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TESTING MULTIPLE FORECASTERS

BY YOSSI FEINBERG AND COLIN STEWART1

We consider a cross-calibration test of predictions by multiple potential experts in a
stochastic environment. This test checks whether each expert is calibrated conditional
on the predictions made by other experts. We show that this test is good in the sense
that a true expert—one informed of the true distribution of the process—is guaranteed
to pass the test no matter what the other potential experts do, and false experts will
fail the test on all but a small (category I) set of true distributions. Furthermore, even
when there is no true expert present, a test similar to cross-calibration cannot be si-
multaneously manipulated by multiple false experts, but at the cost of failing some true
experts.
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1. INTRODUCTION

ECONOMIC AND OTHER SCIENTIFIC MODELS commonly include a stochastic
component. A novice tester may wish to test potential experts who each claim
to possess a predictive stochastic model—a theory. Assuming the tester has no
prior distribution over the stochastic process at hand, the question is whether,
by simply observing a sequence of probabilistic predictions by the experts and
the realization of the process, the tester can distinguish true experts from char-
latans.

In this paper we provide a method for reliably testing sequential predictions
in the presence of multiple potential experts. Contrary to the case of testing a
single expert, with two or more potential experts we can construct a sequential
test to reveal their types by pitting their predictions against one another.

An intuitive sequential test asks that the expert’s predictions be calibrated,
that is, that the empirical frequency conditional on his prediction converge
to that prediction. For example, if the expert states that the probability of an
increase in unemployment is 40%, we would like to see that, on average, the
unemployment rate rose 40% of the time in those periods for which this 40%
prediction was made. Dawid (1982, 1985) proposed this test and showed that
an expert predicting according to the true distribution of the process will be
calibrated in this sense. However, Foster and Vohra (1998) demonstrated that
this test can be manipulated by a false expert: there exists a mixed forecasting
strategy that is calibrated with probability 1 on every realization of the process.

1We wish to thank Nabil Al-Najjar, Brendan Beare, Dean Foster, Sergiu Hart, Stephen Mor-
ris, Wojciech Olszewski, Larry Samuelson, Alvaro Sandroni, Jakub Steiner, Jonathan Weinstein,
three anonymous referees, and seminar participants at Austin, Ben-Gurion University, Bogota,
Essex, Hebrew University, Michigan, Rice, San Diego, Stanford, and the Technion for helpful
comments and suggestions. The first author gratefully acknowledges the support of the NSF
through grant IIS-0205633 and the hospitality of the Institute for Advanced Studies at the He-
brew University.
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This negative result has been extensively generalized to many other classes of
tests by Kalai, Lehrer, and Smorodinsky (1999), Fudenberg and Levine (1999),
Lehrer (2001), Sandroni, Smorodinsky, and Vohra (2003), Sandroni (2003),
and Vovk and Shafer (2005). See also Fortnow and Vohra (2007) and Chang
and Lyuu (2007), who studied testing from a computational perspective. Re-
cently, Olszewski and Sandroni (2007) and Shmaya (2007) obtained the strong
result that all sequential tests of a single potential expert can be manipulated.

We show that, with more than one potential expert, the situation is very dif-
ferent: there is a good sequential test that cannot be manipulated by false ex-
perts. In fact, this test is a simple extension of the calibration test; we call it the
cross-calibration test. This test compares the empirical frequencies of events
conditional on the joint predictions made by the experts. For example, con-
sider all of the periods where one potential expert forecasts the probability of
increase in unemployment to be 40%, while another potential expert puts it
at 30%. Conditional on these predictions, the empirical frequency cannot be
both 40% and 30%. Hence, if such a disagreement in predictions occurs infi-
nitely often, we are guaranteed that at least one of the potential experts will
not be calibrated with respect to this test. This feature plays a central role in
the greater power of the cross-calibration test relative to the classic calibration
test. In independent work, Al-Najjar and Weinstein (2008) considered a differ-
ent test which compares the likelihoods of predictions made by a false and a
true expert. We discuss their work in detail in Section 5.

We show that a true expert predicting according to a model based on a distri-
bution P is guaranteed to pass the cross-calibration test with P-probability 1. In
other words, if P indeed governs the process, a true expert is bound to be well
cross-calibrated no matter what strategy—pure or mixed—is employed by the
other potential experts. On the other hand, a false expert is guaranteed to fail
the test for most distributions P when a true expert is present. More precisely,
we show that for every (mixed) forecasting strategy a false expert may use, he
fails the cross-calibration test with P-probability 1 on all but a category I set of
true distributions P .

Even when there is no true expert, a strict version of the cross-calibration test
possesses some power to fail false experts. The strict test requires the empirical
frequencies to lie within the predicted intervals and not on their boundaries.
We show that, except on a small set of realizations, the probability that at least
two potential experts pass this test simultaneously is 0.

Finally, we show that the realizations on which a pure forecasting strategy P
is calibrated (in the classic calibration test of a single forecaster) form a cate-
gory I set. Hence calibration is a good test with no Type I errors and small Type
II error in terms of category (see Dekel and Feinberg (2006)). In particular,
cross-calibration is also a good test since it too has no Type I error and small
Type II error; the set of realizations on which a forecaster is cross-calibrated is
a subset of those on which he is calibrated when tested in isolation.
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2. THE CROSS-CALIBRATION TEST

The environment we consider extends the classic calibration framework to
allow for multiple forecasters. Let Ω = {(ωt)t=0�1����|ωt ∈ {0�1}} denote the
space of possible realizations. Fix a positive integer n > 4 and divide the in-
terval [0�1] into n equal closed subintervals I1� � � � � In, so that Il = [ l−1

n
� l
n
]. All

results in this paper hold when [0�1] is replaced with the set of distributions
over any finite set S and the intervals Il are replaced with a cover of the set of
distributions by sufficiently small closed convex subsets.

At the beginning of each period t = 0�1� � � � � all forecasters (or experts)
j ∈ {1� � � � �M} simultaneously announce predictions Ijt ∈ {I1� � � � � In}, which are
interpreted as probabilities with which the realization 1 will occur in that pe-
riod. We assume that forecasters observe both the realized outcome and the
predictions of the other forecasters at the end of each period. A (mixed or
behavior) strategy for a forecaster i is therefore a collection μi = {μi

t}∞
t=0 of

functions

μi
t : {0�1}t

M×
j=1

{I1� � � � � In}t −→ �({I1� � � � � In})�

where �(X) denotes the space of distributions over a set X . A strategy profile
is denoted by μ= (μ1� � � � �μM).

The realization in Ω may be determined by a stochastic process. By Kol-
mogorov’s extension theorem, a distribution P in �({0�1}∞) corresponds to a
collection of functions

pt : {0�1}t −→ �({0�1})�

which we also denote by P = {pt}∞
t=0. Hence P corresponds to a pure strategy

that is independent of the previous predictions made by the potential experts.
The cross-calibration test is defined over outcomes (ωt� I

1
t � � � � � I

M
t )∞

t=0, which
specify, for each period t, the realization ωt ∈ {0�1}, together with the predic-
tion intervals announced by each of the M forecasters. Given any such outcome
and any M-tuple l = (l1� � � � � lM) ∈ {1� � � � � n}M , define

ζl
t = 1

I
j
t =I

lj
∀j=1�����M

and

νlT =
T∑
t=0

ζl
t �(1)
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which represents the number of times that the forecast profile l is chosen up to
time T . For νlT > 0, the frequency f l

T of realizations conditional on this forecast
profile is given by

f l
T = 1

νlT

T∑
t=0

ζl
tωt�(2)

Forecaster j passes the cross-calibration test at the outcome (ωt� I
1
t � � � � � I

M
t )∞

t=0
if

lim sup
T→∞

∣∣∣∣f l
T − 2lj − 1

2n

∣∣∣∣ ≤ 1
2n

(3)

for every l satisfying limT→∞ νlT = ∞.
In the case of a single forecaster, the cross-calibration test reduces to the

classic calibration test, which checks the frequency of realizations conditional
on each forecast that is made infinitely often. With multiple forecasters, the
cross-calibration test checks the empirical frequencies of the realization con-
ditional on each profile of forecasts that occurs infinitely often. Note that if an
expert is cross-calibrated, he will also be calibrated.

We say that predictions are close to one another if the predicted intervals
intersect, that is, the intervals are either identical or have a common boundary.

We consider two types of experts: true experts and false experts. A true expert
knows the conditional probabilities, given the realization so far, of the distribu-
tion P governing the stochastic process, while a false expert does not. Formally,
for each history ht = (ωs� I

1
s � � � � � I

M
s )t−1

s=0, true experts follow the strategy de-
fined by

μt(ht)≡ I
(
pt((ωs)

t−1
s=0)

)
�

where I(p) denotes the interval containing p. If p lies on the boundary be-
tween two intervals, we may assume without loss of generality that the lower
interval is chosen. Note that although the expert uses a strategy that follows
the true distribution P , he provides only the conditional probabilities for the
realized history. Thus it is not necessary that the true expert know P ex ante;
it suffices for him to know the conditional probabilities once a history is real-
ized.

False experts have no knowledge of Nature’s strategy. They observe only
the realization and past predictions of other experts, and are free to choose
any strategy randomizing their prediction in each period. We assume that all
experts know which, if any, of the other experts are true ones; however, relaxing
this assumption has no impact on our results.

To minimize notation, we provide proofs of results for just two experts, with
or without one being a true expert. The proofs are essentially the same for all
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other combinations of a finite number (greater than 1) of potential experts. We
frequently denote by Pr, instead of Prμ�P , the probability of events with respect
to μ and P .

3. WITH TRUE EXPERTS

We begin by exploring the outcome of the cross-calibration test when at
least one of the potential experts is indeed a true expert. We first observe that
no matter what others do, every true expert is guaranteed to pass the cross-
calibration test with P-probability 1. Hence, the cross-calibration test has no
Type I error.

PROPOSITION 1: For every distribution P governing the stochastic process, any
potential expert who predicts according to a model that follows P passes the cross-
calibration test with probability 1 no matter what strategies the other potential ex-
perts use. That is, for any strategy profile μ = (P�μ2� � � � �μM), the first forecaster
passes the cross-calibration test with (P�μ)-probability 1:

Prμ�P

(
∀l : lim sup

T→∞

∣∣∣∣f l1�����lM

T − 2l1 − 1
2n

∣∣∣∣ ≤ 1
2n

or lim
T→∞

νlT <∞
)

= 1�(4)

PROOF: The proof requires a minor modification of Dawid (1982), and is
omitted. See Feinberg and Stewart (2007) for a complete proof. Q.E.D.

We now turn to the case of false experts being tested in the presence of
a true expert. The failure probability is determined according to P and the
strategies employed by false experts. We would like to see the false experts fail
with probability 1 according to the true distribution P , except perhaps for a
small set of true distributions (since the false expert may happen to make pre-
dictions very close to the correct ones). We show that not only is a false expert
unable to manipulate cross-calibration, but that for any strategy he might use,
he is guaranteed to fail on most true distributions. This result contrasts sharply
with the negative results in the single-expert case. Calibration-type tests of a
single expert can be manipulated in the sense that a false expert can pass the
test with μ-probability 1 on every realization, hence also for every true distrib-
ution P .

The notion for large and small sets of distributions we employ is that of
category I—a countable union of nowhere dense sets—as suggested by Dekel
and Feinberg (2006). We show that for every strategy (pure or mixed) of the
false expert, for all but a category I set of distributions P , when the true expert
follows P , the false expert will fail the cross-calibration test with probability 1
no matter what strategies the other potential experts employ.

The basic intuition for this result is as follows. For two potential experts to
pass the cross-calibration test on the same realization, their forecasts must be
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close in all but finitely many periods. Since the true expert passes with proba-
bility 1, the false expert must announce forecasts close to the truth in all but
finitely many periods in order to pass the test. For this to occur with posi-
tive probability, there must be some finite history after which the false expert
makes forecasts close to the truth in every period with high probability. For a
given forecasting strategy μ, only a small set of distributions gives conditional
probabilities close to forecasts generated by μ with high probability after some
history.

PROPOSITION 2: In the presence of a true expert, for every strategy μ of a false
expert, the set of distributions P under which the false expert will pass the cross-
calibration test with positive (μ�P)-probability is a category I set of distributions
in �(Ω) endowed with the weak∗ topology.

PROOF: We first prove the following lemma.

LEMMA 1: If a forecasting strategy μ is cross-calibrated with respect to a true
distribution P with (μ�P)-positive probability, then for every η ∈ (0�1) there exists
a finite history hη

T that occurs with positive probability such that

Pr(μ is close to P in every period following hη
T |hη

T )≥ 1 −η�(5)

PROOF OF LEMMA 1: Recall that two predictions are close if they are iden-
tical or adjacent intervals. Assume by way of contradiction that no such history
exists. In particular, (5) does not hold for the empty history. We can therefore
find a finite time t0 such that

Pr(∃s ≤ t0 such that μ is not close to P at period s) ≥ η/2�(6)

By the same argument, for every history ht0 that occurs with positive probabil-
ity, there exists a period t(ht0) > t0 such that

Pr
(∃s ∈ (t0� t(ht0)] such that μ is not close to P at period s|ht0

)
≥ η/2�

Since the number of histories of length t0 is finite, by choosing t1 = maxht0 t(ht0)
we obtain Pr(∃s ∈ (t0� t1] such that μ is not close to P at period s|ht0) ≥ η/2
for every history ht0 . Inductively, there is a finite tj such that

Pr
(∃s ∈ (tj−1� tj] such that μ is not close to P at period s|htj−1

) ≥ η/2(7)

for every htj−1 that occurs with positive probability.
Define the events

Fj = {∃s ∈ (tj−1� tj] such that μ is not close to P at period s
}
�(8)
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The event that the forecasts are close from some period onward is the comple-
ment of the forecasts being not close infinitely often. To be cross-calibrated the
experts must predict close intervals from some point onward. Hence

Pr(the experts are cross-calibrated)(9)

≤ Pr

(
¬

∞⋂
n=1

⋃
j≥n

Fj

)
= Pr

( ∞⋃
n=1

⋂
j≥n

¬Fj

)
≤

∞∑
n=1

Pr
(⋂

j≥n

¬Fj

)
�

We now show that

Pr
(⋂

j≥n

¬Fj

)
= 0(10)

for every n. If Pr(¬Fn ∩ ¬Fn+1 ∩ · · · ∩ ¬Fn+k−1) = 0 for some k > 0, then (10)
holds trivially. Otherwise, since (7) holds for every history htj−1 that occurs with
positive probability, it also holds when conditioned on any positive probability
collection of histories htj−1 . In particular, we have

Pr(¬Fn+k|¬Fn ∩ ¬Fn+1 ∩ · · · ∩ ¬Fn+k−1)

= 1 − Pr(Fn+k|¬Fn ∩ ¬Fn+1 ∩ · · · ∩ ¬Fn+k−1)

≤ 1 −η/2�

Therefore, for every n, we have

Pr
(⋂

j≥n

¬Fj

)
= Pr(¬Fn)Pr(¬Fn+1|¬Fn) · · ·(11)

× Pr(¬Fn+k|¬Fn ∩ Fn+1 ∩ · · · ∩ Fn+k−1) · · ·

≤
(

1 − η

2

)(
1 − η

2

)
· · · = 0�

From (9) and (10) we have that the experts are cross-calibrated with probability
0—a contradiction, as required. Q.E.D.

Fix η < 1
2 . By Lemma 1, if P and μ are cross-calibrated with positive prob-

ability, then P must satisfy (5) for at least one of the countable collection of
finite histories. It suffices to show that the set of distributions that satisfy (5)
for a given history is a category I set.

Given any finite history h= (ωt� I
1
t � � � � � I

M
t )Tt=0, let

Ω(h) = {ω′ = (ω′
t)t=0�1����|(ω′

0� � � � �ω
′
T )= (ω0� � � � �ωT)}
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be the set of realizations consistent with h—the cylinder determined by h. The
set Ω(h) is both open and closed—a clopen set. For every finite history h and
ε ∈ (0�1), let S(h�ε) be the set of distributions that assign probability at least
ε to Ω(h) and for which h has the property of (5) (given η and μ). The set
of distributions against which μ passes with positive probability is contained in
the countable union

⋃
finite histories h

∞⋃
n=1

S(h�εn)�

Thus it suffices to show that each S(h�ε) is nowhere dense. We will show that
each of these sets is closed and has empty interior.

To show that S(h�ε) is closed, we want to construct for each P /∈ S(h�ε) an
open neighborhood of P that is disjoint from S(h�ε). There are two cases to
consider: either P assigns probability less than ε to Ω(h) or h does not satisfy
(5) (or both).

In the former case, consider the set {P ′|P ′(Ω(h)) < ε}. This set contains P
and is open in the weak∗ topology since Ω(h) is clopen.

In the latter case, there exists some η′ >η such that

lim
t→∞

Pr(μ is close to P in every period from T + 1 to t|h) < 1 −η′�

Hence there exists some period τ such that

Pr(μ is close to P in every period from T + 1 to τ|h) < 1 −η′�(12)

Each distribution P ′ gives rise for each t to an induced distribution P ′
t over

finite histories of realizations (ω0� � � � �ωt). Let Hτ = {ht consistent with h for
t = T + 1� � � � � τ}.

Assume first that P satisfies

pt(ht) /∈
{

0�
1
n
� � � � �

n− 1
n

�1
}

(13)

for every ht ∈ Hτ that occurs with positive P-probability.2 Consider the set

Uδ = {
P ′ ∣∣ |P ′

τ(E)− Pτ(E)|< δ

for all events E determined by time τ
}
�

Note that Uδ is open for each δ since it is defined by a strict inequality condition
on a collection of (open) cylinders.

2Recall that pt(ht) denotes the conditional P-probability that ωt = 1 following ht .
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By (13), we can find δ > 0 sufficiently small such that, in any period following
any ht ∈ Hτ, μ is close to P ′ ∈ Uδ if and only if μ is close to P . For such δ, (12)
implies that

PrP(μ is close to P ′ in every period from T + 1 to τ|h) < 1 −η′�

By the definition of Uδ, this last inequality implies that

PrP ′(μ is close to P ′ in every period from T + 1 to τ|h) < 1 −η

when δ is sufficiently small. This guarantees that Uδ is disjoint from S(h�ε), as
needed.

If (13) does not hold, then there exists some finite history ht occurring with
positive P-probability such that PrP(ωt = 1|ht) ∈ {0�1/n� � � � �1}. We will show
that the set of distributions P having this property is category I, and hence
adding it to the union of sets S(h�εn) does not affect the claim. Since the set
of finite histories is countable and the set {0�1/n� � � � �1} is finite, it suffices to
show that, given any finite history ht , any π ∈ [0�1], and any ε > 0, the set

R(ht� ε�π)= {P|pt(ht)= π and Pt(ht)≥ ε}
is closed with empty interior.

First we show that R(ht� ε�π) is closed. Let Sε = {P|Pt(ht) ≥ ε}. Note that
Sε is closed. Let A denote the event that ht occurs and let B denote the event
that ωt = 1. Consider the function fB|A :Ω−→ R defined by

fB|A(ω) =
{
π� if ω /∈ A,
1� if ω ∈ A∩B,
0� otherwise.

Note that since A and B are clopen, fB|A is continuous. Hence the set of distrib-
utions Sπ = {P| ∫ fB|A dP = π} is closed in the weak∗ topology. For each P ∈ Sπ ,
either P(A) = 0 or P(B|A) = π. Therefore, we have R(ht� ε�π) = Sπ ∩ Sε,
proving that R(ht� ε�π) is closed since Sπ and Sε are.

Next we show that R(ht� ε�π) has empty interior. Fix any δ ∈ (0�π). Given
any P ∈ R(ht� ε�π), let (Pn)∞

n=1 be the sequence of distributions with condi-
tional probabilities

pn
τ(ω0� � � � �ωτ−1)=

{
π − δn� if (ω0� � � � �ωτ−1)= ht ,
p(ω0� � � � �ωτ−1)� otherwise.

The sequence (Pn)∞
n=1 converges to P and lies outside of the set R(ht� ε�π), as

needed.
Finally, we must show that the interior of S(h�ε) is empty. Fix p ∈ S(h�ε).

We want to construct a sequence q1� q2� � � � converging to p such that qn /∈
S(h�ε) for all n. As above, let T be the length of the history h and let pt
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denote the distribution over outcomes in period t given the history under p.
Define

qn
t (·)=

⎧⎨
⎩
pt(·)� if t ≤ T + n,

1 −
⌊
pt(·)+ 1

2

⌋
� otherwise,

where the function 
x� produces the largest integer not greater than x. Since
η< 1

2 , μ cannot be close to both p and qn in any period after T + n with prob-
ability at least 1 − η. Therefore, qn /∈ S(h�ε) and the proof of the proposition
is complete. Q.E.D.

We have shown that a false expert cannot manipulate the cross-calibration
test. For any strategy he might employ, there exists a distribution against which
he almost surely fails. Moreover, the set of such distributions is large in the
sense that its complement in �(Ω) is a category I set in the weak∗ topology. To
obtain some intuition for the meaning of a category I set of measures in �(Ω),
recall that such a set is a countable union of nowhere dense sets. Any nowhere
dense set S ⊂ �(Ω) has the following property: for any finitely determined
event E and any P ∈ S, there exist measures outside S that agree with P on
E, and for every measure P ′ outside S, there exists a finite event on which
P ′ differs from all measures in S. In particular, the probabilities assigned to
finitely determined events can never rule out distributions outside the nowhere
dense set.

We note that our proof implies that a false expert will fail cross-calibration in
finite time with high probability. In fact, such finite approximation results hold
for all limit results in this paper, much like the finite approximation results in
Dekel and Feinberg (2006) and Olszewski and Sandroni (2007). In particular,
fix a mixed strategy μ and a true distribution P such that the probability that
μ is cross-calibrated against the true expert is 0. This means that there exists
some ε > 0 such that, for the false expert, for some prediction profile l that
occurs infinitely often, we have

Pr
(∣∣∣∣f l

T − 2lj − 1
2n

∣∣∣∣> 1
2n

+ 2ε
)
> 1 − ε

2
(14)

whenever T is sufficiently large. Pick such a period T for which, in addition,
forecasting according to the true distribution P ensures that one will be cross-
calibrated within ε with probability at least 1−ε/2. After T periods, with prob-
ability at least 1 − ε, the cross-calibration score of the true expert is higher by
at least ε than that of the false expert. In particular, by choosing fine enough
intervals for the cross-calibration test, the finite horizon approximation to the
cross-calibration test can only be passed by predictions that are close to the
true distribution.
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We conclude this section with the following proposition for the single-expert
calibration test. It states that when using a pure strategy—following some dis-
tribution P—a potential expert can be calibrated on at most a category I set of
realizations. Naturally, that category I set of realizations has P-probability 1, as
shown by Dawid (1982). This demonstrates that the calibration test is a partic-
ular example of a good test as defined by Dekel and Feinberg (2006).3 Combin-
ing this proposition with the main result of Foster and Vohra (1998), it follows
immediately that calibration is a good test that can be manipulated. See Ol-
szewski and Sandroni (2006), who were the first to demonstrate the existence
of a good manipulable test. We will use the following proposition in the proof
of Proposition 4 below.

PROPOSITION 3: For every P , the set of realizations at which P is calibrated is
a category I set. Hence, calibration is a good test.

PROOF: We will prove the result for the weak calibration test as defined
by Kalai, Lehrer, and Smorodinsky (1999), which requires calibration only
for predictions that occur with positive density. The density of a sequence
of periods T1 < T2 < · · · < Tn < · · · is defined as lim supn→∞ n/Tn. The set
of realizations on which P passes the (standard) calibration test is a sub-
set of the set of realizations on which P passes the weak calibration test. It
suffices to prove the result for all subintervals of the form [0�x]� [x�1] for
x ∈ (0�1), since calibration on the subintervals {I1� � � � � In} implies calibration
on {I1� I2 ∪ · · · ∪ In}.

Let P ∈ �(Ω) and x ∈ (0�1) be given. Define the sets

Sn�m�0 =
{
ω

∣∣∣ m−1∑
t=0

1pt(ωt )≤x

m
≤ 1

n
or

∑m−1
t=0 1pt(ωt )≤xωt+1∑m−1

t=0 1pt(ωt )≤x

≤ x+ 1
n

}
(15)

and

Sn�m�1 =
{
ω

∣∣∣ m−1∑
t=0

1pt(ωt )≥x

m
≤ 1

n
or

∑m−1
t=0 1pt(ωt )≥xωt+1∑m−1

t=0 1pt(ωt )≥x

≥ x− 1
n

}
�(16)

and let

SM
n =

∞⋂
m=M

(Sn�m�0 ∩ Sn�m�1)�(17)

3A test is called good if it has no Type I errors and small Type II errors, that is, for each true
distribution P , a forecaster using P passes the test with P-probability 1, and for any distribution Q,
the set of true distributions for which predicting according to Q passes with positive probability
is category I.
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Letting N = max{10�2/x�2/(1 − x)}, define the set

S =
∞⋂

n=N

∞⋃
M=1

SM
n �(18)

Let ω be such that P is weakly calibrated at ω. In particular, for I = [0�x],
we either have

lim sup
T→∞

T−1∑
t=0

1pt(ωt )∈I
T

= 0(19)

or

lim sup
T→∞

∗
∑T

t=0 1pt(ωt )∈Iωt+1∑T

t=0 1pt(ωt )∈I
≤ x�(20)

where the notation lim inf∗� lim sup∗ refers to limits taken only over sequences
with positive density (these are the relevant limits for weak calibration). We
claim that for every n ≥ N , ω ∈ Sn�m�0 for all m sufficiently large. If Equa-
tion (19) holds, then for every n ≥ N , there exists some M such that for all
m≥ M ,

m−1∑
t=0

1pt(ωt )≤x

m
≤ 1

n
�(21)

Hence for every n≥N , there exists some M such that ω ∈ Sn�m�0 for all m ≥M .
If, on the other hand, Equation (19) does not hold, then assume for contradic-
tion that there exists some n >N such that ω /∈ Sn�m�0 for an infinite sequence of
values of m. Since (20) holds, this sequence cannot have positive density, which
implies that for all large enough m in this sequence, inequality (21) holds, con-
tradicting that ω does not belong to any of these sets.

The symmetric argument applied to the interval I = [x�1] demonstrates that
for every n ≥ N , ω ∈ Sn�m�1 for all sufficiently large m. Combining these two
results, we find that for every n ≥ N , there exists some M such that ω ∈ SM

n ,
and therefore ω ∈ S. In addition, if P is not weakly calibrated in either [0�x]
or [x�1] at ω, then ω /∈ S, for there exists some n > N and infinitely many m
with ω /∈ Sn�m�∗. Hence for some n, we have ω /∈ SM

n for all M , which implies
that ω /∈ S.

We need to show that S is a category I set in Ω. We will show that each
SM
n is a closed set with empty interior. Since S is a countable intersection of a

countable union of such sets, it is a category I set. The set SM
n is an intersection

of sets of the form Sn�m�l with l ∈ {0�1}, so it will be closed if all of the sets
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Sn�m�l are closed. Without loss of generality, consider the case l = 0. For every
ω /∈ Sn�m�0, we have

m−1∑
t=0

1pt(ωt )≤x

m
>

1
n

(22)

and ∑m−1
t=0 1pt(ωt )≤xωt+1∑m−1

t=0 1pt(ωt )≤x

> x+ 1
n
�(23)

Consider every ω′ such that ω′
t = ωt for t = 0� � � � �m − 1. Since both condi-

tions above depend only on the first m coordinates of ω, each such ω′ is not
a member of Sn�m�0. The collection of these ω′ constitute a finite cylinder and
hence comprise an open set. Therefore, every point outside Sn�m�0 has an open
neighborhood outside this set and Sn�m�0 is closed.

Consider any point ω ∈ SM
n . Let x ≤ 1/2. Define a sequence of realizations

(ω(j))j=1�2���� by

ω(j)t =
{
ωt� if t ≤ j,
1� if t > j and pt−1(ω(j)t|ω(j)1� � � � �ω(j)t−1) < x,
0� if t > j and pt−1(ω(j)t|ω(j)1� � � � �ω(j)t−1)≥ x.

(24)

By definition, ω(j) agrees with ω in the first j coordinates; hence the sequence
(ω(j))j=1�2���� converges to ω. It suffices to show that ω(j) /∈ SM

n . If the density
of P at [x�1] given ω(j) is at least 1/10, then there exist infinitely many m>M
such that

m−1∑
t=0

1pt(ω(j)t )≥x

m
>

1
10

≥ 1
N

≥ 1
n
�(25)

For m large enough, we also have∑m−1
t=0 1pt(ω(j)t )≥xω(j)t+1∑m−1

t=0 1pt(ω(j)t )≥x

<
x

2
= x− x

2
< x− 1

N
≤ x− 1

n
(26)

since, for t ≥ j, ω(j)t+1 = 0 whenever 1pt(ω(j)t )≥x = 1 and so the empirical fre-
quency converges to 0. We conclude that if the density of P at [x�1] for ω(j)
is at least 1/10, then ω(j) /∈ SM

n .
If the density η at [x�1] is less than 1/10, then the density ρ in [0�x) must

be at least 1 −η> 9/10 since the sum of densities for the intervals [0�x)� [x�1]
must be at least 1. For infinitely many m>M , we have

m−1∑
t=0

1pt(ω(j)t )≤x

m
>

9
10

≥ 1
N

≥ 1
n
�(27)
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The empirical frequency when [0�x] is predicted is given by∑m−1
t=0 1pt(ω(j)t )≤xω(j)t+1∑m−1

t=0 1pt(ω(j)t )≤x

(28)

=
∑m−1

t=0 (1pt(ω(j)t )=xω(j)t+1 + 1pt(ω(j)t )<xω(j)t+1)∑m−1
t=0 1pt(ω(j)t )≤x

�

When 1pt(ω(j)t )=x, we have ω(j)t+1 = 0, and when 1pt(ω(j)t )<x, we have
ω(j)t+1 = 1. Substituting these into Equation (28) gives∑m−1

t=0 1pt(ω(j)t )≤xω(j)t+1∑m−1
t=0 1pt(ω(j)t )≤x

=
∑m−1

t=0 1pt(ω(j)t )<x∑m−1
t=0 1pt(ω(j)t )≤x

(29)

≥
∑m−1

t=0 1pt(ω(j)t )<x

m
�

By the definition of the density at [0�x), there exist infinitely many values of m
such that ∑m−1

t=0 1pt(ω(j)t )<x∑m−1
t=0 1pt(ω(j)t )≤x

≥
∑m−1

t=0 1pt(ω(j)t )<x

m
≥ ρ− 1

10
(30)

>
1
2

+ 2
10

> x+ 1
N

≥ x+ 1
n
�

indicating that ω(j) /∈ SM
n , as required.

For the case where x > 1/2, define the sequence ω(j) as in (24) except with
the inequality on the second line weak and the inequality on the third line
strong. Applying the symmetric argument with the roles of the intervals [0�x]
and [x�1] reversed gives the result. Q.E.D.

4. WITHOUT TRUE EXPERTS

When there is no true expert, a false expert cannot manipulate the test for
all strategies of the other forecasters since, by Proposition 2, he can manip-
ulate against only a category I set of pure strategies. On the other hand, for
any strategy profile of the other forecasters, there exists a strategy that will
almost surely pass the test on every realization. This follows from the obser-
vation that, once the opponents’ strategies are fixed, the cross-calibration test
becomes equivalent to a randomized calibration test (of a single forecaster) of
the class studied by Lehrer (2001). Lehrer showed that such tests are manipu-
lable. This result extends to any sequential test with no Type I error according
to footnote 8 in Olszewski and Sandroni (2007); see also Shmaya (2007). In the
absence of a true expert, therefore, such a test can at best be guaranteed to fail
all but one false expert. The question remains whether multiple false experts
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can manipulate the test simultaneously.
We show that multiple false experts cannot jointly manipulate a stronger ver-

sion of our test—the strict cross-calibration test. Whatever forecasting strate-
gies these false experts use, no two of them can pass the strict test with positive
probability except on a small set of realizations.

If the conditional empirical frequency lies exactly on the boundary between
two intervals, then neither of these intervals can be ruled out in the cross-
calibration test. We define the strict cross-calibration test to be the same as the
cross-calibration test, except with disjoint intervals, for example, of the form
{[0�1/n)� [1/n�2/n)� � � � � [(n− 1)/n�1]}. Thus we modify the inequality in (3)
to a strict inequality (on one side of the interval) when needed, to reflect that
the empirical frequency must converge to the appropriate interval.

A true expert may fail the strict cross-calibration test. For example, if the true
distribution gives rise to independent probabilities 1/n− 1/et in each period t,
then the empirical frequency converges to 1/n from below with probability 1.
Olszewski and Sandroni (2006) have also studied tests that reject some distri-
butions out of hand. They show that by allowing some Type I errors, the tester
can prevent a false expert from arbitrarily delaying rejection in a finite time
approximation test.

We assume throughout that experts cannot correlate their randomized pre-
dictions. While they are allowed to condition on all past realizations of ran-
domized predictions, they cannot use correlated strategies. Otherwise, false
experts could act as one and manipulate the test.4

PROPOSITION 4: For any strategy profile μ= (μ1� � � � �μM) of M ≥ 2 (false) ex-
perts, the set of realizations on which at least two potential experts simultaneously
pass the strict cross-calibration test with positive probability is a category I set in Ω.

PROOF: Fix the realization ω. For each η ∈ ( 1
2 �1), define the (possibly

empty) set

Hη = {
finite histories h|
Pr(forecasts agree forever after h|h�ω) > η

}
�

Note that histories include the realizations of previous forecasts. Let Hη de-
note the complement of Hη in the set of all finite histories. The follow-
ing lemma states that the probability that the forecasters are simultaneously
strictly cross-calibrated without reaching any history in Hη is 0.

LEMMA 2: Fix η ∈ (0�1) and the realization ω. If Pr(Hη) < 1, then

Pr(i and j are strictly cross-calibrated|Hη�ω)= 0�

4See Feinberg and Stewart (2007) for an explicit proof of correlated manipulation with real-
valued predictions.
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PROOF OF LEMMA 2: The proof is essentially the same as for Lemma 1 and
is therefore omitted. There are only two significant differences. First, the con-
dition Iis �= Ijs replaces the condition that μ is not close to P at period s. Second,
probabilities are now with respect to forecasting strategies μi and μj given a
fixed realization ω, instead of being with respect to the forecasting strategy μ
and the true distribution P . Q.E.D.

Fix a realization ω on which the probability γ that two forecasters simul-
taneously pass the strict cross-calibration test is positive. For each η ∈ ( 1

2 �1),
Lemma 2 implies that there exists some hT ∈ Hη that occurs with positive prob-
ability and satisfies

Pr(i and j are strictly cross-calibrated|hT �ω)≥ γ�(31)

We will show that when η is sufficiently large, following the history hT , there is
a particular path of forecasts that occurs with probability greater than 1 −γ on
which the forecasters agree in every period. In particular, the forecasters both
pass the strict cross-calibration test on this path.

For each finite history h, let p(h) = (p1(h)� � � � �pn(h)) and q(h) = (q1(h)�
� � � � qn(h)) denote the mixed forecasts of the two forecasters in the period im-
mediately following h. For each h, there exists some l(h) ∈ {1� � � � � n} satisfying
pl(h)(h)≥ 1

n
.

We define a path of forecasts following the given history hT , that is, a unique
path of realizations of the forecasts of the experts given ω and the realization
of forecasts hT after which both agree. We will show that this path occurs with
high probability when η is close to 1. For each t > T , recursively define the his-
tory ht = (hT �ωT � Il(T)� Il(T)� � � � �ωt−1� Il(t−1)� Il(t−1)), where each l(τ) satisfies
pl(τ)(hτ−1)≥ 1

n
(if there exists more than one such l(τ), then the choice among

them is arbitrary). For each l ∈ {1� � � � � n} and t ≥ T , let ρt
l = pl(ht)ql(ht) de-

note the probability that both forecasters forecast Il in the period following ht .

LEMMA 3: Let h = (hT �ωT � Il(T)� Il(T)�ωT+1� Il(T+1)� Il(T+1)� � � �), as defined
above for hT satisfying (31). We have

Pr(h|hT �ω) > n(η− 1)+ 1�

PROOF OF LEMMA 3: Once again all probabilities are conditional on ω.
Note first that

∑
t≥T

(
t−1∏
τ=T

ρτ
l(τ)

)(
1 −

∑
l

ρt
l

)
(32)

≤ Pr(forecasts disagree in some period after hT |hT)

< 1 −η�
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since the t term on left-hand side is the probability of remaining on the spec-
ified path until period t, at which time the forecasters choose two different
forecasts. The second inequality follows since hT ∈ Hη, that is, the probability
of disagreement after hT is less than 1 −η.

Since pl(t)(ht)≥ 1
n
, we have

(1 −pl(t)(ht))(1 − ql(t)(ht)) ≤
(

1 − 1
n

)
(1 − ql(t)(ht))(33)

≤
(

1 − 1
n

)
(1 −pl(t)(ht)ql(t)(ht))�

Note that∑
l �=l(t)

pl(ht)ql(ht)≤ (1 −pl(t)(ht))(1 − ql(t)(ht))�(34)

since the left-hand side represents the probability (following ht) that both fore-
casters announce the same forecast other than Il(t), whereas the right-hand side
represents the probability that neither announces Il(t). From (33) and (34), we
get

n
∑
l �=l(t)

pl(ht)ql(ht)≤ (n− 1)(1 −pl(t)(ht)ql(t)(ht))�(35)

which rearranged yields

∑
l �=l(t)

ρt
l ≤ (n− 1)

(
1 −

∑
l

ρt
l

)
(36)

for every t ≥ T .
Inequalities (32) and (36) imply

∑
t≥T

(
t−1∏
τ=T

ρτ
l(τ)

) ∑
l �=l(t)

ρt
l < (n− 1)(1 −η)�(37)

We also have that

Pr(forecasts agree forever after hT |hT)(38)

≤
∏
t≥T

ρt
l(t) +

∑
t≥T

( t−1∏
τ=T

ρτ
l(τ)

) ∑
l′ �=l(t)

ρt
l′�

since the first term on the right-hand side represents the probability of re-
maining on the specified path and the second term is an upper bound on the
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probability of leaving this path, but nonetheless agreeing in every period. This
term captures, for each t, the probability that the first deviation from the most
likely path occurs in period t, and yet the forecasts agree in that period. Since
hT ∈Hη, the left-hand side of (38) is greater than η, and hence combining (37)
and (38) gives

∏
t≥T

ρt
l(t) > η− (n− 1)(1 −η) = n(η− 1)+ 1�

which completes the proof. Q.E.D.

For γ > 0, consider the set of realizations Ω̃(γ) ⊂ Ω on which the experts
are simultaneously strictly cross-calibrated with probability at least γ. The set
of realizations on which the experts are simultaneously cross-calibrated with
positive probability is a countable union

⋃
n Ω̃(γn) of these sets, where γn → 0.

Thus it suffices to show that Ω̃(γ) is a category I set for each γ > 0.
Fixing an arbitrary γ > 0, we will write Ω̃ in place of Ω̃(γ). By Proposition 3,

a countable collection of pure strategies in the classic calibration test can only
pass on a category I set of realizations. Hence the proof of the proposition is
complete if we can show that there exists such a countable collection of strate-
gies out of which, for each realization in Ω̃, at least one is calibrated.

As noted above, by choosing η sufficiently close to 1, Lemmas 2 and 3 to-
gether imply that, for each ω ∈ Ω̃, there exists some history hT after which both
forecasters are strictly cross-calibrated if they follow the path of forecasts Il(t).
Fix such a history for each ω ∈ Ω̃, and for each finite history hT , let Ω̃(hT )⊂ Ω̃
denote the realizations associated with hT in this way.

Having fixed the history hT for each realization, let lω(t) denote the forecast
l(t) of Lemma 3 given ω. To each history hT for which Ω̃(hT ) is nonempty,
associate the pure strategy phT defined by

phT (ht)=

⎧⎪⎨
⎪⎩
I(ωt)� if t ≤ T ,

Ilω(t)� if t > T and ht agrees with ω ∈ Ω̃(hT ),
I( 1

2)� otherwise,
(39)

where, for t ≤ T , ωt denotes the t-coordinate of the realization in hT (recall
that hT represents the realization of ω together with the realized forecasts). As
long as η> 1 − 1

2n , each l(t) in Lemma 3 occurs with probability greater than 1
2

and is therefore unique. Moreover, by construction, lω(t) depends only on the
past history at time t, not on the future realization of ω. Therefore, the strategy
phT is well defined. Since the false experts are strictly cross-calibrated at ω ∈
Ω̃(hT ) if they follow the forecasts Ilω(t) following hT , phT is calibrated at ω.
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We have shown that Ω̃ is a subset of the realizations for which one of the
countable collections of pure strategies phT is calibrated. Since, by Propo-
sition 3, each pure strategy is calibrated on a category I set of realizations,
the set Ω̃ is itself a category I set, and the proof of the proposition is com-
plete. Q.E.D.

Proposition 4 indicates not only that multiple experts cannot simultaneously
manipulate, but that all but one are guaranteed to fail on all but a category I set
of realizations. The proof exploits the fact that for two forecasters to pass the
strict test simultaneously, they must announce identical predictions in all but
finitely many periods. Lemmas 2 and 3 show that, for this to occur with positive
probability (given some realization ω), there must be some history after which
both forecasters are likely to predict according to a particular path of forecasts.
But then there is a pure strategy that both forecasters’ predictions are likely to
follow, in which case they can pass the test only if this pure strategy passes
the classic calibration test at ω. By Proposition 3, this can happen only on a
category I set of realizations.

Since a category I set of realizations has positive probability according to at
most a category I set of distributions (Dekel and Feinberg (2006)), Proposi-
tion 4 implies the following corollary:

COROLLARY 1: Fix any strategy profile μ of M ≥ 2 (false) experts. For all but
a category I set of true distributions P , at least M − 1 experts will fail the strict
cross-calibration test with (μ�P)-probability 1.

5. RELATED LITERATURE AND DISCUSSION

As noted in the Introduction, the literature on testing forecasters has fo-
cused primarily on negative results for sequential tests of a single potential ex-
pert. The principle underlying these results is a minmax, or separation, type
theorem. If each prediction according to a true distribution must get a pass-
ing score, then under appropriate conditions, there is a randomized prediction
strategy—a mixed strategy which induces a behavior strategy—that passes the
test no matter what Nature does (i.e., for every realization).

These negative results stand in sharp contrast to the case of ex ante predic-
tions. If the tester can ask the potential expert to predict the entire distribution
of the process on day one, then there exists a good test that cannot be manip-
ulated, as shown by Dekel and Feinberg (2006).5 While a potential expert has
the same set of strategies when facing a sequential and an ex ante test, the
set of ex ante tests is larger. In particular, sequential tests can use only one se-
quence of realized predictions, which endows them with a continuity property
enabling manipulation.

5See also Olszewski and Sandroni (2006) for a stronger result.
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With multiple experts, new possibilities arise. When a true expert is known to
be present, the question becomes which of the experts is the true expert, rather
than whether a potential expert is a true one. In independent work, Al-Najjar
and Weinstein (2008) considered this case and proposed a test which com-
pares the likelihoods of predictions made by a false and a true expert. Their
test selects the expert who is more likely to know the truth based on updating
an equal prior probability. Technically, their test compares the product of the
probabilities assigned to the realized outcome by each forecaster. Al-Najjar
and Weinstein worked mostly with the finite time version of this comparative
test. They elegantly showed that a false expert cannot manipulate their test: for
every forecasting strategy the false expert might use, there exists a true distri-
bution for which he is likely to lose. This is similar to the finite approximation
of the cross-calibration test discussed in Section 3 above. However, there are a
number of differences between the results.

Al-Najjar and Weinstein’s results provide a uniform bound on the time re-
quired to approximately identify the true probabilities; no matter what strat-
egy the false expert uses, he is unlikely to pass the test unless he announces
probabilities close to the truth in all but a fixed number of periods. For cross-
calibration, on the other hand, the time required is finite, but may not be uni-
formly bounded.6 Another difference between our results and theirs is that we
provide a bound on the set of distributions on which a false expert passes—
at most a category I set. Hence, nonmanipulability is assured for most true
distributions, not just one. Finally, because it is comparative, Al-Najjar and
Weinstein’s test has no power to prevent joint manipulation when all experts
choose their forecasts strategically.

The topological notion of category I characterizes the extent of manipu-
lability both in the space of distributions when a true expert is present and
in the space of realizations when one is not. Since category I is not com-
monly used in the economics literature, we describe some of its properties in
our setting. By Proposition 4 in Feinberg and Dekel (2006), any infinite test
for which passing occurs only on a category I set has a finite approximation
for which passing requires assigning high probability to a nowhere dense set.
In particular, these finite approximations rule out manipulation except when
the false expert happens to assign positive probability to distributions concen-
trated on a nowhere dense set of realizations. Category I is the currently best
known bound for manipulation, due to Olszewski and Sandroni (2006).7 We
find it attractive since the set of all distributions does not allow for a uniform

6All nonmanipulation results for infinite tests extend to finite approximations in this way quite
generally (cf. Dekel and Feinberg (2006) and Olszewski and Sandroni (2007)). Moving from finite
to infinite tests, however, is more difficult since it requires some consistency across the finite
distributions on which manipulation fails.

7Feinberg and Dekel (2006) showed that their test cannot be manipulated on a category II set,
a weaker notion than the complement of a category I set.
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measure, and hence there is no natural alternative candidate for a measure-
theoretic notion of smallness. Furthermore, a nowhere dense set of distribu-
tions is also small in the sense that identifying whether a distribution belongs
to this set requires an infinite amount of data: for every finite time, the prob-
abilities of events defined up to that period never rule out distributions out-
side the set. Perhaps the most interesting phenomenon is that this same no-
tion appears as a bound on manipulation both with and without true experts
present.

Following the literature on testing forecasters, we have focused on a non-
Bayesian setting. Hence we address “worst-case scenario” types of questions.
For testing without a true expert, these questions include the following:

(i) Can one false expert manipulate the test when given the strategies of
the other forecasters?

(ii) Can multiple false experts jointly manipulate the test when they can
correlate their forecasts?

(iii) Can multiple false experts jointly manipulate the test when they cannot
correlate their forecasts?
Answering the first and second questions is straightforward. A single expert,
when given the strategies of others, can manipulate the test. Similarly, if the
experts can correlate their forecasts, then they can jointly manipulate the test.
Our main result in this setting answers the third question: multiple experts
cannot jointly manipulate the strict cross-calibration test.

Testing multiple forecasters also suggests new avenues of research. Even if
false experts can use correlated forecasts to manipulate the test, it is possible
that they may not want to. This issue raises the question of whether the tester
could provide incentives for experts to counter collusive correlation. Answer-
ing this question would require an explicit formulation of the experts’ incen-
tives in order to apply game-theoretic tools in this non-Bayesian setting.
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