, let w1, . . . , wn−1 be arbitrary square integrable (L2) functions on Ω. In the following we

can assume that wi is piecewiese continuous: ∃Ωj , j = 1, . . . , l such that
⋃l
j=1 Ωj = Ω such that

wi|Ωj ∈ C0(Ωj). Define

λ∗n = inf R(w), w ∈ E0\{0}, (w,wi) = 0 ∀i = 1, . . . , n− 1.

Lemma 13.6. λ∗n ≤ λn
Proof. ∃ck, k = 1, . . . , n s.t. w =

∑n
k=1 ckvk satisfies (w,wi) = ∀i = 1, . . . , n − 1. Such ck can be

found by solving a system of linear equations. Hence

λ∗n ≤ R(w) =
E(w)

‖w‖22
=

∑n
k,l=1 ckcl

∫
Ω
〈∇vk,∇vl〉dx∑n

k,l=1 ckcl
∫

Ω
vkvldx

=

∑
k,l=1 ckcl

∫
Ω

∆vkvldx∑n
k=1 c

2
k

=

∑n
k=1 c

2
kλk∑n

k=1 ck
≤ λn

�

Since the eigenfunctions v1, . . . , vn−1 are square integrable, we proved the following theorem.

Theorem 13.7 (Max-Min Principle).

λn = max
w1,...,wn−1

(
inf

w∈E0\{0}, (w,wi)=0 ∀i=1,...,n−1
R(w)

)
Remark 13.8. An analog theorem holds for the eigenvalues 0 = λ1 ≤ λ2 ≤ . . . of the corresponding
problem with homogeneous Neumann BC, but we have to replace E0 with C1(Ω)\{0}.

Corollary 13.9. λ̃n ≤ λn ∀n ∈ N.

Proof. Note that {w ∈ C1(Ω) : u = 0 on ∂Ω} = E0 ⊂ E = C1(Ω). Hence λ̃∗n ≤ λ∗n ⇒ λ̃n ≤ λn. �

Assymptotics of EVs. We want to show that λn →∞. This will follow from

Theorem 13.10 (Weyl). Let Ω be open and bounded with ∂Ω smooth.

(1) Assume Ω ⊂ R2: Then limn→∞
λn
n = 4π

Area(Ω)
.

(2) If Ω ⊂ R3, then limn→∞
λ

3
2
n

n = 6π2

vol(Ω)
.

Before we begin with the proof let us explore the following examples.

Example 13.11. For Ω ⊂ R (that is Ω = (0, L)) we have the following. The Dirichlet eigenfunctions

are vn(x) = sin(n πLx) with EVs λn = n2π2

L2 . Hence limn→∞
√
λn
n = π

L .
Now we consider Ω = (0, a) × (0, b). The Dirichlet eigenfunctions are vn,m(x, y) = vn(x)vn(y)

with EVs λn,m = n2π2

a2 + m2π2

b . We can relabel the EVs as an increasing sequence λ̂n, n ∈ N.
Define the counting function N as

N(λ) = The number of EVs λn ≤ λ.

Hence, N(λn) = n.

Consider λn,m = n2π2

a2 + m2π2

b2 = n2

( aπ )2 + m2

( bπ )2 ≤ λ. How many such λn,m are there?
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Consider the ellipse E = {(x, y) ∈ R2 : n2

( aπ )2 + m2

( bπ )2 ≤ λ}. Then, we observe that

N(λ) ≤ Area(E)

4
=

1

4
π
a
√
λ

π

b
√
λ

π
=
abλ

4π
.

Similar

N(λ) ≥ Area(E)

4
− C · Length(∂E) =

abλ

4π
− C
√
λ.

Hence
abλ

4π
− c
√
λ ≤ N(λ) ≤ abλ

4π
and therefore

ab

4π
− C√

λ
≤ N(λ)

λ
≤ ab

4π
⇒ λ

N(λ)
→ 4π

ab
if λ→∞.

Since N(λ̂k) = k, the claim follows.
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Lecture 43
Goal:

Theorem 13.12 (Weyl). Let Ω ⊂ R2 be open and bounded, ∂Ω smooth. Let (λn)n∈N be the
increasing sequence of Dirichlet eigenvalues. Then

lim
n→∞

λn
n

=
4π

Area(Ω)

In particular, λn →∞.

Lemma 13.13. Let Ω1 ⊂ Ω2. Then

(1) λΩ2
n ≤ λΩ1

n

(2) λ̃Ω1
n ≤ λ̃Ω2

n

∀n ∈ N.

Proof. (1) Let w1, . . . , wn−1 be square integrable (
∫

Ω2
w2
i dx <∞) and piecewise continuous. Then

λ∗,Ω2
n = minR(w), w ∈ E0(Ω2), 0 = (w,wi) ∀i = 1, . . . , n− 1.

Let w ∈ E0(Ω1).
We use the following fact: there exsits a sequence of wα ∈ C1

c (Ω1), α ∈ N, such that
R(wα)→ R(w). From this we can see that we can replace the set of trial functions E0(Ω1) in the
definition of λ∗,Ω1

n with C1
c (Ω).

Now, if w ∈ C1
c (Ω1), then w ∈ E0(Ω2). Moreover (w,wi) = 0 ∀i = 1, . . . , n− 1. In particular, if

w̃i = wi|Ω1
, then wi is square integrable and (w, w̃i) = 0 ∀i = 1, . . . , n− 1.

Hence, the set of trial functions for λ∗,Ω1
n is contained in the set of trial functions for λ∗,Ω2

n .
Therefore

λ∗,Ω2
n ≤ λ∗,Ω1

n .

Taking the maximum w.r..t square integrable functions w1, . . . , wn−1 on Ω2 yields λΩ2
n ≤ λΩ1

n .

(2) For the Neumann case we first observe

λ̃∗,Ω1
n = inf R(w), w ∈ E(Ω1), 0 = (w,wi) ∀i = 1, . . . , n− 1.

where w1, . . . , wn−1 are square integrable functions on Ω1. We define an extension w̃i of each wi to
Ω2 by setting w̃i ≡ 0 on Ω2\Ω1. Then w̃1, . . . , w̃n−1 are sqare integrable functions on Ω2. Hence,
for

λ̃∗,Ω2
n = inf R(w), w ∈ E(Ω2), 0 = (w, w̃i) = (w,wi) ∀i = 1, . . . , n− 1.

we have λ∗,Ω1
n ≤ λ∗,Ω2

n since any w ∈ E(Ω2) yields w|Ω1
∈ E(Ω1) (all the trial functions on Ω2 yield

a trial function on Ω1, and hence the infinimum that defines λΩ1
n is smaller than the minimum that

defines λΩ2
n .

Taking the maximum w.r.t. all square integrable function w1, . . . , wn−1 on Ω1 yields λ̃Ω1
n ≤

λΩ2
n . �

Remark 13.14. Consider Ω1,Ω2 ⊂ R2 such that Ω1∩Ω2 = ∅. If vΩ1
n and vΩ2

m are linear independent
Dirichlet eigenfunctions of Ω1 and Ω2 respectively (with EVs λΩ1

n and λΩ2
m ), then {vΩ1

n , vΩ2
m }n,m∈N2

are Dirichlet eigenfunctions of Ω = Ω1 ∪ Ω2 where, for instance, one sets vΩ1
n ≡ 0 on Ω2.

Proof of Weyl’s theorem. 1st step. Let Ω =
⋃
Qj ⊂ Ω with Qj ≡ (0, aj) × (0, bj) disjoint cubes

in Ω. Then the previous lemma yields that λ
Ω
n ≥ λΩ

n . This implies for the counting functions
N(λ), NΩ(λ) (the number of eigenvalue smaller than λ) that

NΩ(λ) ≤ N(λ)
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What is the counting function NΩ of Ω. By the remark we have

NΩ(λ) =

l∑
j=1

N j(λ)

where N j is the counting function of Qj .

Moreover, we already computed that Nj(λ)
λ → ajbj

4π . Hence

lim inf
λ→∞

N(λ)

λ
≥

l∑
j=1

N j(λ)

λ
=

l∑
j=1

Area(Qj)

4π
=

Area(Ω)

4π
.

2nd step. Now, consider Qj ≡ (0, aj)× (0, bj) such that Qj are disjoint, but Ω ⊂
⋃l
j=1Qj .

If ṽjn are the Neumann eigenfunctions of Qj , then
⋃l
j=1{vjn : n ∈ N} are the Neumann eigen-

functions of
⋃l
j=1Qj = Q ( with corresponding EVs λjn). We reorder these EVs and rename them

as µn, n ∈ N, such that µn is an increasing sequence. Let wn be the corresponding eigenfunctions.

On the other hand, we can consider Ω̂ =
(⋃l

j=1Q
)◦

=
(
Q
)◦

((·)◦ gives the open interior) and

Q ⊂ Ω̂.
Hence, by (2) in the previous Lemma we have

µn ≤ λ̃Ω̂
n .

As in the first step, one can see that ÑQ(λ) =
∑l
j=1 Ñ

j(λ) where ÑQ and Ñ j are the counting
functions for the Neumann eigenvalues of Q and Qj respectively. Hence

Ñ Ω̂(λ) ≤ ÑQ(λ) =

l∑
j=1

Ñ j(λ)

Therefore

lim sup
λ→∞

Ñ Ω̂(λ)

λ
≤

l∑
j=1

Ñ j(λ)

λ
→ Area(Q)

4π

Combining the previous two step together with the fact that the Neumann EVs are smaller than
the Dirichlet EVs gives

Area(Ω̂)

4π
≥ lim sup

Ñ Ω̂(λ)

λ
≥ lim inf

N Ω̃(λ)

λ
≥ Area(Ω)

4π
.

Since we can approximate Ω from the inside and from the outside by unions of squares Qj such
that the area converges to the area of Ω, this proves the theorem. �

14. Fourier Transform

The Fourier series is useful concepts whenever we have periodic boundary conditions, for in-
stance after a change to spherical coordinates.

Let f : R → R be a 2l periodic, continuous function. Its Fourier series (the complex version)
was defines as

∞∑
n=−∞

cne
inπ xl = F(f)

and F(f) converges uniformily to f where the coefficients are cn = 1
2l

∫ l
−l f(y)e−inπ

y
l dy.

Question: Can we drop the 2l periodicity somehow? Or can we let l→∞?
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Let’s write

f(x) =
1

2

∞∑
n=−∞

(∫ l

−l
f(y)e−iπy

n
l dy

)
eiπx

n
l

1

l
= †

If l→∞, then formally we expect

f(x) = † ′′ →′′ 1

2

∫ ∞
−∞

(∫ ∞
−∞

f(y)e−iπyzdy

)
eiπxzdz =

1

2π

∫ ∞
−∞

(∫ ∞
−∞

f(y)e−iyzdy

)
eixzdz

where the last inequality is change of variables w.r.t. z.
Although this limit is not justified yet, we can make the following definition:

Definition 14.1. Let f : R→ C be integrable. Its Fourier transform is defined as

F (ξ) := f̂(ξ) :=

∫ ∞
−∞

f(y)e−iξydy.

Remark 14.2. Note that y ∈ R 7→ f(y)e−iξy ∈ C is complex valued, and hence the integral is
understood as a complex valued integral.

Since∣∣∣∣∫ ∞
−∞

f(y)e−iξydy

∣∣∣∣ ≤ ∫ ∞
−∞

∣∣f(y)e−iξy
∣∣ dy ≤ ∫ ∞

−∞
|f(y)|

∣∣e−iξy∣∣ dy =

∫ ∞
−∞
|f(y)|dy <∞

the Fourier transform for an integrable f (that ist
∫∞
−∞ |f(y)|dy <∞ ) is well-defined.

We would like to justify a formula of the form

f(x) =

∫ ∞
−∞

f̂(ξ)eiξx
dx

2π
.

However f̂ might not be integrable no more.
To circumvent this problem one introduces the Schwartz space S(R).

Definition 14.3. A funciton f ∈ C∞(R,C) is in the Schwartz space S(R) if f is rapidly decreasing
in the sense that

sup
x∈R
|x|k

∣∣∣∣ dldxl f(x)

∣∣∣∣ <∞ ∀k, l ∈ N.

One can check that S is a vector space, and dl

dxl
f ∈ S(R) for all l ∈ N and xf(x) ∈ S(R) for all

f ∈ S(R). In particular S(R) is closed under multiplication with polynomials.

A simple example for a function that is in S(R) is e−x
2

.

Proposition 14.4. Let f ∈ S(R). The following properties hold.

(1) f 7→ f̂ is a linear operator,

(2) d
dxf 7→ iξf̂(ξ),

(3) xf(x) 7→ i ddξ f̂

(4) f(x− a) 7→ e−iaξ f̂(ξ),

(5) eiaxf(x) 7→ f̂(ξ − a),

(6) f(ax) 7→ 1
|a| f̂(ξ/a).

Proof. Let us prove (2). With integration by parts we compute∫ N

−N
f ′(x)e−iξxdx = f(x)e−iξx

∣∣∣N
−N

+

∫ N

−N
f(x)iξe−iξxdx

Since f rapidly decays, it follows when N →∞(
d

dx
f(ξ)

)∧
= iξ

∫ ∞
−∞

f(x)e−iξxdx = iξf̂(ξ).



MAT351 PARTIAL DIFFERENTIAL EQUATIONS – LECTURE NOTES – 143

For the proof of (3) consider

i

h

(
f̂(ξ + h)− f̂(ξ)

)
− (xf(x))

∧
=

∫ ∞
−∞

f(x)e−iξx
[
i
e−ixh − 1

h
− x
]
dx

The integral on the left can be split into a part
∫
|x|≥N and a part

∫ N
−N . Since f(x) and xf(x)

rapidely decrease and since∣∣∣i e−ixh−1
h

∣∣∣ ≤ 1, we can estimate the first integral by Cε for a constant that does not depende on

h, provided N is sufficiently large.

For the second integral we note that
∣∣∣i e−ixh−1

h − x
∣∣∣ ≤ ε for h sufficiently small. Hence, we obtain

that ∣∣∣∣ 1h (f̂(ξ + h)− f̂(ξ)
)
− (ixf(x))

∧
∣∣∣∣ ≤ Cε

for h sufficiently small. Since ε > 0 is arbitrary, (3) follows. �
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Lecture 44

Corollary 14.5. If f ∈ S(R), then f̂ ∈ S(R).

Proof. By the previous propositon we have

g(k) = (it+skt
ds

dks
f̂(k) =

(
dt

dxt
(xsf(x))

)∧
(k)

Then

|g(k)| ≤
∫ ∞
−∞

∣∣∣∣ dtdxt (xsf(x))

∣∣∣∣ dx <∞
since f ∈ S(R). �

Example 14.6. (1) The Fourier transform of f(x) = e−x
2/2 is f̂(k) =

√
2πe−

k2

2 .
Indeed we compute

f̂(k) =

∫ ∞
−∞

e−x
2/2e−ixkdx =

∫ ∞
−∞

e−
1
2 (x+ik)2

dxe−
1
2k

2

=
√

2πe−
k2

2

where we used − 1
2

(
x2 + ikx

)
+ 1

2k
2 − 1

2k
2 = − 1

2 (x+ ik)
2 − 1

2k
2.

(2) The Fourier transform of f(x) = e−a|x| is f̂(k) = 2a
a2+k2 a > 0. However note that f is not

in S(R) since it is not differentiable in x = 0.

Corollary 14.7. If f(x) = e−x
2/2, then f̂(ξ) =

√
2πe−ξ

2/2.

Theorem 14.8. Let f ∈ S(R).

(1) Plancherel forumal:
∫∞
−∞(f(x))2dx =

∫∞
−∞ |f̂(x)|2dξ/2π

(2) Inversion formula: f(x) = 1
2π

∫∞
−∞ f̂(ξ)eiξxdx =:

(
f̂(k)

)∨
(x)

(3) Convolution rule: (f ? g)
∧

= f̂ · ĝ.

14.1. Tempered Distribution. Recall that F : C∞c (R)→ R is called distribution if

(1) F is linear,

(2) F(fn)→ F(f) if dt

dxt fn →
dt

dxt f uniformily ∀t ∈ N.

Definition 14.9. If we replace C∞c (R) with S(R) in the definition of a distribution F , then we
call F a tempered distribution.

Definition 14.10 (Fourier transform of tempered distribution). The Fourier transform of a tem-

pered distribution F is again a tempered distribution F̂ define as

F̂(φ) = F(φ̂) ∀φ ∈ S(R)

Example 14.11. (1) F(φ) =
∫
R fφdx with f integrable. Then

F̂(φ) = F(φ̂) =

∫ ∫
φ(x)e−ikxdxf(f)dk =

∫ ∫
f(k)e−ikxdkφ(x)dx =

∫
f̂(x)φ(x)dx.

Hence F̂ ∼ f̂ .
(2) F(φ) = δx(φ) = φ(x). Then

δ̂x(φ) = δx(φ̂) = φ̂(x) =

∫
φ(y)e−iyxdy

Hence δ̂x ∼ e−ixy. In particular δ̂0 ∼ 1.
(3) F(φ) =

∫
φ(x)dx. Note that f(x) = 1 is not integrable.

Define fn = e−
|x|
n . Then fn ∼ Fn → F ∼ 1. Hence

F̂n ∼ f̂n(k) =
2
n

1
n2 + k

→ δ0 ∼ F̂ .
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14.2. Application of Fourier transformation to PDEs.

(1) Fundamental solution of the diffusion equation on R:

St = Sx,x on R× [0,∞),

“S(x, 0) = δ0 on R′′

After Fourier transformation the PDE becomes

Ŝt(k, t) = (ik)2Ŝ(k, t) = −k2S(k, t) on R× (0,∞)

Ŝ(k, 0) = 1 on R
The soluiton of this ODE is

Ŝ(k, t) = e−k
2t

Then the previous proposition easily gives S(x, t) = 1√
4πt

e−
x2

4t .

(2) Fundamental solution of the Laplace equation on the half plan {(x, y) ∈ R2 : y > 0} =: H.
Consider

∆u = ux,x + uy,y = 0 on H
“u(x, 0) = δ′′0

After a Fourier transformation w.r.t. x the PDE becomes

−k2û(k, y) + ûy,y(k, y) = 0 on H
û(k, 0) = 1 on R

Solutions are given by

û(k, y) = e±yk.

We dismiss the solution that will not tend to 0 for |k| → ∞. So û(k, y) = e−|k|y. For this
we compute

(û)∨(x, y) =
1

2π

∫
eikxe−y|k|dk

=
1

2π

∫ ∞
0

ek(ix−y)dk +
1

2π

∫ 0

−∞
ek(ix+y)dk

=
1

2π

(
1

ix− y
ek(ix−y

) ∣∣∣∞
0

+
1

2π

1

ix− y
e(ix+y)k

∣∣∣0
−∞

=
y

π(x2 + y2)

this is exactly the Poisson kernel of H that we have already computed before.
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