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ABSTRACT

This report proposes a new algorithm for extracting salient
regions of videos by introducing two important properties of
the early human visual system: 1.) Instantaneous saliency de-
pletion with gradual recovery, whereby saliency is instanta-
neously suppressed and gradually recovered in previously at-
tended regions. 2.) Gradual saliency depletion with instanta-
neous recovery, whereby saliency is gradually decreased over
time in non-surprising regions and at the same time recovered
in surprising locations. With the introduction of these proper-
ties, redundant information in videos can be suppressed and
important information is eventually enhanced.

1. INTRODUCTION

Visual attention in computer vision aims to mimic the ability
of the human visual system to select just the relevant aspects
from a broad visual input. The advantages of human vision
over computer vision systems, which include robustness, flex-
ibility and efficiency, may partly be to the result of this mech-
anism. The use of attention when selecting relevant data has
several benefits. First, the amount of data to be processed is
reduced, resulting in lower computational costs. Second, dis-
tracting information can be suppressed so that only relevant
data influence the activities of the system. From this stand-
point, simulating visual attention constitutes a central part of
computer vision systems because they select the information
on which the system activities are based.

Previous studies have employed this approach based on
the characteristics of human visual attention. For example,
Ma et al. [1] developed a user attention model that is em-
ployed to approximate the attention span of people viewing
video content. However, this model is mainly based on high-
level human attributes, which depend strongly on an indi-
vidual’s knowledge, experiences and preferences. Thus the
model may not be sufficiently versatile for use in a wide range
of applications. In contrast, the fundamental properties of the
early human visual system provide a bottom-up approach ca-
pable of retrieving important information from various kinds
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of video content. An early computational model for explain-
ing the human attention system was proposed by Koch and
Ullman [2]. This model analyzes still images to produce fun-
damental features, such as intensity, color and orientation,
which are combined to form a saliency map that represents
the relevance of visual attention. Many attempts [3, 4, 5] have
been made to improve the Koch-Ullman model. However, vi-
sual attention models for videos have not been fully investi-
gated. It is well known that human sensitivity to such visual
features varies with time. Given that sensitivity to saliency de-
pends strongly on the temporal dynamics of the early visual
system, such temporal characteristics should be introduced if
we are to realize further improvements.

This report proposes a new algorithm for extracting the
saliency of videos based on the above considerations. The
proposed algorithm models two contrastive properties of the
temporal dynamics of the early human visual system: 1) In-
stantaneous saliency depletion with gradual recovery, which
simulates the “Inhibition of Return” effect. [6] This effect
tends to result in a delay (approximately 500-900 ms) when
humans notice salient events occuring around a previously fo-
cusing region after attention has been diverted away from that
region. 2) Gradual saliency depletion with instantaneous re-
covery, which is derived from the “Neural Adaptation” theo-
rem [7]. Based on this theorem, sensitivity to saliency grad-
ually decreases over time when no surprising events occur
in a video, and it is only retained in surprising locations in
the video. Each of the above properties can be modeled as a
combination of two masks, where one simulates saliency de-
pletion, and the other mimics saliency recovery. The explicit
construction of such masks is described in the following sec-
tions, and constitutes the main contribution of this report.

2. BASIC ALGORITHM STRUCTURE

Our algorithm has five parts: a) extracting fundamental saliency
maps, b) generating instantaneous saliency depletion (ISD)
masks, c) generating gradual saliency depletion (GSD) masks,
d) masking fundamental saliency maps with ISD and GSD
masks, and e) lastly extracting depleted saliency videos.
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Fundamental saliency maps are extracted based on Itti’s
strategy [3, 8], which creates Gaussian pyramids for funda-
mental features such as intensity, color, orientation, flicker,
and motion to create a conspicuity map CMj(i), where i
corresponds to a frame and j corresponds to a feature type,
e.g. intensity. The conspicuity maps are normalized, and
summed up into a fundamental saliency map S(i). The se-
quence {S(i)}i of fundamental saliency maps comprises a
fundamental saliency video. ISD masks {ID(i)}i and GSD
masks {GD(i)}i are generated from fundamental features,
conspicuity maps and saliency maps. The construction of
these masks will be detailed in the subsequent sections. Every
fundamental saliency map S(i) is multiplied with the corre-
sponding ISD mask ID(i) and GSD mask GD(i) to form a
depleted saliency map SD(i), as follows:

SD(i) = ID(i)ωI ·GD(i)ωG · S(i),

where ωI ∈ [0, 1] and ωG ∈ [0, 1] are weighting constants for
the ISD and GSD masks, respectively.

3. INSTANTANEOUS SALIENCY DEPLETION

3.1. Overview

Instantaneous saliency depletion along with gradual recov-
ery simulates the “Inhibition of return” effect. Instantaneous
saliency depletion has been implemented in a previously re-
ported algorithm solely for still images [3]. However, the
previous implementation did not consider any transitions of
saliency depletion. We have extended the idea of instanta-
neous saliency depletion to videos considering the temporal
dynamics of instantaneous depletion. Instantaneous saliency
depletion with gradual recovery is implemented by creating
two masks for each frame of the saliency video: the MSR
depletion mask ID1(i) and the recovery mask ID2(i). The
MSR depletion mask creates the instantaneous depletion of
saliency at the most salient regions (MSRs) of the fundamen-
tal saliency video. Simultaneously, the recovery mask grad-
ually retains saliency in the fundamental saliency video. The
two masks are combined to form an overall ISD mask ID(i).

ID(i)(x,y) = min{1, ID1(i)(x,y) + ID2(i)(x,y)},

where ID(i)(x,y) is the pixel value at the position (x, y) in
the image ID(i).

3.2. Mask construction

The MSR depletion mask ID1(i) is a gray-scale image cre-
ated with all pixel values initially at 1. For every frame i, the
MSR depletion mask ID1(i) is generated from the ISD mask
ID(i − 1) of the previous frame such that all the pixel val-
ues within the MSR of the fundamental saliency video frame
S(i−1) are set at 0. The circular area is defined as a depletion
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Fig. 1. Example of ISD mask

circle MSR(i− 1) with a radius of r = 25 pixels. Every de-
pletion circle MSR(i) moves in accordance with the average
optical flow values. Every optical flow value is calculated by
the Lukas-Kanade method [9].

The recovery mask ID2(i) is a gray-scale image with all
the pixels at a constant value of α = 1/10. The recovery
mask is added to the ISD mask ID(i) for every consecutive
frame, causing depletion circles to regain their value. The
depletion circles eventually reach the original mask value of
1 after 1/α = 10 frames (= 667 msec when the frame rate of
the fundamental saliency video is 15 frames/sec).

Fig.1 shows an example of ISD masks created by the above
procedures. In frame 1, the MSR of the previous frame is de-
pleted with the MSR depletion mask. In the next frame, the
MSR of the previous frame is depleted, while the first deple-
tion circle moves according to average optical flows and its
value is restored by the recovery mask. Such a pattern is re-
peated in the subsequent frames.

4. GRADUAL SALIENCY DEPLETION

4.1. Overview

Gradual saliency depletion with instantaneous recovery sim-
ulates the “neural adaptation” theorem, and it is developed
by creating two masks for each frame of the fundamental
saliency video: the whole-region depletion mask GD1(i) and
the surprise mask GD2(i). The whole-region depletion mask
induces the gradual depletion of saliency in the saliency videos.
Simultaneously, the surprise mask retains full saliency for sur-
prising areas. The two masks are combined to form a gradual
saliency depletion mask (GSD mask) GD(i).

GD(i)(x,y) = min{1, GD1(i)(x,y) + GD2(i)(x,y)}.

4.2. Mask construction

The whole-region depletion mask GD1(i) is a gray-scale im-
age with all the pixel values initially at 1. In each frame a
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Fig. 2. Example of GSD masks. Top row: original frames,
mid row: GSD masks, bottom row: saliency video with GSD
masks.

constant value β = 0.0025 is subtracted from each pixel in
the whole-region depletion mask unless no scene change oc-
curs in the frame. If a scene change is detected in the frame,
the whole-region depletion mask regains its values.

The surprise mask GD2(i) indicates where surprising events
occur. Previous work [5] used a probabilistic approach to
compute surprise. However, this technique requires a large
amount of calculation. By contrast, our approach involves
calculating the temporal response for each conspicuity map.
This strategy is inspired by the center-surround subtraction of
the Gaussian pyramids used for extracting conspicuity maps
in Itti’s strategy [3]. Difference-of-Gaussian (DOG) filters
G(c,s) are convoluted with each conspicuity map sequence to
form a temporal response map Tj(i), as follows:

Tj(i) = 2
4∑

c=2

c+4∑

s=c+3

8∑

k=0

G(c,s)(k) · CMj(i− k),

G(c,s)(k) = Gc/2(k)−Gs/2(k),

where j corresponds to a feature type, and Gσ is a Gaussian
distribution with mean 0 and variance σ2. The temporal re-
sponse maps are summed up and binarized with the threshold
θ to form the surprise mask GD2(i).

Fig.2 shows example GSD masks created by using the
above procedures. The GSD masks become darker owing to
the whole-region depletion masks, while the surprise masks
retain saliency values in surprising regions.

5. EXPERIMENTS

5.1. Conditions

To evaluate the performance of our algorithm relative to pre-
vious algorithms [3, 8], we chose five subjects and had them
view six different sample video clips. The eye movement of
each subject was tracked using an eye tracking device [10]
and the subjects viewed each video twice. We gave the sub-
jects few instructions when they were viewing the sample
videos. The eye tracking data were compared with the saliency
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Fig. 3. Experimental results: Bars from left to right for
each video: Still image algorithm, moving algorithm, our al-
gorithm case 1(ISD mask), case 2 (GSD mask) and case 3
(ISD+GSD mask)

videos produced by each algorithm to determine which algo-
rithm best mimicked the human visual system. We tried three
sets of parameters: 1.) (ωI , ωG) = (1, 0), which corresponds
to the saliency video with the ISD mask, 2.) (ωI , ωG) =
(0, 1), which corresponds to the saliency video with the GSD
mask, 3.) (ωI , ωG) = (1, 1), namely both the ISD and GSD
masks were included.

5.2. Comparing eye tracking data with saliency videos

The eye movement may contain some noise because of “small
eye movements of fixations” [11]. Thus, instead of the eye
tracking data, we use the eye tracking region ETR(i; k, n)
defined as a circular area whose center is the position on which
each subject’s eye is focused and whose radius is δ, where i,
k and n correspond to frame number, video, and subject, re-
spectively.

The average pixel value in the ETR (ETR value) was cal-
culated for each frame of a saliency video. The ETR values
were normalized by dividing by the sum of the frame’s pixel
values for each saliency video, to obtain normalized ETR val-
ues (NETR values V (i; k, n)).

V (i; k, n) =

∑
(x′,y′)∈ETR(i;k,n) SD(i)(x′,y′)∑

(x′,y′) SD(i)(x′,y′)
,

Larger NETR values indicate that the eye is being directed to-
wards locations with high values in the saliency video. Thus,
we defined the best performance as that derived from the al-
gorithm providing the largest NETR value.

Fig.3 shows the experimental results, which include NETR
values for each video averaged over the subjects, along with
standard errors. This figure implies that the average NETR
values combined for each video were almost the same or sub-
stantially better in the proposed algorithm with gradual deple-
tion than with the previous algorithms, while instantaneous

302



Pedestrian “STOP” sign is 
lit while background 
signals are blinking.

The pedestrian sign 
changes to “WALK”.

Center of blue star is 
shining.

Yellow light radiates in 
blue star.

Fig. 4. Saliency videos produced from Video 3 (left half) and
Video 5 (right half). Top row: original video with circles and
arrows that show typical focusing points and eye movements,
respectively, second row: moving algorithm, third row: our
algorithm case 1, bottom row: our algorithm case 2.

depletion sometimes degraded the performance of the pro-
posed algorithm.

In the following, we discuss the operation of the proposed
algorithm in detail for videos where the performance differed
significantly from that obtained with the previous algorithms.
Fig.4 shows saliency videos in such cases.

In all cases, our algorithm outperformed the previous al-
gorithms for Video 3. Fig.4 (left half ) shows that all the light-
ing regions in the sample video are enhanced when the pre-
vious algorithm was used (see the second row), while in ev-
ery case with the proposed algorithm, non-surprising regions
are suppressed (see the third and bottom row). When uti-
lizing gradual depletion, saliency depletion in non-surprising
regions came directly from the whole-region depletion mask
GD1(i). Similar effects also occurred in the algorithm with
instantaneous depletion due to the MSR depletion mask ID1(i).

For Video 5, however, the performance of the proposed
algorithm depended on whether or not the ISD mask was
included. As shown in the third row of Fig.4 (right half),
salient regions in the previous algorithms are fully covered
with MSR depletion masks ID1(i) in the algorithm with in-
stantaneous depletion. In contrast, gradual saliency depletion
worked well, namely non-surprising regions are depleted by
whole-region depletion masks GD1(i) in the algorithm with
gradual depletion, as shown in the bottom row of the Fig.4.

6. CONCLUDING REMARKS

We have proposed a new computational model of visual atten-
tion by incorporating two contrastive properties of the early
human visual system, namely instantaneous saliency deple-

tion with gradual recovery, and gradual saliency depletion
with instantaneous recovery. We evaluated the proposed al-
gorithm by comparison with previously reported algorithms
and found that on average the proposed algorithm with grad-
ual depletion performed better than the previous algorithms
in mimicking the human visual system. The proposed algo-
rithm with instantaneous depletion improved the performance
for some videos.
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