
Who Opts In?
Selection and Disappointment through Participation Payments

Sandro Ambuehl, Axel Ockenfels, and Colin Stewart∗

February 2, 2022

Abstract

Participation payments are used in many transactions about which people know little, but

can learn more: incentives for medical trial participation, signing bonuses for job applicants, or

price rebates on consumer durables. Who opts into the transaction when given such incentives?

We show theoretically and experimentally that incentives can act as a selection mechanism that

disproportionately selects individuals for whom learning is harder. Moreover, these individuals

use less information to decide whether to participate, which makes disappointment more likely.
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The learning-based selection effect is stronger in settings in which information acquisition is

more difficult. Keywords: Rational inattention, incentives, selection, screening, evaluability.
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1 Introduction
Payments and discounts incentivize participation in many transactions about which people know

little, but can learn more by investing time and mental effort: a purchaser of a product may inves-
tigate its quality; a job candidate may seek information about whether the firm is a good match for
them; a potential participant in a clinical trial may contemplate the risk of an undesired outcome;
and a consumer offered a teaser-rate on a credit card may investigate whether the costs of using
the card are likely to exceed the initial discount. The size of the participation payment affects how
much decision makers invest in information acquisition and what type of information they seek. As
some individuals learn more easily than others, they will react differently to monetary incentives.
In this paper, we address three questions: Who opts in when given stronger incentives to participate
in a transaction, those who find it easier to learn or harder? How does strengthening the incentive
change the quality of participation decisions? How does the strength of any selection effect vary
with the intrinsic difficulty of learning?

Participation decisions depend on several interacting elements, making the effect of monetary
incentives on selection far from obvious. As incentives change, each individual may adjust their
information gathering efforts so as to seek not only a different amount of information but also a
different kind. The extent of these changes are likely to vary according to how easily the individual
acquires and processes information, due both to idiosyncratic factors and the inherent difficulty of
the problem.
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Despite the potentially complicated interaction of these elements, we identify general answers
to our questions. First, we show that incentives to participate act as a selection mechanism: they
disproportionately increase take-up by individuals for whom learning is hard. Higher incentives
lead to less informed participants through this selection mechanism. They also change any given
individual’s information acquisition about the transaction. Both effects increase the likelihood of
disappointment (by which we mean a worse-than-expected outcome). Moreover, we find suggestive
evidence that the selection effect is stronger for transactions that are more difficult to understand,
in the sense that acquiring information about them is more costly. We obtain these findings in an
incentivized experiment that is motivated by novel theoretical predictions derived from a standard
model of attention allocation (see Matějka and McKay, 2015).

The mechanisms we identify apply to any transaction in which an individual makes or accepts
a payment in exchange for an outcome with uncertain yet learnable consequences. They are of
particular relevance if the provider of the incentive cares about the type of agents who participate
or about the likelihood of disappointment. For example, consider the decision to participate in a
clinical trial. Individuals for whom learning is generally harder, and who are thus disproportionately
selected by higher incentives, might respond differently to instructions or differ in other relevant
unobservable characteristics. In addition, subjects who experience disappointment may be more
inclined to pull out of the trial early, with negative consequences for the study. In the context
of teaser rates on consumer financial products with shrouded fees, individuals for whom learning
is harder might make systematically different decisions about other products the supplier offers.
In the context of finance, if costly learning is necessary to determine whether participation in a
risky asset market is in a specific investor’s interest, then a decrease in the safe return will, ceteris

paribus, lead to a disproportionate inflow of less-informed traders into that market, and hence, to
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a potential decrease in that market’s efficiency. In the labor market, an employer offering a higher
signing bonus may attract a disproportionate selection of less-informed decision makers who are
more likely to be disappointed and seek alternative opportunities, thus leading to higher employee
turnover. Finally, consider a monopolist selling a good for which each consumer must exert effort
to assess whether it is a good match with their preferences. Our results imply that the lower the
price, the less informed the consumers, and hence, the more likely they are to be disappointed
by their purchase. The monopolist may therefore want to choose a higher price to avoid negative
word-of-mouth reports or critical online reviews.

Our model and experiment both concern the following setting. An agent receives a known,
fixed payment if and only if she chooses to participate in a transaction. Ex ante, the agent lacks
information about the consequences of participating; whether participation is optimal depends on
an unknown state of the world. She decides how much and what kind of information to obtain—at
a cost—before committing to a decision.

Our main selection result—that stronger incentives to participate disproportionately attract in-
dividuals for whom learning is more costly—formalizes the idea that individuals with higher infor-
mation costs arrive at less firm views regarding whether participating is the right action for them,
and are thus more susceptible to influences such as participation payments. As the incentive amount
increases, each individual adjusts the information she acquires: less certainty is required in order
to participate, and more certainty in order to abstain. This adjustment increases the likelihood of
participation for each individual regardless of her own cost of information; we show that the effect
on behavior is larger for individuals with a higher cost. Consequently, stronger incentives increase
the likelihood of disappointment through two compounding effects: the direct effect on each indi-
vidual’s participation choice, and the selection effect that less informed individuals opt in relatively
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more. Section 2 explains this mechanism, as well our additional results, in detail.
Our theoretical predictions demand empirical investigation for two reasons. First, they rely on

sophisticated information choice behavior. In fact, our selection result does not generally hold if
individuals have exogenous information of varying quality. Given people’s limited sophistication
in other settings (for instance when strategic considerations are involved, see Camerer, 2011), it is
far from obvious that the predicted comparative statics will describe actual behavior. Second, em-
pirical evidence on choice with endogenous information acquisition is scarce and does not address
selection through participation payments (Pinkovskiy, 2009; Cheremukhin et al., 2015; Bartoš et
al., 2016; Ambuehl, 2021; Dean and Neligh, 2019).

Our data originate from a laboratory experiment. For our purposes, the main virtues of this
method are the clean identification and possibility to isolate mechanisms it affords. It also allows us
to observe the counterfactual decisions that subjects would make based on perfect information. We
can therefore benchmark the quality of partially informed choice and directly measure the incidence
of disappointment.

In the main experimental task, subjects each receive a payment of D2, D6, or D10 if they choose
to participate in a gamble in which they lose either D0 or D12, with equal prior probability. After
learning the payment amount, but before deciding whether to participate in the transaction, subjects
can exert effort to learn about whether they will gain or lose money from taking the gamble. Subjects
are shown a list of 60 solved addition problems, such as 23 + 45 = 68. For gambles with a net gain,
35 of the addition problems are solved correctly and 25 are solved incorrectly; for gambles with a
net loss, the number of correct and incorrect solutions are reversed. There is no time limit, enabling
subjects to determine whether they will gain or lose with whatever degree of accuracy they desire.
As in our model, subjects have much freedom in choosing their information; for example, they can
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demand a higher level of accuracy in order to participate than they require to abstain. Importantly,
better information costs more time and effort—and more so for some subjects than for others.

A crucial feature of our experimental design is that we capture information costs in multiple
ways, allowing us to explore the robustness of our theoretical predictions. First, relying on Vernon
Smith’s induced preferences paradigm (Smith, 1976), we induce differences in information costs
within subjects by varying the total number of addition problems in the list (keeping the proportion
of correct and incorrect calculations approximately constant). Our corresponding within-subjects
analysis ensures that factors such as risk preferences that vary on the individual level cannot play a
role. Second, since one might worry that induced variation in costs operates differently from het-
erogeneity in costs across individuals, we measure each individual’s reservation price for process-
ing a given amount of information in the experimental task we employ. With these measures, we
can directly observe the selection of individuals into the transaction in an across-subjects analysis.
Third, we test whether the predicted comparative statics also apply for measures that are frequently
available in real-world settings—such as cognitive test scores and educational background—that
arguably serve as proxies for individual learning costs.

Empirical behavior confirms our theoretical predictions according to all of our measures. An
increase in the participation payment from D2 to D10 increases participation by just under 15 per-
centage points if the list that informs the subject about the state contains 25 calculations, but by
over 45 percentage points if the list contains 100 calculations. We also find that this increase in the
payment raises our reservation price measure of information costs by 4.1 percentile points amongst
subjects who select into the transaction, and to a decrease in average cognitive task performance by
3.2 percentile points (averaged across task difficulty levels). Moreover, a subject with the lowest
level of cognitive task performance is 7.8 percentage points more likely to be disappointed by the
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outcome of their decision to participate in the transaction than a subject with the highest level of
cognitive task performance, as well as 8.8 percentage points more likely to choose non-participation
when participation would have been better. Finally, selection effects on our reservation price mea-
sure of information costs are stronger when the list of addition problems is longer, indicating that
differences across people become magnified for transactions whose consequences are generally
more difficult to comprehend.

Our empirical results are not an artifact of a correlation between our measures of information
cost and other sources of individual heterogeneity, such as risk preferences or non-Bayesian up-
dating. To demonstrate this, a control treatment eliminates endogenous information choice but
is otherwise identical to our main task. If our results were simply an artifact of a correlation with
other factors, the differential selection should survive. Instead, we find that eliminating endogenous
information acquisition entirely eliminates differential selection on learning costs.

There are alternative mechanisms that can generate selection effects related to information (de-
tailed in Appendix B.3), but we are not aware of any that yield the pattern of comparative statics
effects that we document. For instance, in a population with heterogeneous priors and a transaction
that does not allow for information acquisition, raising the payment for participation would lead to a
selection of subjects with increasingly pessimistic priors. However, unlike our model, this alterna-
tive predicts no selection based on persistent personality characteristics such as cognitive ability.1

Another alternative mechanism consists of people drawing conclusions from the payment amount
per se, for instance, by making the transaction appear suspicious (Kamenica, 2008; Cryder et al.,

1Moreover, selection in this alternative model relies on the absence of information acquisition.
Appendix B.1 examines an extension of our model with heterogeneous priors, and shows that the
effect of information acquisition tends to dominate the effect of heterogeneity in the priors.
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2010). Depending on how a propensity for such inferences correlates with information acquisition
costs, it could exacerbate or attenuate the mechanism we document. Because our subjects are in-
formed about the probability with which a good or bad gamble is drawn, our experiment precludes
both of these mechanisms by design.

Our paper contributes to three main strands of literature. First, our work documents a fun-
damental comparative statics result, applicable to many economic transactions, that arises from
endogenous information acquisition. The mechanism is related to that of Ambuehl (2021), which
studies how participation payments affect optimal information acquisition. More generally, we add
to an emerging literature that explores the informational foundations of individual-level economic
choice (Gabaix, 2019), as well as to an experimental literature studying complexity in economic
choice (e.g., Abeler and Jäger, 2015; Oprea, 2020). Our results also have a flavor similar to work in
General Evaluability Theory (Hsee and Zhang, 2010) insofar as both consider how responsiveness
varies according to the difficulty of evaluating an alternative. However, they consider evaluability
of the variable factor (the participation payment, in our case), whereas we focus on learning about
the consequences of the alternative. In addition, evaluability theory does not consider the selection
effects that are the main focus of this paper.

Second, by exploring how the effects of participation payments vary with personality charac-
teristics, we contribute to the literature on personality psychology and economics (Almlund et al.,
2011), specifically, traits related to motivation and cognitive ability (Borghans et al., 2008; Dohmen
et al., 2010; Segal, 2012).

Third, we contribute to the burgeoning literature on the moral constraints on markets (Kahne-
man et al., 1986; Roth, 2007; Ambuehl et al., 2015; Ambuehl, 2021; Elias et al., 2019). Around
the world, the principles of informed consent are fundamental to regulations concerning human
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research participation, as well as to transactions such as human egg donation, organ donation, and
gestational surrogacy (DHEW 1978, The Belmont Report; Faden, Beauchamp, 1986). According
to these principles, the decision to participate in a transaction is ethically sound if it is made not
only voluntarily, but also in light of all relevant information, properly comprehended.2 Our results
show that payments for participation can be in conflict with participants’ understanding about the
consequences of participation. They further show that the severity of this conflict grows with re-
spect to both the amount of the payment and the difficulty of acquiring and processing information
about the consequences of the transaction.3

The remainder of this paper proceeds as follows. Section 2 derives the theoretical predictions.
Section 3 introduces the experiment design, and Section 4 presents the empirical findings. Finally,
Section 5 suggests policy implications and discusses the scope and generalizability of our findings.

2An obvious issue in the definition of informed consent lies in what constitutes proper com-
prehension. The literature remains intentionally imprecise, claiming that “[a]ny exact placement
of this line risks the criticism that it is ‘arbitrary,’ . . . and controversy over any attempt at precise
pinpointing is a certainty” (Faden and Beauchamp, 1986). The literature does maintain, however,
that “there must sometimes be an extrasubjective component to the knowledge base necessary for
substantial understanding” (ibid). Generally, proper comprehension is understood to encompass
both objective consequences and subjective well-being, rendering the mere provision of informa-
tion about typical consequences insufficient.

3Our discussions with economists have indicated that many do not subscribe to the principles
of informed consent. Because of the strong support for these principles outside economics (Kan-
bur, 2004; Satz, 2010; Ambuehl and Ockenfels, 2017), an understanding of how incentives affect
informed consent is nonetheless instrumental to advancing the policy debate.
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2 Theoretical Predictions
We organize our empirical investigation around predictions from a standard model of costly

information acquisition, which we employ for its tractability (Matějka and McKay, 2015). We
discuss robustness to functional form assumptions, extensions, and alternative models at the end of
this section.
Setting An agent decides whether or not to participate in a transaction in exchange for a payment
𝑚. The agent is uncertain about the (utility) consequences of participation, which depend on an
unknown state of the world 𝑠 ∈ {𝐺,𝐵}. The state is good (𝑠 = 𝐺) with prior probability 𝜇, and
bad (𝑠 = 𝐵) with the remaining probability 1 − 𝜇. If the agent participates and the state is 𝑠, she
obtains utility 𝜋𝑠. If she does not participate, she obtains utility 0. We assume 𝜋𝐺+𝑚 > 0 > 𝜋𝐵+𝑚,
making the agent’s choice problem nontrivial.

Before the agent decides whether or not to participate, she can acquire information about the
state. As is typical in the rational inattention literature, we allow the agent to choose any infor-
mation structure to learn about the state, with different structures incurring different costs.4 For
example, structures that provide more precise information have higher costs. These costs can be
psychological, physical, or some combination thereof. Modeling information acquisition in this
way captures the idea that there are many possible learning strategies, varying not only in their

4That the agent can acquire perfect information does not mean that the model only applies to
cases in which the consequences of the transaction can be known for sure. Instead, the states should
be interpreted as capturing all there is to know about the consequences: any uncertainty that cannot
be reduced by further information acquisition can be incorporated into the states of the world. In
this interpretation, 𝜋𝐺 and 𝜋𝐵 represent expected utilities from participation conditional on the best
available information.
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precision but also in exactly how information depends on the state. The agent could, for example,
choose to look for information that, if found, would strongly indicate that the state is good, but if
not found would leave her quite uncertain; or she could similarly try to ascertain if the state is bad
(or both). Thus the agent can choose both the amount and the type of information to acquire.

In the model, there is a fixed set of possible signal realizations (containing at least two elements)
and the agent chooses the distribution of signals in each state of the world. As in much of the rational
inattention literature, we assume that cost of information is proportional to the expected reduction in
the Shannon entropy of the agent’s belief about the state from observing the signal. This assumption
makes the model analytically tractable and allows us to draw on the characterization of the solution
in Matějka and McKay (2015). We have verified numerically that our results also hold for a number
of other cost functions; see Appendix B.2 for details.

A strategy for the agent—which combines the information choice with the choice of an action for
each signal realization—amounts to choosing the probability of participation in each state (Matějka
and McKay, 2015). Under this interpretation, the cost of information depends on the difference in
entropy between the prior belief 𝜇 and the posterior belief conditional on the agent’s action; this
is the cost associated with the least expensive information structure for implementing this strategy.
Letting 𝑝𝑠 denote the probability of participation in each state 𝑠 ∈ {𝐵,𝐺}, the agent’s posterior
belief that the state is good is 𝛾part ∶= 𝜇𝑝𝐺∕

(

𝜇𝑝𝐺 + (1 − 𝜇)𝑝𝐵
) when she participates and 𝛾abst ∶=

𝜇(1 − 𝑝𝐺)∕
(

𝜇(1 − 𝑝𝐺) + (1 − 𝜇)(1 − 𝑝𝐵)
) when she does not. The information cost associated with

the strategy (𝑝𝐺, 𝑝𝐵) is therefore proportional to
𝑐(𝑝𝐺, 𝑝𝐵) ∶= ℎ(𝜇) − 𝑝ℎ(𝛾part) − (1 − 𝑝)ℎ(𝛾abst),

where 𝑝 ∶= 𝜇𝑝𝐺 + (1−𝜇)𝑝𝐵 is the ex ante probability of participation and ℎ(𝛾) ∶= −𝛾 log 𝛾 − (1−

𝛾) log(1 − 𝛾) is the entropy associated with belief 𝛾 .
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The agent chooses (𝑝𝐺, 𝑝𝐵) to maximize her expected utility
𝑈 (𝑝𝐺, 𝑝𝐵;𝑚) = 𝜇𝑝𝐺(𝜋𝐺 + 𝑚) + (1 − 𝜇)𝑝𝐵(𝜋𝐵 + 𝑚) − 𝜆𝑐(𝑝𝐺, 𝑝𝐵), (1)

where 𝜆 > 0 is an information cost parameter that may capture both individual heterogeneity and
variation in the difficulty of learning across various decision problems. Let (𝑝𝐺(𝑚, 𝜆), 𝑝𝐵(𝑚, 𝜆)

)

denote the solution to this problem and let
𝑝(𝑚, 𝜆) = 𝜇𝑝𝐺(𝑚, 𝜆) + (1 − 𝜇)𝑝𝐵(𝑚, 𝜆)

be the corresponding ex ante participation probability. We refer to 𝑝(⋅, 𝜆) as type 𝜆’s supply curve

as it indicates the expected fraction of individuals of this type who participate as a function of the
“price” 𝑚.

Our model, like other rational inattention models, does not explicitly specify the source of the
information cost. Costs could be incurred for acquiring, processing, or interpreting information,
or some combination thereof; the exact source of this friction is irrelevant for our behavioral pre-
dictions. The cost parameter 𝜆 captures the difficulty of learning both due to idiosyncratic factors
and to the transparency of the context in which the choice is made. Similarly, uncertainty about
the state of the world has several possible interpretations. In particular, it may capture risk that is
idiosyncratic to the agent, including uncertainty about her own preferences.

The assumption that the agent can choose any information structure merits discussion. One nat-
ural interpretation is that the agent acquires information over time according to a process by which
she continuously updates her belief. The choice of 𝑝𝐺 and 𝑝𝐵 then corresponds to choosing thresh-
old beliefs at which to stop learning and choose an action; thus, for example, a high threshold belief
for participation corresponds to a small value of 𝑝𝐵. Morris and Strack (2019) identify a behav-
ioral equivalence between optimal sequential learning and optimal choice in a rational inattention
problem.
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Figure 1: Selection effects and supply curves predicted by the model.
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𝜆 = 0.3 that are equally frequent in the population.

Analysis Before we state our formal results, it is instructive to examine an example of the supply
curves for different information cost parameters. Figure 1 shows two such curves, for 𝜆 = 0.1 and
𝜆 = 0.3, with parameters 𝜇 = 1

2
, 𝜋𝐺 = 0, and 𝜋𝐵 = −1. The participation probability of the high-

cost type becomes positive only once the payment 𝑚 crosses a lower threshold, which is higher
than the corresponding threshold for the low-cost type. As long as the participation probabilities
are strictly between 0 and 1, however, observe that the high-cost type’s probability responds more
strongly to changes in the payment than that of the low-cost type. We also plot the proportion of
high-cost types among those who choose to participate under the assumption that each type forms
half of the total population. Observe that the proportion of high-cost types steadily increases with
the payment amount until the high-cost type participates with probability 1.

The following proposition shows that these observations hold generally.

Proposition 1.

13



(i) Suppose 𝜆 is (absolutely) continuously distributed with support on some interval [𝜆, 𝜆] with

0 ≤ 𝑝(𝑚, 𝜆) < 1 for all 𝜆 ∈ [𝜆, 𝜆] and 𝑝(𝑚, 𝜆) > 0 for some 𝜆 ∈ [𝜆, 𝜆]. Then, for any

increasing function 𝑓 ∶ 𝑅 ←→ 𝑅, 𝐸
[

𝑓 (𝜆) ∣ participate
]

is increasing in 𝑚.

(ii) Suppose 𝜆 and 𝑚 are such that 0 < 𝑝(𝑚, 𝜆) < 1. Then, 𝜕
𝜕𝜆

[

𝜕𝑝(𝑚,𝜆)
𝜕𝑚

]

> 0.

Proposition 1 captures, in two different ways, the idea that increases in the payment 𝑚 dispro-
portionately affect those with higher information costs. While increasing the payment increases
the likelihood of participation for any given type, the slope result in part (ii) of the proposition says
that this effect is stronger for higher cost types. The selection result in part (i) relates to applica-
tions more directly, showing that the composition of the pool of participants shifts toward types
with higher costs as the payment increases (in the sense of first-order stochastic dominance). The
selection result applies as long as 𝑚 is not so high that some type participates without acquiring
any information. Unlike the slope result, which requires that the agent has an interior participation
probability, the selection result allows for some types to abstain with certainty.

While the two parts of Proposition 1 are related, neither implies the other. Varying the cost
parameter not only causes the slope effect identified in part (i), but also causes a level effect that
may countervail the slope effect in terms of the composition of the pool of participants.5

To gain some intuition for the result, consider the effect of marginal changes in the payment 𝑚
5The following example clarifies this point. Consider two payment amounts, 𝑚0 and 𝑚1. Sup-

pose that there are two types of agents, ℎ and 𝓁, that are equally frequent in the population. Let the
participation probability of type 𝑖 at payment 𝑚𝑗 be 𝑝𝑖𝑗 . The condition that high-cost individuals
display a larger response is 𝑝ℎ1 − 𝑝ℎ0 > 𝑝𝓁1 − 𝑝𝓁0. The condition that switching from 𝑚0 to 𝑚1 in-
creases the proportion of ℎ-types among those who participate is 𝑝ℎ1∕(𝑝ℎ1+𝑝𝓁1) > 𝑝ℎ0∕(𝑝ℎ0+𝑝𝓁0),
or, equivalently, 𝑝ℎ1∕𝑝ℎ0 > 𝑝𝓁1∕𝑝𝓁0.
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on types that differ in the value of their information cost parameters. Each type optimally chooses
a binary signal splitting her prior into two posteriors; she participates at the higher posterior and
abstains at the lower one. The probability of participating is therefore equal to the probability of
obtaining the higher posterior. By the Law of Iterated Expectations, the expected posterior is equal
to the prior, and hence the probability of participating is decreasing in the distance between the
higher posterior and the prior, and increasing in the distance between the lower posterior and the
prior. As 𝑚 increases, the gain from participation in the good state increases and the loss in the
bad state decreases. Hence, the agent needs to be less convinced that the state is good in order to
participate and more convinced that the state is bad in order to abstain. Thus both of the optimal
posteriors decrease. Mechanically, the probability of participating therefore increases. For a type
that has a low cost of information, the higher posterior almost always occurs when the state is good,
as does the lower one when the state is bad. The decrease in posteriors as 𝑚 increases therefore
has only a small effect on her probability of participating. For types with higher costs, the realized
posteriors are not as closely tied to the state. Consequently, the decrease in posteriors as 𝑚 increases
has a larger effect on behavior.

The magnitude of the effects identified in Proposition 1 depend on the difficulty of the infor-
mation acquisition problem. To capture this dependence, we consider the impact of scaling the
information cost up by some factor, 𝑎. Thus as 𝑎 increases, learning becomes more costly in a uni-
form way across types. The following result shows that a marginal increase in this scaling factor
increases the magnitude of the slope effect. One can interpret this as saying that the slope effect is
larger in more opaque contexts (where acquiring information is more difficult for all types).

Proposition 2. Suppose 𝜆 and 𝑚 are such that 0 < 𝑝(𝑚, 𝜆) < 1. Then, 𝜕
𝜕𝑎
|

|

|𝑎=1

[

𝜕
𝜕𝑚

𝜕
𝜕𝜆

𝑝(𝑚, 𝑎𝜆)
]

> 0.
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A restatement of this result illuminates the intuition: individual differences lead to less pro-
nounced variation in responses to payments for transactions for which information costs are lower.
If the information costs approach zero, so do all agents’ probabilities of making a suboptimal choice.
Accordingly, no agent’s behavior can respond much to changes in the payment in either state of the
world, regardless of her individual-specific information cost parameter. Therefore, the slopes of
the supply curves converge across the different types of agents.

The next proposition shows that higher cost types make less-informed decisions, and are thus
more likely to experience disappointment. It also shows the direct effect of incentives on disap-
pointment among those individuals who opt in. Let 𝛾part(𝜆, 𝑚) and 𝛾abst(𝜆, 𝑚) denote, for type 𝜆 at
payment 𝑚, the posterior beliefs that the state is good when she chooses to participate and to ab-
stain, respectively. Higher cost types make less informed decisions: both posterior beliefs become
closer to the prior belief as the cost parameter increases. Since 𝛾part(𝜆, 𝑚) is the probability that par-
ticipating is the correct decision (conditional on type 𝜆 participating), a lower value of 𝛾part(𝜆, 𝑚)
corresponds to a higher likelihood of disappointment.

Proposition 3. Suppose 𝜆 and 𝑚 are such that 0 < 𝑝(𝑚, 𝜆) < 1. Then,

(i) 𝜕
𝜕𝜆
𝛾part(𝜆, 𝑚) < 0 and 𝜕

𝜕𝜆
𝛾abst(𝜆, 𝑚) > 0,

(ii) 𝜕
𝜕𝑚
𝛾part(𝜆, 𝑚) < 0 and 𝜕

𝜕𝑚
𝛾abst(𝜆, 𝑚) < 0.

The assumption that costs are proportional to the reduction in entropy is not necessary for this
result. Its proof is based on the concavification approach to rational inattention developed in Caplin
and Dean (2013) and immediately extends to the much larger class of posterior separable cost
functions described therein.

The intuition for part (i) is straightforward. Whenever information is more expensive to acquire
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and process, it is optimal, ceteris paribus, to acquire and process less of it. The intuition for part
(ii) derives from Ambuehl (2021). If the incentive to participate is low, an individual has little
to gain from participation, but possibly much to lose. Hence, she requires high confidence that
participation is the right course of action before opting in. As the incentive increases, the costs of
mistaken participation shrink so that she requires less confidence before she is willing to opt in.6

Robustness. Our results are robust to various extensions. First, our results continue to apply in
the case of heterogeneous prior beliefs as long as all types have an interior participation probability
(Appendix B.1). Second, while we present our model assuming risk neutrality, a careful inspection
of the proofs shows that they generalize to the case of risk-nonneutrality, including gain/loss utility
with a fixed reference point. Third, within the class of rational inattention models, simulations show
that our results also apply for several cost functions other than Shannon entropy (Appendix B.2).
Fourth, there are interpretations of our setting other than that of a known participation payment
and uncertain utility consequences of participation. Indeed, the main driver of our model is not
the assumption that there is one activity with a safe payoff and another with an uncertain payoff.
Instead, the relevant feature is that a higher payment raises the payoff of one activity versus that of
another in every state of the world. This holds regardless of the riskiness of each option.

At the same time, our results cannot be easily reproduced in alternative models that are osten-
sibly simpler (Appendix B.3). For instance, if the quality of agents’ information is heterogeneous

6Increasing the value of the participation payment in our model is equivalent to reducing the
value of the safe outside option. Ke and Villas-Boas (2019) study sequential allocation of atten-
tion among multiple alternatives with a known outside option. They obtain comparative statics
results that, when specialized to the case of a single uncertain alternative, are analogous to those
of Proposition 3.
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but they cannot tailor their signals to the choice problem, increasing the participation payment does
not generally lead to disproportionate selection of those with less informative signals.

3 Experiment design
Our theory makes strong and testable predictions concerning the selection and disappointment

effects of participation payments, which we put to a laboratory test. Because it is the comparative
statics of incentives and information costs that are of interest for applications, we focus on those
rather than on the primitives of the model.7

Task Subjects decide whether to take a gamble in which they receive 𝜋𝐺 +𝑚 if the state is good,
or 𝜋𝐵+𝑚 if the state is bad. The prior probabilities of the states are 50/50. Before deciding whether
to take the gamble, but after learning the values of 𝜋𝐺 +𝑚 and 𝜋𝐵 +𝑚, subjects obtain information
about the state of the world in a way that is perfectly revealing but costly to interpret. Specifically,
they see a list of calculations as in panel A of Figure 2. The list comprises 𝑁 two-digit addition
problems with proposed solutions. If the state is good, 𝑘 are solved correctly and 𝑁 − 𝑘 are solved
incorrectly. If the state is bad, the numbers of correct and incorrect solutions are reversed. Subjects
are aware of this setting, and can examine each such list for as long as they desire.

We choose this task for three reasons. First, it provides subjects considerable flexibility in
gathering information and choosing when to stop and make a decision. This is crucial, as the
theoretical setting rests on the assumption that subjects can tailor their information acquisition to
the specifics of the choice problem.8 Second, our task allows us to experimentally vary the cost of

7Moreover, our theoretical predictions appear to be robust to some changes in primitives, as
discussed in Section 2.

8In particular, subjects can bias their information acquisition. To implement a bias towards
participation, a subject can, for instance, accept the gamble soon after the first signs that the state is
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Figure 2: Presentation of information about the state.

A. Main condition B. Exogenous information condition

Notes: In the Exogenous Information condition, subjects are explicitly told the number of correct
and incorrect calculations in the visible part of the picture.

information acquisition. We do so by simultaneously varying the number of calculations in a list
and adjusting the ratio of correct to incorrect ones. By increasing the list length and making the
ratio closer to 1∕2, we ensure that checking any given calculation reveals less information about
the state, thereby making information acquisition more costly. Third, it is plausible that individuals
differ both in their ability and their willingness to extract information from a list of calculations.
We measure this idiosyncratic variation by eliciting subjects’ reservation price for checking a given
number of calculations. We also elicit information about subjects’ choices and performance in
school, and by having them complete a cognitive test.
Treatments We set 𝜋𝐺 = 0, 𝜋𝐵 = −12, and vary the payment 𝑚 ∈ {2, 6, 10} for the low, medium

and high-incentive treatments, respectively. (All amounts are denominated in euros.) Hence, in
good, but continue searching intensely after the first signs that the state is bad, similar to a researcher
scrutinizing criticisms of her work but readily accepting praise.
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these treatments subjects decide whether to accept a win 2 / lose 10, a win 6 / lose 6, and a win 10
/ lose 2 gamble, respectively, and they see the gambles presented this way. Note that for 𝑚 ≤ 6,
any risk-averse subject who bases her participation decision on the prior alone would reject the
gamble.9

Our three Endogenous Information treatments vary the level of difficulty for information ac-
quisition. The low-cost treatment has 25 addition problems, of which 15 are correct (incorrect) in
the good (bad) state; the medium-cost treatment has 60 addition problems, of which 35 are correct
(incorrect) in the good (bad) state; and the high-cost treatment has 100 addition problems, of which
55 are correct (incorrect) in the good (bad) state.10

The Exogenous Information treatment is an important control that effectively eliminates the
possibility of endogenous information acquisition. It lets us check whether our results are driven
by information choice (in which case they will vanish in the Exogenous Information treatment)
or by other factors (in which case they will also occur in the Exogenous Information treatment).
Specifically, subjects observe a picture similar to that in the medium cost treatment, but only a
portion of it is visible, with the rest heavily blurred, as shown in panel B of Figure 2. Because the
state is still determined by the entire list of calculations, the blurring places an upper limit on the
amount of information a subject can acquire. A line of text above the picture explicitly informs the
subject how many correct and incorrect calculations the visible part contains. For any subject who

9Following List et al. (2011), we select the two relatively extreme incentive amounts D2 and
D10 to maximize statistical power. We add the amount D6 to test for our predicted treatment effects
without changing the prior-optimal action.

10In sessions 2, 3, and 4, the low-cost treatment used 30 calculations per picture, with 60% correct
(incorrect) in the good (bad) state, and session 1 had 20, also with 60% correct (incorrect) in the
good (bad) state.
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pays attention to these numbers, this places a lower bound on the information they acquire. We
fix the difference between the number of correct and incorrect calculations in the visible portion of
the picture such that among the 20 expressions that are not blurred out, either 11 or 13 are correct
(incorrect) in the good (bad) state.

Each subject participates in 18 rounds of decision making that cover all treatments in individ-
ually randomized order, as summarized in Panel A of Table 1. The state of the world is redrawn in
each round. We anticipated that in the low-incentive treatments, subjects would frequently refuse
to take the gamble. Hence, to obtain adequate statistical power, we oversample these decisions.11

Subjects know that their earnings are determined by at most one randomly selected round.
After each of the 18 rounds, we elicit the subject’s posterior belief that they have seen a good-

state picture, incentivized by the mechanism proposed in Karni (2009) and Holt and Smith (2009),
in which they may either win or lose D3. Subjects know from the start that there is an 80% chance
that they will be paid according to one decision in one of these 18 rounds. They also know that in
this case, there is an 80% chance that the selected decision will be a betting decision, and a 20%
chance that it will be a belief elicitation decision, and never both. We chose to put the lion’s share
of the probability mass onto incentivizing the betting decision to ensure that it would be the main
driver of information acquisition.12

Individual measures After subjects complete the first part of the experiment, we elicit four
individual-level characteristics that we interpret as measures for idiosyncratic variation in infor-

11We anticipated that subjects would reject the gamble at the D2 payment more often than they
would accept it at the D10 payment, due to risk aversion. Therefore, we did not oversample the
latter condition.

12The belief elicitation decision does not vary across rounds. Hence, while its presence may
affect information acquisition, it does not affect the sign of treatment comparisons.
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Table 1: Experiment overview

A. Type and number of decisions taken by each subject.

Condition Endogenous Information Exogenous Information

Number of additions in picture 25 60 100 20 visible

Participation payment

D 2 2 2 2 2
D 6 1 1 1 2
D 10 1 1 1 2

B. Session structure
1. Main decisions (18 rounds)

2. Reservation price elicitation (4 rounds)

3. Raven’s matrix test

4. Risk preference elicitation (9 rounds)

5. Survey of academic and demographic background variables.

mation costs, in the order summarized in Panel A of Table 1.
Reservation price for checking calculations. As a direct measure of information acquisition

costs, we elicit subjects’ reservation price for the opportunity to verify 𝑛 addition problems for
correctness in exchange for an additional payment, for each 𝑛 ∈ {30, 60, 100, 200}. Subjects know
that if they agree to check 𝑛 calculations in exchange for money, and this decision is randomly
selected for implementation, then they need to check at least 90% of them correctly. Otherwise,
they not only lose the money they would have obtained for completing the task correctly, but also
forfeit another D10 from their completion payment. For each value of 𝑛, a subject sees a separate
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list, and decides, on each line, whether to check the calculations in exchange for D𝑝. In each list, 𝑝
ranges from 0 to 10 in steps of 0.5, and also includes 0.25 and 0.75. Subjects are informed that one
of these decisions will be selected for implementation in addition to the chosen decision from the
main stage of the experiment.13

Cognitive task performance. Second, we measure performance on the Raven’s Advanced Pro-
gressive Matrices task (Raven et al., 1962), using series I and the first 24 matrices of series II. This
task predicts various life outcomes (see, e.g., Duckworth et al., 2011). It thus represents a persistent
trait on which selection may be of direct interest in applications. We expect performance on this
task to correlate with the cost of information acquisition in our decision tasks, as it is indicative of
abilities like concentration and short-term memory. Previous research has shown that cognitive task
performance is predictive of different outcomes depending on whether subjects are incentivized for
performance (Borghans et al., 2008; Duckworth et al., 2011; Segal, 2012). We explore this depen-
dency through two separate treatments. Corresponding to standard procedures, the unincentivized

IQ condition does not provide incentives for performance. In the incentivized IQ condition, there
is a 10% chance that a subjects’ payment from the experiment may be determined entirely by their
performance in this test. In that case, she is paid D0.30 for each correctly solved matrix.

Risk preferences. Third, we elicit subjects’ risk preferences. We use lists of decisions to elicit
certainty equivalents of various gambles. Each decision is of the form Win DX with chance 𝑝 and

lose DY with chance 1 − 𝑝 versus win / lose DZ with certainty. The structure of these decisions is
the same as in our main treatments in which subjects also decide between a gamble and a certain

13We chose to disburse this payment in addition to other payments to make the experiment sim-
pler to understand for subjects. While this design choice could in principle lead to income effects,
those would countervail our hypothesis.
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payment. The lotteries we present are win 2 / lose 10, win 6 / lose 6, and win 10 / lose 2 with winning
probabilities 𝑝 ∈ {0.5, 0.75, 0.9}, resulting in a total of 9 lists. On each list, the certain option
varies from lose D10 with certainty to win D10 with certainty in steps of D1.14 Subjects’ payment
is determined by a risk preference elicitation question with a 20% probability (10% probability in
case the cognitive test is also incentivized).

Educational background. Fourth, we elicit information about subjects’ educational background
in mathematics and in German literature. We include both subjects to demonstrate how the effects
we document relate to the costs of acquiring the information specific to our tasks—namely, we
expect that subjects’ background in mathematics will have predictive power for information costs,
whereas background in German literature will not. For both subjects, we elicit high school grades,
as well as whether an honors class was taken in that subject. Additionally, we elicit whether subjects
are enrolled in a STEM college major.15

Implementation and payment Subjects learn that the experiment has three parts—two “decision
making parts,” labelled “A” (main tasks and reservation price elicitation) and “B” (risk preference
elicitation), as well as a part involving “logical puzzles” (the Raven’s matrices) to be completed
in between. The experimenter reads the initial instructions aloud. Subjects read all subsequent
instructions on screen, and may keep reviewing them until they pass a comprehension check that

14Subjects make an active choice on each line of each list. We enforce single switching.
15We elicit subjects’ college major, which we then classify as STEM / non-STEM. We also elicit

subjects’ high school GPA. Because high school GPA is an average over many classes, includ-
ing many that are presumably irrelevant to our task, we have no ex ante hypothesis about how it
moderates the effect of incentives on participation decisions.

24



allows them to proceed to the decision making part.16 States of the world are drawn randomly and
are i.i.d., and lists with correct and incorrect calculations are generated randomly on an individual
level. To clearly differentiate between the different rounds, each list of calculations has a differently
colored border, with colors randomly assigned on an individual level. If the border is red, for
instance, subjects are asked to decide whether they want to “bet on the red picture.” To minimize
confusion, we present subjects with a choice of taking a win (𝜋𝐺 + 𝑚) / lose |𝜋𝐵 + 𝑚| gamble, as
opposed to offering them 𝑚 to take a win 𝜋𝐺 / lose |𝜋𝐵| gamble. We do not provide materials to take
notes. Hence, subjects have to keep track of the false and correct calculations they had checked in
their head. Appendix C.5 contains the experimental instructions and screenshots of the interface.

One randomly selected decision from the entire experiment, as well as the payments from the
elicitation of the reservation price to solve additional calculations, determine a subjects’ payment.
All gains are added to a budget of D15 and all losses are deducted.

4 Experiment results
We ran the experiment with 584 student subjects across 19 sessions in May and July 2017 at the

University of Cologne’s Laboratory for Economic Research.17 Subjects could leave as soon as they
were done, irrespective of other subjects’ progress. The median time subjects spent inspecting each

16Subjects must answer all of 12 true/false questions correctly, and in case of a mistake, are not
told which of their 12 answers is wrong. Hence, they are highly unlikely to pass the check by merely
guessing.

17We obtained 300 subjects in May, and then decided to replicate the findings by roughly doubling
the sample size. Appendix C.1 lists the details of each session. We conducted two pilot studies on
Amazon Mechanical Turk with largely similar results before running the laboratory studies. These
are available from the authors by request.
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picture is 74 seconds. On average, subjects spent about one and a half hours on the experiment and
received a total payment of D18.70. The average subject is 24.5 years old and 53.3% are female.
Appendix C.2 displays further summary statistics; Appendix C.3 analyzes order effects, decision
reversals, and shows data about the implementation of the reservation price elicitation task.

In Section 4.1 we study the empirical evidence for our predictions about the selection effect of
incentives. In Section 4.2 we examine the effect of information costs and incentives on posteri-
ors and disappointment. These sections focus on experimentally induced variation in information
costs and reservation prices for checking additional calculations as measures of individual-specific
information costs, since these directly map to our theoretical predictions. Section 4.3 repeats the
analyses using educational background and cognitive task performance as alternative measures of
individual-specific information costs.

4.1 Who Opts In?

We first show our results graphically and then proceed with econometric analysis. Panel A of
Figure 3 displays the effects of incentives on the composition of subjects who opt into the gamble
using induced variation in information costs. We assign a cardinal index of 1, 2, and 3 to represent
the low-, medium-, and high-cost treatments, respectively. We measure the selection effect using
the average value of this index among those subjects who accept the gamble. As the bold line
shows, the average information cost index amongst those who opt in is 1.7 for the D2 incentive
and a substantially higher 2.05 for the D10 incentive. This increase confirms our main prediction,
Proposition 1 (i).

The graph also displays the supply curves for each cost level, which form the basis of the selec-
tion effect. Specifically, in the low-cost condition, the fraction of subjects who opt into the gamble
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Figure 3: Selection and supply curves.
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increases from 40% to just under 55% as the incentive increases from D2 to D10. In the high-cost
condition, by contrast, supply increases from 15% to over 60%. Hence, consistent with Proposition
1 (ii), an D8 increase in the payment has a 15 percentage point effect on supply in the low-cost
treatment, and a 45 percentage point effect in the high-cost treatment (as well as an intermediate
effect in the medium-cost treatment).18

Next, we test for incentive-induced selection using idiosyncratic variation in information cost,
measured by reservation prices for checking a given number of calculations. We rank subjects ac-
cording to their reservation price for each of the four elicitations and average these ranks within
subjects. We then group subjects into two halves—those who more strongly dislike checking addi-
tion problems (above median reservation prices) and those who are less averse to it (below median
reservation prices). The bold line in Panel B of Figure 3 plots the fraction of individuals with a
high reservation price amongst those who accept the gamble (averaged across task difficulty levels).
It shows that higher participation payments increase the fraction of high-cost types amongst those
who elect to participate, consistent with Proposition 1 (i). We also see that the half of subjects
with higher reservation prices responds more strongly to an increase in the participation payment,
consistent with Proposition 1 (ii).19

In principle, the effects in Panel B could arise not because of information costs, but because of
some other individual characteristic that is correlated with information costs such as risk attitudes
or loss aversion. The Exogenous Information treatment addresses that possibility. If the effects in

18In the boundary case of completely costless information, the supply curve should be constant
at 50%. In the case of prohibitively expensive information and risk-averse subjects, supply should
be zero for the D2 and D6 payments. For the D10 payment, supply should be equal to the fraction
of subjects willing to take a 50/50 win 10 / lose 2 gamble.

19Appendix C.4 shows that these effects arise separately for each state 𝐺 and 𝐵.
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Panel B are caused by our proposed information cost channel, then they will vanish in this treat-
ment. By contrast, if they are due to extraneous factors, we will continue to observe them, because
the Exogenous Information treatment allows all factors other than endogenous information acquisi-
tion to affect choice. As Panel C shows, if anything, selection effects in the Exogenous Information
treatment have the opposite sign from those we would expect based on our information cost mech-
anism. We conclude that endogenous information acquisition is the driving factor underlying our
results in Panel B.

In Panel D, we check whether selection effects based on idiosyncratic variation in information
costs become stronger as we raise the difficulty of information acquisition for all individuals, as
suggested by Proposition 2. For this purpose, we show the selection effects based on reservation
prices separately for each task difficulty level. Each line displays the fraction of subjects with
an above-median reservation price amongst those who opt into the gamble. The selection effect
in the high-cost condition is considerable: the proportion of high-reservation price participants
rises from 37% to 53% as the payment increases from D2 to D10. Importantly, this increase is
significantly more pronounced than in the medium-cost condition, where the fraction of high-cost
participants increases from 44% to 49% over the same increase in payment. Unexpectedly, selection
in the low-incentive treatment is non-monotonic due to a high fraction of high-reservation price
participants at the D6 incentive. Yet, we see nearly indistinguishable fractions of high-reservation
price participants for the D2 and the D10 incentive amounts.

To document these effects econometrically, we perform two types of estimations. We test for
selection effects using OLS models of the form

𝑌𝑖𝑡 = 𝛽′𝑋𝑖𝑡𝑏𝑖𝑡 + 𝛾 ′𝑋𝑖𝑡(1 − 𝑏𝑖𝑡) + 𝛿′𝑍𝑖𝑡 + 𝜖𝑖𝑡. (2)
Here, 𝑌𝑖𝑡 is a measure of the information costs subject 𝑖 faced in decision 𝑡, 𝑋𝑖𝑡 consists of a constant
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term and a predictor variable such as the incentive amount, 𝑏𝑖𝑡 is an indicator that equals 1 if subject
𝑖 accepts the bet in round 𝑡, and 𝑍𝑖𝑡 is a vector of session and round fixed effects. Both 𝑌𝑖𝑡 and 𝑋𝑖𝑡

vary across specifications. Our interest centers on the coefficient vector 𝛽 which indicates how the
predictor 𝑋𝑖𝑡 changes the distribution of the information cost measure 𝑌𝑖𝑡 amongst subjects who
decide to take the gamble.

We examine slope effects in linear probability models that use the decision to bet as a dependent
variable. Specifically, we consider models of the form

𝑏𝑖𝑡 = 𝛽′𝑋𝑖𝑡 + 𝛿′𝑍𝑖𝑡 + 𝜖𝑖𝑡, (3)
where 𝑋𝑖𝑡 includes the incentive amount 𝑚𝑖𝑡 and several interactions between 𝑚𝑖𝑡 and moderators
of supply (such as information costs). 𝑍𝑖𝑡 is a vector of session and round fixed effects.

In all regressions, we normalize the participation payment by the loss amount 𝜋𝐵 to make our
coefficients independent of the specific magnitude of that parameter used in our experiment. Hence,
theD2, D6, andD10 participation payments are encoded as 2∕12 = 0.167, 6∕12 = 0.5, and 10∕12 =

0.83, respectively. Whenever a regression involves more than a single observation per subject, we
cluster standard errors on the subject level. To ensure that our results do not depend on random
realizations of the state during the experiment, we weight our regressions such that the weighted
fraction of decisions for which the state is good exactly equals the prior of 50% in each relevant
cell.20

20Specifically, for a given cost level 𝑐 and incentive 𝑚, let 𝑟𝑐𝑚 denote the fraction of observations
for which the realization of the state is good. We attach weight 1∕𝑟𝑐𝑚 to each observation with
cost 𝑐 and incentive 𝑚 if the state is good, and weight 1∕(1 − 𝑟𝑐𝑚) if the state is bad. For each
definition of cost 𝑐 (experimentally induced, or reservation price), we calculate the corresponding
set of weights.
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Table 2: Selection and participation effects.

(1) (2) (3) (4) (5) (6) (7) (8)
Type Selection Slope effect

VARIABLES Info. Res. Res. Res. Gamble Gamble Gamble Gamble
cost price price price accepted accepted accepted accepted

index %ile %ile %ile
Proposition tested 1(ii) 1(ii) - 2𝑎) 1(i) 1(i) - 2
Sample

Endogenous Information ✓ ✓ ✓ ✓ ✓ ✓

Exogenous Information ✓ ✓

Panel A. Main regressions
Predictor Gamble accepted × 1 ×

× Incentive 0.545*** 0.061*** 0.001 -0.056 0.003 0.431*** 0.956*** 0.072
(0.044) (0.017) (0.041) (0.035) (0.056) (0.034) (0.039) (0.081)

× Cost index -0.040*** -0.167***
(0.012) (0.012)

× Incentive × cost index 0.065*** 0.239***
(0.018) (0.025)

Predictor Gamble rejected × (Res. Price > median) ×
× Incentive -0.238*** -0.025* -0.014 0.028 0.096** -0.04 -0.134

(0.034) (0.013) (0.018) (0.029) (0.047) (0.055) (0.112)
× Cost index 0.007 -0.053**

(0.005) (0.024)
× Incentive × cost index -0.026** 0.115**

(0.013) (0.050)
× 1 0.558*** 0.064*** 0.002 -0.020 -0.073*** 0.025 0.033

(0.039) (0.016) (0.036) (0.034) (0.025) (0.025) (0.057)
Observations 7,008 7,008 3,504 7,008 7,008 7,008 3,504 7,008
Subjects 584 584 584 584 584 584 584 584
Panel B. Pairs of incentive amounts (coefficient on relevant interaction)
Low and middle 0.544*** 0.100** -0.051 0.031 0.126** 0.096 -0.105 0.036

(0.090) (0.035) (0.111) (0.041) (0.046) (0.085) (0.089) (0.064)
Middle and high 0.540*** 0.024 0.019 0.104** 0.374*** 0.104 0.009 0.603

(0.085) (0.031) (0.046) (0.036) (0.061) (0.105) (0.117) (0.085)
Panel C. Pairs of difficulty levels (coefficient on relevant interaction)
Low and middle 0.225*** 0.034* 0.000 0.051 0.318*** 0.042 0.000 0.382

(0.030) (0.019) (0.000) (0.034) (0.050) (0.056) (0.000) (0.068)
Middle and high 0.191*** 0.097*** 0.000 0.082** 0.162*** 0.155 0.000 0.209

(0.034) (0.023) (0.000) (0.038) (0.044) (0.055) (0.000) (0.058)

𝑎) Proposition 2 is stated in terms of supply curve slopes only, as tested in column 8. Absent countervailing level effects,
Proposition 2 implies the comparative statics tested in column 4.
Notes: Bold print indicates the parameter relevant for testing the proposition listed in the table header in each column.
Information Cost Index is encoded as 1, 2, and 3 for the low, medium, and high cost treatments, respectively. Panels B
and C display the estimates of the corresponding parameter on selected subsamples. Gamble accepted is an indicator
variable (values 1 and 0) for whether the subject took the bet. Incentive equals 0.167, 0.5, and 0.833 for the incentive
amounts D 2, 6, 10, respectively, representing a normalization of the incentive amounts over the entire relevant range
from 0 to 12. Each column presents the estimates from a separate regression, controls for session and round fixed
effects, and is weighted as detailed in footnote 20. All standard errors in parentheses, clustered by subject. ∗𝑝 <

0.1, ∗∗𝑝 < 0.05, ∗∗∗𝑝 < 0.01.



We list our estimation results in Table 2, which parallels Figure 3. Estimates in columns 1 to
4 correspond to the selection effects displayed in panels A to D of the figure, respectively, while
those in columns 5 to 8 correspond to the slope effects. Starting with induced information costs,
Column 1 shows the estimates of model (2) using the information cost index (which takes values 1,
2, and 3, for the low, middle, and high cost conditions, respectively) as the dependent variable. The
coefficient on the interaction Gamble accepted × Incentive shows that raising the incentive over the
entire relevant range increases the average cost index of subjects who opt into the gamble by 0.545
units (𝑝 < 0.01).21

To check that our results are not simply due to the fact that a sufficiently large increase in the
payment 𝑚 changes the prior-optimal action, we also estimate the model using only observations
for which the incentive is either D2 or D6; for any risk-averse individual, the prior-optimal action is
to refuse the gamble for both of these incentive amounts. For completeness, we also estimate the
model using only observations in which the incentive is either D6 or D12. As Panel B shows, the
estimated coefficients are similar to each other and are highly statistically significant (𝑝 < 0.01).22

We also check that our results do not depend on our choice of information-cost index. To this end,
we estimate the model using only the low and middle cost conditions, as well as using only the
middle and high cost conditions. The estimated magnitudes are expected to be smaller because the
maximal possible difference between information cost indices in these regressions is only half of
that across all difficulty levels. Panel C shows that the estimates of the relevant interaction effects
are positive, as predicted (𝑝 < 0.01). As the estimates of model (3) in Column 5 show, these

21Appendix Figure 3 shows that these effects arise separately for each state.
22Taking an alternative approach, Appendix C.4 shows that our results are robust to controlling

for risk preferences.
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results are substantially due to a slope effect. Specifically, an increase in the cost index by one unit
increases the slope of the supply curve by 0.239 units (𝑝 < 0.01). We also find positive estimates if
we only include two incentive levels or two task difficulty levels (Panels B and C, 𝑝 < 0.05 in each
case).

We now turn to our reservation price measure of information costs. As the coefficient on the
interaction term Gamble accepted × Incentive in column 2 shows, raising the incentive over the en-
tire relevant range raises the reservation price percentile amongst subjects who opt into the gamble
by 6.1 percentage points (𝑝 < 0.01), consistent with Proposition 1 (i). Panel B shows that this effect
is in large part due to changes that occur when increasing the incentive from D2 to D6 (𝑝 < 0.05),
and is stronger when considering only the middle and high cost conditions (𝑝 < 0.01) than when
considering only the low and middle cost conditions (𝑝 < 0.1), foreshadowing the effects predicted
in Proposition 2. The coefficient on the interaction term (Res. price > median) × Incentive in
column 6 isolates the slope effect of 0.96 units (𝑝 < 0.05; Proposition 1 (ii)).

Column 3 considers the Exogenous Information Condition to check that preventing endogenous
information acquisition extinguishes its predicted effects. Indeed, selection effects vanish; the es-
timated coefficient on the interaction Gamble accepted × Incentive is close to zero. Slope effects
also vanish (column 7).23 Similar results arise in Panels B and C.24

Finally, we consider the effect of the interaction between task difficulty and idiosyncratic infor-
23In a joint regression, the difference between the estimates of the interaction effects of columns

6 and 7 is statistically significant at the 5% level. The p-value of the test of the hypothesis that the
coefficients on the incentive amount in columns 2 and 3 are equal 0.15, which decreases to 0.06 if
the session and round fixed effects are excluded.

24Appendix Table C.8 complements this analysis by showing that the selection and slope effects
of columns 2 and 7, respectively, remain once we control for risk preferences.
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mation costs. The significantly positive coefficient on the three-way interaction Gamble accepted

× Incentive × Cost index in column 4 shows that greater task difficulty increases the strength of our
main selection effect. The positive coefficient on the three-way interaction (Res. price > median)

× Incentive × Cost index in column 8 shows that the slope effect is a substantial cause (𝑝 < 0.05 in
both cases).

Overall, these results empirically validate the predicted selection effect of incentives and show
that it results from endogenous information acquisition.

4.2 Posteriors

Our selection effect is relevant for providers of incentives who care about the type of individuals
who participate in their transaction. We now examine how incentives change the quality of the
participation decision. These effects matter if one is concerned about disappointment, for instance
due to costs arising from participants’ attempts to back out of their decision.

We begin with objective posterior probabilities: conditional on accepting or rejecting the gam-
ble, what is the likelihood that the state is good? Figure 4 shows how these posteriors depend on
information costs and incentives. Panel A focuses on induced information costs. The upper half,
labeled ‘accept,’ plots the fraction of times subjects won the bet if they decided to take it; the lower
half, labeled ‘reject,’ shows the fraction of times subjects would have won the bet when they de-
clined. These frequencies are estimates of the population averages of the posterior probabilities
𝑃 (𝑠 = 𝐺 ∣ accept) and 𝑃 (𝑠 = 𝐺 ∣ reject), respectively. The results are consistent with Proposition
3. First, higher information costs lead to less informed decision making, consistent with part (i) of
the proposition. For example, a subject who decided to participate in the gamble wins in around
90% of cases in the low cost condition, but wins in only 60 to 80% of cases (depending on the incen-
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Figure 4: Posterior probabilities conditional on the subject’s action.

A. Induced information costs B. Idiosyncratic information costs
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Notes: Both panels show the probability of 𝑠 = 𝐺 conditional on accepting (top half) or rejecting
(bottom half) the gamble. Panel A: By task difficulty level and incentive condition. Panel B: By
reservation price and incentive condition, averaged over task difficulty levels. Moving average,
Epanechnikov kernel, bandwidth 0.15.

tive) in the high cost condition. Second, incentives directly affect posteriors: for each task difficulty
level, we find that a higher payment lowers both the chance that a subject who accepted the gamble
will win, and the chance that a subject who rejected the gamble would have won, consistent with
part (ii) of the proposition. As Panel B shows, the same effects also appear for our reservation price
measure of information costs (averaged across task difficulty levels).

To test these effects econometrically, we estimate OLS models of the form25

𝑆𝑖𝑡 = 𝛽′𝑋𝑖𝑡𝑏𝑖𝑡 + 𝛾 ′𝑋𝑖𝑡(1 − 𝑏𝑖𝑡) + 𝛿′𝑍𝑖𝑡 + 𝜖𝑖𝑡. (4)
Here, 𝑆𝑖𝑡 is an indicator that equals 1 if the state for subject 𝑖 in round 𝑡 was good, 𝑏𝑖𝑡 indicates
whether subject 𝑖 took the bet in round 𝑡, 𝑋𝑖𝑡 consists of a constant term and a predictor variable
such as the incentive amount, and 𝑍𝑖𝑡 is a vector of session and round fixed effects.

25This model differs from model (2) only in that it uses a different dependent variable.
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Table 3: Posteriors.

(1) (2) (3) (4) (5) (6)
VARIABLES Indicator for {𝑠 = 𝐺} Elicited belief that {𝑠 = 𝐺} Elicited belief that {𝑠 = 𝐺}

− indicator for {𝑠 = 𝐺}

Bet accepted ×

Info. cost index -0.099*** -0.067*** 0.032***
(0.010) (0.005) (0.009)

Res. price %ile -0.087*** -0.063*** 0.025
(0.032) (0.023) (0.027)

Incentive -0.149*** -0.198*** -0.112*** -0.145*** 0.037* 0.053**
(0.024) (0.025) (0.014) (0.014) (0.022) (0.022)

Bet refused ×

Info. cost index 0.116*** 0.083*** -0.033***
(0.008) (0.005) (0.008)

Res. price %ile 0.125*** 0.109*** -0.016
(0.028) (0.022) (0.025)

Incentive -0.291*** -0.315*** -0.246*** -0.262*** 0.045* 0.053**
(0.024) (0.023) (0.014) (0.014) (0.023) (0.023)

Observations 7,008 7,008 7,008 7,008 7,008 7,008
Subjects 584 584 584 584 584 584

Notes: Each column displays the coefficients of a separate regression that includes session and order
fixed effects, and is weighted as detailed in footnote 20. Standard errors in parentheses, clustered
by subject. ∗𝑝 < 0.1, ∗∗𝑝 < 0.05, ∗∗∗𝑝 < 0.01.
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Table 3 displays the results. Using induced variation in information costs, column 1 shows that
an increase in the information cost index by one unit decreases 𝑃 (𝑠 = 𝐺|accept) by 9.9 percentage
points and increases 𝑃 (𝑠 = 𝐺|reject) by 11.6 percentage points. Moreover, an increase of the
incentive over the entire relevant range decreases 𝑃 (𝑠 = 𝐺|accept) by 14.9 percentage points, and
decreases 𝑃 (𝑠 = 𝐺|reject) by 29.1 percentage points (𝑝 < 0.01 for all four estimates). Column 2
uses reservation prices as measures of information cost and pools across task difficulty levels. Again
we find that higher information costs are associated with a significantly lower 𝑃 (𝑠 = 𝐺|accept) and
with a significantly higher 𝑃 (𝑠 = 𝐺|reject) (𝑝 < 0.01 for both estimates).

Are subjects aware of how incentives and information costs affect their choice quality? To an-
swer this question, we study the alignment between objective posterior probabilities and elicited
posterior beliefs. We estimate model (2) using elicited beliefs that the state is good as the depen-
dent variable. Column 3 shows that the effect of induced information costs on subjective posteriors
mirrors that on objective posteriors, but with some attenuation. Hence, while subjects appear to re-
alize that they make less informed choices when the task difficulty is higher, they underestimate the
extent of this effect. The difference between the estimated coefficients on objective and subjective
posteriors is highly statistically significant (𝑝 < 0.01), as shown in column 5. Subjects also under-
estimate the extent to which higher incentives lower both 𝑃 (𝑠 = 𝐺|accept) and 𝑃 (𝑠 = 𝐺|reject)

(𝑝 < 0.1). Subjects more accurately predict the effects of their idiosyncratic information costs on
their choice quality. As column 4 shows, subjective posteriors vary with reservation prices just as
much as objective posteriors do; the difference is far from statistically significant (column 6).

Overall, these results are consistent with Proposition 3. They also show that while subjective be-
liefs, on average, are well-calibrated, subjects become overly optimistic about their decision quality
in contexts in which information is more costly to process for all individuals.
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4.3 Educational background and cognitive task performance

We have shown that incentives select subjects by information costs when these are tightly con-
nected to the participation decision. Does the predicted selection effect extend to measures of
information cost that are often available in applied settings, such as educational background and
cognitive test scores?

To answer this question, we run regressions of the form (2), using each of the background
characteristics as a dependent variable and pooling across task difficulty levels. For comparability to
other variables, we use percentile ranks for all non-binary variables. When examining the effect of
cognitive task performance, we analyze selection in the unincentivized IQ treatment separately from
that in the incentivized IQ treatment. Based on previous research, we expect different predictive
power across these treatments (Borghans et al., 2008; Duckworth et al., 2011; Segal, 2012), but
we have no ex ante hypothesis about the direction of the difference. In the case of cognitive task
performance, we also control for the time taken to complete the Raven’s matrix test.26

Panel A of Table 4 displays the results, starting with mathematics background. Column 1 shows
that an increase in the incentive over the entire relevant range decreases the percentile rank in high-
school math grades amongst those who take the bet by 3.5 points (𝑝 < 0.1). The change in the
selection of participants measured by whether a subject has taken an honors course in math is 9.2

26Some subjects appeared to stop paying attention while completing the Raven’s matrix test.
These subjects spend approximately the same time on each question block up to some point, after
which their response time drops to nearly zero for the remaining question blocks. Including com-
pletion time for the test as a regressor controls the noise these subjects would otherwise induce in
our regressions. If we run the regressions without controlling for time taken, estimated coefficients
remain similar in magnitude but they lose statistical significance.
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Table 4: Selection effects and posteriors by background characteristics.

A. Selection

(1) (2) (3) (4) (5) (6) (7)
Dependent variable High school math STEM High school German Raven’s score

grade rank honors grade rank honors unincentivized incentivized
Dep. var. mean 0.500 0.387 0.550 0.500 0.419 0.500 0.500

0.013 0.021 0.021 0.013 0.021 0.017 0.019
Incentive ×

Bet taken -0.035* -0.092*** -0.091*** 0.033* 0.029 -0.049** -0.007
(0.019) (0.031) (0.031) (0.019) (0.031) (0.021) (0.028)

Bet refused 0.025* 0.056** 0.030 -0.007 -0.019 0.034** -0.003
(0.013) (0.022) (0.022) (0.013) (0.022) (0.017) (0.019)

Bet taken 0.029 0.084*** 0.101*** -0.041** -0.027 0.044** 0.014
(0.018) (0.030) (0.030) (0.019) (0.031) (0.018) (0.029)

Observations 6,240 6,636 7,008 6,180 6,624 3,600 2,652
Subjects 520 553 584 515 552 300 221

B. Posteriors

(1) (2) (3) (4) (5) (6) (7)

Dependent variable Indicator for {s = G}
Predictor variable

Name HS math HS math STEM HS German HS German Ravens score Ravens score
grade rank honors grade rank honors unincentivized incentivized

Effect
Bet accepted
× Predictor 0.138*** 0.035* 0.064*** 0.009 -0.055*** 0.117** 0.085

(0.034) (0.020) (0.019) (0.036) (0.021) (0.049) (0.054)
Bet refused
× Predictor -0.070** -0.035** -0.006 0.012 0.032* -0.132*** 0.011

(0.030) (0.017) (0.016) (0.032) (0.017) (0.041) (0.049)
Bet accepted 0.420*** 0.488*** 0.477*** 0.519*** 0.552*** 0.427*** 0.431***

(0.030) (0.019) (0.021) (0.029) (0.018) (0.040) (0.040)

Observations 6,240 6,636 7,008 6,180 6,624 3,600 2,652
Subjects 520 553 584 515 552 300 221

Notes: Regressions concerning cognitive task performance control for time taken to complete the test. All regressions
include session and order fixed effects. Observation numbers vary across columns because some subjects did not
answer the corresponding background questions. Standard errors in parentheses, clustered by subject. ∗𝑝 < 0.1, ∗∗𝑝 <
0.05, ∗∗∗𝑝 < 0.01.



percentage points (𝑝 < 0.01) and measured by enrollment in a STEM major it is 9.1 percentage
points (𝑝 < 0.01). Panel B shows that these characteristics are also associated with the predicted
drop in informedness of subjects’ decisions, using estimates of model (4). Column 1 shows that
if the subject with the highest math grade in our sample decides to opt into the gamble, she is
13.8 percentage points more likely to win than if the subject with the lowest math grade enters the
gamble (𝑝 < 0.05). We see directionally similar and statistically significant effects for enrollment
in a math honors class and enrollment in a STEM major, though at lower magnitudes.

As a falsification test, we use subjects’ background in German language and literature. As
this background is not related to information acquisition in our experiment, we expect no selection
on that dimension and no predictive power for posteriors. As columns 4 and 5 demonstrate, the
estimated parameters are zero or take the opposite sign from what we would expect if background
in German were related to information costs, both regarding selection (panel A) and posteriors
(panel B).

Finally, we turn to cognitive task performance as measured by (non-incentivized) scores on
the Raven test.27 Column 6 in panel A shows that the mean test score percentile amongst subjects
who opt into the gamble drops by 4.9 percentage points as the incentive increases over the entire
relevant range (𝑝 < 0.05). The same column in panel B shows that if the highest-scoring subject opts
into the gamble, she is 11.7 percentage points more likely to win than if the lowest-scoring subject
decides to opt in (𝑝 < 0.05). Interestingly, these effects vanish if we incentivize performance on the
Raven’s test (column 7). This finding is consistent with previous literature cited above that argues
that unincentivized and incentivized performance on cognitive tests measure different underlying
characteristics.

27The Raven’s test is usually administered without financial incentives for correct responses.
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Overall, we conclude that our results obtain not only with highly controlled laboratory measures
of information acquisition costs, but also with proxies for individual information costs that are more
widely available in applied settings.

5 Discussion and Conclusion
Many economic transactions combine a monetary payment for participation in a transaction

with consequences that are not entirely certain. This paper shows that higher participation payments
select individuals for whom learning is more difficult, and more so in contexts in which information
acquisition is more costly. The provider of the incentive may care about the types of subjects
who opt in; he may also be concerned about the quality of the participation decision. Higher-
cost individuals make less informed decisions and are more likely to experience disappointment
from participation, which may have costly repercussions such as the agent trying to back out of
the transaction. These findings matter whenever participation payments apply to a transaction with
uncertain but learnable consequences. Applications extend to fields as diverse as consumer choice,
finance, and labor economics.

One policy application concerns transactions for which participation payments are limited by
laws and guidelines, such as living tissue donation or clinical trial participation (Roth, 2007; Am-
buehl, 2021; Elias et al., 2019). Our results highlight a conflict between participation payments
and the principles of informed consent. Yet, banning or limiting these payments is not neces-
sarily the optimal response for policy makers who subscribe to these principles. One alternative
consists of stringent informed consent requirements, perhaps coupled with an assessment of partic-
ipants’ comprehension. Commenters in this debate also often voice the concern that participation
payments would disproportionately increase participation by the poor. This raises the question of

41



how economic inequality interacts with the selection effects we document in this paper. The an-
swer depends on context. Economic inequality will compound the selection effects we document
if two conditions hold. The first condition is that the utility consequences of participation, aside
from the participation payment 𝑚, are the same for rich and poor individuals. This is plausible for
transactions whose consequences concern physical wellbeing. The second condition is that poorer
individuals tend to have higher information costs. This is plausible to the extent that cognitive abil-
ity and education are correlated with socioeconomic status. Importantly, survey evidence suggests
that concerns about the failure to comprehend the consequences of a transaction might be a driving
force underlying ethical qualms with incentivizing the poor, rather than vice versa: on the topic of
human egg donation, respondents in Ambuehl and Ockenfels (2017) are substantially more con-
cerned about incentivizing women who have trouble understanding the risks and consequences of
the procedure than about incentivizing poorer women per se.
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A Proofs
A.1 Proof of Proposition 1

We first prove part (ii) and then draw on some of the same calculations in the proof of part (i).
A.1.1 Proof of part (ii)

For simplicity of notation, we omit the arguments from 𝑝𝑠(𝑚, 𝜆) and 𝑝(𝑚, 𝜆). A direct application
of Theorem 1 in Matějka and McKay (2015) shows that for each 𝑠 ∈ {𝐺,𝐵}, the state-contingent
participation probabilities 𝑝𝑠 are given by

𝑝𝑠 =
[

1 +
(

1
𝑝
− 1

)

exp
{

−1
𝜆
(𝜋𝑠 + 𝑚)

}

]−1

.

Substituting these expressions into the equation 𝑝 = 𝜇𝑝𝐺 + (1 − 𝜇)𝑝𝐵 defining 𝑝 and dividing both
sides by 𝑝 gives

1 =
𝜇

𝑝 + (1 − 𝑝)∕𝑔
+

1 − 𝜇
𝑝 + (1 − 𝑝)∕𝑏

,

where 𝑔 ∶= exp
(

(𝜋𝐺 + 𝑚)∕𝜆
) and 𝑏 ∶= exp

(

(𝜋𝐵 + 𝑚)∕𝜆
). Note that, since 𝜋𝐺+𝑚 > 0 > 𝜋𝐵+𝑚,

𝑔 > 1 > 𝑏. Rearranging gives

−𝜇
𝑔 − 1

𝑔 𝑝
1−𝑝

+ 1
= (1 − 𝜇) 𝑏 − 1

𝑏 𝑝
1−𝑝

+ 1
.

Solving for 𝑝
1−𝑝

then yields

𝑝
1 − 𝑝

= −
(1 − 𝜇)(𝑏 − 1) + 𝜇(𝑔 − 1)

(1 − 𝜇)(𝑏 − 1)𝑔 + 𝜇𝑏(𝑔 − 1)
,

from which we obtain
𝑝 = −

𝜇
𝑏 − 1

−
1 − 𝜇
𝑔 − 1

. (5)
Differentiating with respect to 𝑚 gives

𝜕𝑝
𝜕𝑚

=
1 − 𝜇
(𝑔 − 1)2

𝑔
𝜆
+

𝜇
(𝑏 − 1)2

𝑏
𝜆
.

Let 𝐴 denote the first of the two terms on the right-hand side. We will show that 𝜕𝐴
𝜕𝜆

> 0; a similar

1



argument applies to the second term, thereby proving the result. We have

1
1 − 𝜇

𝜕𝐴
𝜕𝜆

=
2𝑔2 log 𝑔
𝜆2(𝑔 − 1)3

−
𝑔 log 𝑔

𝜆2(𝑔 − 1)2
−

𝑔
𝜆2(𝑔 − 1)2

,

which is positive if and only if
(𝑔 + 1) log 𝑔 − 𝑔 + 1 > 0.

The left-hand side of this inequality is equal to 0 when 𝑔 = 1 and its derivative is positive every-
where. Therefore, the inequality holds for all 𝑔 > 1, as needed.
A.1.2 Proof of part (i)
Lemma 1. Let 𝑋 be a continuously distributed real-valued random variable and let 𝑓 ∶ 𝑅 ←→ 𝑅+

and 𝑔 ∶ 𝑅 ←→ 𝑅+ be such that 𝑓 (𝑥)
𝑔(𝑥)

is increasing in 𝑥 and 𝐸[𝑓 (𝑋)] > 0 and 𝐸[𝑔(𝑋)] > 0. Then

𝐸[𝑋𝑓 (𝑋)]
𝐸[𝑓 (𝑋)]

>
𝐸[𝑋𝑔(𝑋)]
𝐸[𝑔(𝑋)]

.

Proof. Let 𝛾 be the density of 𝑋. Let 𝑓 (𝑥) = 𝑓 (𝑥)𝛾(𝑥)∕𝐸[𝑓 (𝑋)] and �̂�(𝑥) = 𝑔(𝑥)𝛾(𝑥)∕𝐸[𝑔(𝑋)].
Note that 𝑓 and �̂� are probability density functions. Since 𝑓 (𝑥)

𝑔(𝑥)
is increasing, so is

𝑓 (𝑥)𝛾(𝑥)
𝐸[𝑓 (𝑋)]

⋅
𝐸[𝑔(𝑋)]
𝑔(𝑥)𝛾(𝑥)

=
𝑓 (𝑥)
�̂�(𝑥)

.

That is, 𝑓 and �̂� satisfy the monotone likelihood ratio property. In particular, the distribution asso-
ciated with 𝑓 first-order stochastically dominates that associated with �̂�. It follows that

∫

∞

−∞
𝑥𝑓 (𝑥)𝑑𝑥 > ∫

∞

−∞
𝑥�̂�(𝑥)𝑑𝑥.

By definition of 𝑓 and �̂�, this last inequality is equivalent to
𝐸[𝑋𝑓 (𝑋)]
𝐸[𝑓 (𝑋)]

= ∫

∞

−∞
𝑥
𝑓 (𝑥)𝛾(𝑥)
𝐸[𝑓 (𝑋)]

𝑑𝑥 > ∫

∞

−∞
𝑥
𝑔(𝑥)𝛾(𝑥)
𝐸[𝑔(𝑋)]

𝑑𝑥 =
𝐸[𝑋𝑔(𝑋)]
𝐸[𝑔(𝑋)]

,

as needed.
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Lemma 2. The function

ℎ(𝑏, 𝑔) = − ((𝑏 − 1)𝑔 + 𝑏(𝑔 − 1)) (𝑏−1)(𝑔−1)+(𝑏−1)𝑔(2𝑏−𝑔−1) log 𝑔+(𝑔−1)𝑏(2𝑔−𝑏−1) log 𝑏

is positive everywhere on the set Γ = {(𝑏, 𝑔) ∣ 𝑏 ∈ (0, 1) and 𝑔 ∈ (1,∞)}.

Proof. Note that ℎ(1, 𝑔) ≡ 0, so it suffices to show that ℎ𝑏(𝑏, 𝑔) is negative everywhere on Γ, where
ℎ𝑏 denotes the partial derivative of ℎ with respect to 𝑏. We have

ℎ𝑏(𝑏, 𝑔) = −(𝑔 − 1)(4𝑏𝑔 − 5𝑔 − 𝑏 + 2) + (4𝑏 − 𝑔 − 3)𝑔 log 𝑔 + (𝑔 − 1)(2𝑔 − 2𝑏 − 1) log 𝑏.

In particular, ℎ𝑏(𝑏, 1) ≡ 0. Hence ℎ𝑏 is negative everywhere on Γ if ℎ𝑏𝑔 is. We have

ℎ𝑏𝑔(𝑏, 𝑔) = −8𝑏𝑔 + 9𝑏 + 9𝑔 − 10 + (4𝑏 − 2𝑔 − 3) log 𝑔 + (4𝑔 − 2𝑏 − 3) log 𝑏.

Note that ℎ𝑏𝑔(𝑏, 1) ≡ 𝑏−1+(1−2𝑏) log 𝑏, which is negative for all 𝑏 ∈ (0, 1). Hence ℎ𝑏𝑔 is negative
everywhere on Γ if ℎ𝑏𝑔𝑔 is. We have

ℎ𝑏𝑔𝑔(𝑏, 𝑔) = −8𝑏 + 7 + 4𝑏 − 3
𝑔

− 2 log 𝑔 + 4 log 𝑏.

Note that
ℎ𝑏𝑔𝑔

(1
4
, 𝑔
)

≡ 5 + 4 log
(1
4

)

− 2
𝑔
− 2 log 𝑔,

which is negative for all 𝑔 > 1 since 5 + 4 log(1∕4) < 0. Now note that

ℎ𝑏𝑔𝑔𝑏(𝑏, 𝑔) = −8 + 4
𝑔
+ 4

𝑏

is positive whenever 𝑏 < 1∕4 and 𝑔 > 1. It follows that ℎ𝑏𝑔𝑔 is negative whenever 𝑏 ∈ (0, 1∕4] and
𝑔 ∈ (1,∞).

Now consider 𝑏 > 1∕4. Note that ℎ𝑏𝑔𝑔(𝑏, 1) ≡ 4(1−𝑏+log 𝑏), which is negative for all 𝑏 ∈ (0, 1).
Note also that

ℎ𝑏𝑔𝑔𝑔(𝑏, 𝑔) = −4𝑏 − 3
𝑔2

− 2
𝑔
,

which, for 𝑔 > 1, is negative if and only if 𝑔 > 3∕2 − 2𝑏, which holds if 𝑏 > 1∕4 and 𝑔 > 1. It
follows that ℎ𝑏𝑔𝑔 is negative whenever 𝑏 ∈ (1∕4, 1) and 𝑔 ∈ (1,∞). Combining this with the above
gives that ℎ𝑏𝑔𝑔 is negative everywhere on Γ, as needed.
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We first argue that it suffices to show that, under the conditions stated in the proposition, 𝐸[𝜆 ∣

participate] is increasing in 𝑚. To see this, note first that an equivalent statement of part (i) of the
proposition is that if 𝑚1 and 𝑚2 are such that 𝑚2 > 𝑚1 and 𝑝(𝑚𝑖, 𝜆) ∈ [0, 1) for all 𝜆 ∈ [𝜆, 𝜆]

and 𝑖 = 1, 2, then the distribution of 𝜆 conditional on participation at 𝑚2 first-order stochastically
dominates (FOSDs) that at𝑚1. LetΨ denote the distribution of 𝜆. For each 𝑖 = 1, 2, let𝐹𝑖 denote the
distribution function for 𝜆 conditional on participation at 𝑚𝑖. Note that 𝐹1 and 𝐹2 are continuous
since Ψ is. Suppose that 𝐹2 does not FOSD 𝐹1; we will show that this implies that, for some
distribution of 𝜆 satisfying the conditions of the proposition, 𝐸[𝜆 ∣ participate] is not increasing
in 𝑚. Then there exists some 𝜆0 such that 𝐹1(𝜆0) < 𝐹2(𝜆0). By continuity of 𝐹1 and 𝐹2 and the
fact that they agree at 𝜆 and 𝜆, there exists an interval [𝑎, 𝑏] containing 𝜆0 such that 𝐹1(𝑎) = 𝐹2(𝑎),
𝐹1(𝑏) = 𝐹2(𝑏), and 𝐹1(𝑥) < 𝐹2(𝑥) for all 𝑥 ∈ (𝑎, 𝑏). Thus, for each 𝜆 ∈ (𝑎, 𝑏),

𝐹1(𝜆|[𝑎, 𝑏]) =
𝐹1(𝜆) − 𝐹1(𝑎)
𝐹1(𝑏) − 𝐹1(𝑎)

=
𝐹1(𝜆) − 𝐹2(𝑎)
𝐹2(𝑏) − 𝐹2(𝑎)

<
𝐹2(𝜆) − 𝐹2(𝑎)
𝐹2(𝑏) − 𝐹2(𝑎)

= 𝐹2(𝜆|[𝑎, 𝑏]),

and hence 𝐹1(⋅ ∣ [𝑎, 𝑏]) FOSDs 𝐹2(⋅ ∣ [𝑎, 𝑏]). Note that 𝐹𝑖(⋅ ∣ [𝑎, 𝑏]) is the distribution of 𝜆 condi-
tional on participation at 𝑚𝑖 when the prior distribution of 𝜆 is Ψ(⋅ ∣ [𝑎, 𝑏]). It follows that, for the
prior distribution Ψ(⋅ ∣ [𝑎, 𝑏]), 𝐸 [

𝜆 ∣ participate] is higher at 𝑚1 than it is at 𝑚2, as needed.
We now show that 𝐸[𝜆 ∣ participate] is indeed increasing in 𝑚. First suppose 𝑝(𝑚, 𝜆) > 0 for

all 𝜆 ∈ [𝜆, 𝜆]. We have
𝐸
[

𝜆 ∣ participate] = 𝐸[𝜆𝑝]
𝐸[𝑝]

.

Differentiating with respect to 𝑚 gives

𝜕
𝜕𝑚

𝐸
[

𝜆 ∣ participate] =
𝐸[𝑝]𝐸

[

𝜆 𝜕𝑝
𝜕𝑚

]

− 𝐸[𝜆𝑝]𝐸
[

𝜕𝑝
𝜕𝑚

]

(𝐸[𝑝])2
.

This is positive if and only if the numerator is positive, which, since 𝑝 and 𝜕𝑝∕𝜕𝑚 are positive for
each 𝜆, may be rewritten as

𝐸
[

𝜆 𝜕𝑝
𝜕𝑚

]

𝐸
[

𝜕𝑝
𝜕𝑚

] >
𝐸[𝜆𝑝]
𝐸[𝑝]

.

By Lemma 1 (with 𝑋 = 𝜆, 𝑓 = 𝜕𝑝
𝜕𝑚

, and 𝑔 = 𝑝), it suffices to show that

1
𝑝
𝜕𝑝
𝜕𝑚

4



is increasing in 𝜆. Differentiating with respect to 𝜆 gives

𝜕
𝜕𝜆

(

1
𝑝
𝜕𝑝
𝜕𝑚

)

= − 1
𝑝2

𝜕𝑝
𝜕𝜆

𝜕𝑝
𝜕𝑚

+ 1
𝑝

𝜕2𝑝
𝜕𝜆𝜕𝑚

.

Thus it suffices to show that
𝑝

𝜕2𝑝
𝜕𝜆𝜕𝑚

>
𝜕𝑝
𝜕𝜆

𝜕𝑝
𝜕𝑚

. (6)
Differentiating (5) gives

𝜕𝑝
𝜕𝜆

𝜕𝑝
𝜕𝑚

=
(

1 − 𝜇
(𝑔 − 1)2

(

−
𝑔
𝜆
log 𝑔

)

+
𝜇

(𝑏 − 1)2
(

−𝑏
𝜆
log 𝑏

)

)(

1 − 𝜇
(𝑔 − 1)2

𝑔
𝜆
+

𝜇
(𝑏 − 1)2

𝑏
𝜆

)

= −(1 − 𝜇)2
𝑔2 log 𝑔

𝜆2(𝑔 − 1)4
− 𝜇(1 − 𝜇)

𝑏𝑔 log 𝑏 + 𝑏𝑔 log 𝑔
𝜆2(𝑏 − 1)2(𝑔 − 1)2

− 𝜇2 𝑏2 log 𝑏
𝜆2(𝑏 − 1)4

, (7)

and
𝜕2𝑝
𝜕𝜆𝜕𝑚

= (1 − 𝜇)
(

𝑔(𝑔 + 1) log 𝑔 − 𝑔(𝑔 − 1)
𝜆2(𝑔 − 1)3

)

+ 𝜇
(

𝑏(𝑏 + 1) log 𝑏 − 𝑏(𝑏 − 1)
𝜆2(𝑏 − 1)3

)

.

Multiplying the latter by the expression for 𝑝 in (5) and expanding leads to

𝑝
𝜕2𝑝
𝜕𝜆𝜕𝑚

= −(1 − 𝜇)2
(

𝑔(𝑔 + 1) log 𝑔 − 𝑔(𝑔 − 1)
𝜆2(𝑔 − 1)4

)

− 𝜇(1 − 𝜇)
(

𝑔(𝑔 + 1) log 𝑔 − 𝑔(𝑔 − 1)
𝜆2(𝑏 − 1)(𝑔 − 1)3

+
𝑏(𝑏 + 1) log 𝑏 − 𝑏(𝑏 − 1)

𝜆2(𝑏 − 1)3(𝑔 − 1)

)

− 𝜇2
(

𝑏(𝑏 + 1) log 𝑏 − 𝑏(𝑏 − 1)
𝜆2(𝑏 − 1)4

)

. (8)

Comparing the (1 − 𝜇)2 terms in (7) and (8), we see that the latter is larger if and only if

−(𝑔(𝑔 + 1) log 𝑔 − 𝑔(𝑔 − 1)) > −𝑔2 log 𝑔,

or, equivalently, if
𝑔 − 1 − log 𝑔 > 0,

which holds for all 𝑔 > 1. Similarly, comparing the 𝜇2 terms in (7) and (8), we see that the latter is
larger if and only if

𝑏 − 1 − log 𝑏 > 0,

which holds for all 𝑏 ∈ (0, 1).
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Finally, for the 𝜇(1 − 𝜇) terms, that in (8) is larger than that in (7) if and only if

−
(

𝑔(𝑔 + 1) log 𝑔 − 𝑔(𝑔 − 1)
𝜆2(𝑏 − 1)(𝑔 − 1)3

+
𝑏(𝑏 + 1) log 𝑏 − 𝑏(𝑏 − 1)

𝜆2(𝑏 − 1)3(𝑔 − 1)

)

> −
𝑏𝑔 log 𝑏 + 𝑏𝑔 log 𝑔
𝜆2(𝑏 − 1)2(𝑔 − 1)2

.

Rearranging gives the equivalent inequality

(𝑏 − 1)(𝑔 − 1)𝑏𝑔(log 𝑏 + log 𝑔)

> (𝑏 − 1)2 (𝑔(𝑔 + 1) log 𝑔 − 𝑔(𝑔 − 1)) + (𝑔 − 1)2 (𝑏(𝑏 + 1) log 𝑏 − 𝑏(𝑏 − 1)) .

Further rearranging leads to

− ((𝑏 − 1)𝑔 + 𝑏(𝑔 − 1)) (𝑏− 1)(𝑔 − 1) + (𝑏− 1)𝑔(2𝑏− 𝑔 − 1) log 𝑔 + (𝑔 − 1)𝑏(2𝑔 − 𝑏− 1) log 𝑏 < 0,

which, by Lemma 2, holds for all 𝑏 ∈ (0, 1) and 𝑔 ∈ (1,∞).
Combining these three comparisons, we see that (6) holds for all 𝑏 and 𝑔.
Now suppose 𝑝(𝑚, 𝜆) = 0 for some 𝜆 ∈ [𝜆, 𝜆]. By Lemma 2 of Matějka and McKay (2015), for

any such 𝜆, 𝑝 = 0 maximizes

𝜇 log (𝑝𝑔 + 1 − 𝑝) + (1 − 𝜇) log (𝑝𝑏 + 1 − 𝑝) .

The corresponding first-order condition (evaluated at 𝑝 = 0) is

𝜇𝑔 + (1 − 𝜇)𝑏 ≤ 1. (9)

Suppose this holds with equality; that is, suppose 𝜇𝑔+(1−𝜇)𝑏 = 1. The derivative of the left-hand
side of (9) with respect to 𝜆 is

−𝜇𝑔
log 𝑔
𝜆

− (1 − 𝜇)𝑏
log 𝑏
𝜆

.

Since 𝑓 (𝑥) = −𝑥 log 𝑥 is a strictly concave function, Jensen’s Inequality implies that

−𝜇𝑔
log 𝑔
𝜆

− (1 − 𝜇)𝑏
log 𝑏
𝜆

< −1
𝜆
(𝜇𝑔 + (1 − 𝜇)𝑏) log (𝜇𝑔 + (1 − 𝜇)𝑏) ,

the right-hand side of which is equal to 0 whenever (9) holds with equality. It follows that if there
is some 𝜆 for which 𝑝 = 0, then there is a cutoff value �̃� such that 𝑝 = 0 if and only if 𝜆 > �̃�.
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Since the result holds if 𝑝 > 0 for all 𝜆 ∈ [𝜆, 𝜆], it also holds if we condition on 𝜆 ∈ [𝜆, �̃�].
Removing this condition only strengthens the result since �̃� is increasing in 𝑚 (which follows from
the fact that the left-hand side of (9) is increasing in 𝑚).
A.2 Proof of Proposition 2

From equation (5) we have

𝑝(𝑚, 𝑎𝜆) = −𝜇𝑓 (𝜋𝐵 + 𝑚, 𝑐𝜂) − (1 − 𝜇)𝑓 (𝜋𝐺 + 𝑚, 𝑐𝜂),

where 𝜂 = 1∕𝜆, 𝑐 = 1∕𝑎, and 𝑓 (𝑥, 𝜂) = 1
𝑒𝜂𝑥−1

. Thus it suffices to show that

𝜕
𝜕𝑐

|

|

|

|𝑐=1

[

−𝑐 1
𝜆2

𝜕2

𝜕𝜂𝜕𝑚
𝑓 (𝑥, 𝑐𝜂)

]

≥ 0, (10)

and that this inequality is strict for at least one 𝑥 ∈ {𝜋𝐵 +𝑚, 𝜋𝐺 +𝑚}. Differentiating the left-hand
side leads to the equivalent expression

𝜕
𝜕𝑐

|

|

|

|𝑐=1

[

− 𝑐
𝜆2

𝑒𝑐𝑥𝜂 (𝑐𝑥𝜂 + 1 + 𝑒𝑐𝑥𝜂(𝑐𝑥𝜂 − 1))
(𝑒𝑐𝑥𝜂 − 1)3

]

= 1
8𝜆2

(

sinh
(𝑧
2

))−4
(

− 1 + 2𝑧2 + (1 + 𝑧2) cosh(𝑧) − 3𝑧 sinh(𝑧)
)

,

where 𝑧 = 𝑥𝜂. Because the above expression is symmetric (in the sense that each side yields the
same value, regardless of whether it is evaluated at 𝑧 or at −𝑧, for all 𝑧), it suffices to show that it
is positive whenever 𝑧 is (it holds trivially for 𝑧 = 0). This expression is positive if and only if

𝑧2 (cosh(𝑧) + 2) + cosh(𝑧) > 1 + 3𝑧 sinh(𝑧).

Because cosh(𝑧) ≥ 1 for all 𝑧, it suffices to show that 𝑧2( cosh(𝑧)+2
)

> 3𝑧 sinh(𝑧), or, equivalently,

cosh(𝑧) + 2 > 3
𝑧
sinh(𝑧). (11)

To prove this inequality, we employ the fact that sinh and cosh are analytic functions. Inserting
their series representations, we get

3
𝑧
sinh(𝑧) = 3

𝑧

∞
∑

𝑘=0

𝑧2𝑘+1

(2𝑘 + 1)!
= 3 + 3

∞
∑

𝑘=1

𝑧2𝑘

(2𝑘)!
1

2𝑘 + 1
≤ 3 +

∞
∑

𝑘=1

𝑧2𝑘

(2𝑘)!
= 2 + cosh(𝑧), (12)
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as needed.
Finally, the two sides of inequality (11) are equal only if 𝑧 = 1. Because 𝜋𝐵 + 𝑚 < 𝜋𝐺 + 𝑚,

inequality (10) is strict for at least one 𝑥 ∈ {𝜋𝐵 + 𝑚, 𝜋𝐺 + 𝑚}.
A.3 Proof of Proposition 3

Caplin and Dean (2013) show that the agent’s choice problem is equivalent to the choice of
posterior beliefs (𝛾part , 𝛾abst) solving

max
𝛾part ,𝛾abst ,𝑝∈[0,1]

𝑝𝑁part + (1 − 𝑝)𝑁abst s.t. 𝑝𝛾part + (1 − 𝑝)𝛾abst = 𝜇, (13)

where

𝑁abst ∶= −𝜆ℎ(𝛾abst)

and 𝑁part ∶= 𝛾part(𝜋𝐺 + 𝑚) + (1 − 𝛾part)(𝜋𝐵 + 𝑚) − 𝜆ℎ(𝛾part)

are the net utilities associated with the two posteriors (under the assumption that the agent abstains
at 𝛾abst and participates at 𝛾part).

Caplin and Dean (2013) show that the solution to (13) is given by the posteriors 𝛾part and 𝛾abst
that support the concavification of the upper envelope of the net utility functions, as in Aumann,
Maschler, and Stearns (1995) and Gentzkow and Kamenica (2011), with 𝛾part ≥ 𝜇 ≥ 𝛾abst . Under
the assumption that each action is chosen with positive probability, these inequalities are strict, and
participation is optimal at posterior 𝛾part while abstention is optimal at posterior 𝛾abst .

By concavification, the solution satisfies two conditions. First, the slopes of the tangent lines
to the net utility function at 𝛾abst and 𝛾part must coincide:

−𝜆ℎ′(𝛾abst) = Δ − 𝜆ℎ′(𝛾part), (14)

where Δ ∶= 𝜋𝐺 − 𝜋𝐵. Second, the tangent line to the net utility function at 𝛾abst has the same value
at 𝛾part as the net utility function itself:

− 𝜆ℎ(𝛾abst) − (𝛾part − 𝛾abst)𝜆ℎ′(𝛾abst) = Δ𝛾part + 𝜋𝐵 + 𝑚 − 𝜆ℎ(𝛾part). (15)
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To prove part (i), we start by taking derivatives of (14) and (15) with respect to 𝜆 to obtain

− ℎ′(𝛾abst) − 𝜆ℎ′′(𝛾abst)
𝜕𝛾abst
𝜕𝜆

= −ℎ′(𝛾part) − 𝜆ℎ′′(𝛾part)
𝜕𝛾part
𝜕𝜆

(16)

and

− ℎ(𝛾abst) − 𝜆ℎ′(𝛾abst)
𝜕𝛾abst
𝜕𝜆

= −ℎ(𝛾part) − 𝜆ℎ′(𝛾part)
𝜕𝛾part
𝜕𝜆

+
(𝜕𝛾part

𝜕𝜆
−

𝜕𝛾abst
𝜕𝜆

)

𝜆ℎ′(𝛾abst)

+ (𝛾part − 𝛾abst)
(

ℎ′(𝛾abst) + 𝜆ℎ′′(𝛾abst)
𝜕𝛾abst
𝜕𝜆

)

+ Δ
𝜕𝛾part
𝜕𝜆

. (17)

Cancelling −𝜆ℎ′(𝛾abst)
𝜕𝛾abst
𝜕𝜆

from both sides of (17) and rearranging yields

ℎ(𝛾part) − ℎ(𝛾abst) =
𝜕𝛾part
𝜕𝜆

[

𝜆ℎ′(𝛾abst) − 𝜆ℎ′(𝛾part) + Δ
]

+ (𝛾part − 𝛾abst)
(

ℎ′(𝛾abst) + 𝜆ℎ′′(𝛾abst)
𝜕𝛾abst
𝜕𝜆

)

.

By (14), the term in square brackets is equal to 0. Further rearranging yields

(𝛾part − 𝛾abst)𝜆ℎ′′(𝛾abst)
𝜕𝛾abst
𝜕𝜆

= ℎ(𝛾part) − ℎ(𝛾abst) − (𝛾part − 𝛾abst)ℎ′(𝛾abst)

= 1
𝜆
(Δ𝛾part + 𝜋𝐵 + 𝑚), (18)

where the second line follows by substituting from (15). Since participation is optimal at 𝛾part , we
have Δ𝛾part + 𝜋𝐵 + 𝑚 = 𝛾part𝜋𝐺 + (1 − 𝛾part)𝜋𝐵 + 𝑚 > 0. Because 𝛾part > �̄� > 𝛾abst and ℎ′′ > 0, it
follows that 𝜕𝛾abst

𝜕𝜆
> 0.

Rearranging (16) and substituting ℎ′(𝛾part) − ℎ′(𝛾abst) =
Δ
𝜆

from (14) leads to

𝜆ℎ′′(𝛾part)
𝜕𝛾part
𝜕𝜆

= 𝜆ℎ′′(𝛾abst)
𝜕𝛾abst
𝜕𝜆

− Δ
𝜆

= 1
𝜆

(

𝛾abst𝜋𝐺 + (1 − 𝛾abst)𝜋𝐵 + 𝑚
𝛾part − 𝛾abst

)

,

where the second equality subsitutes for 𝜆ℎ′′(𝛾abst)
𝜕𝛾abst
𝜕𝜆

using (18). Because ℎ′′ > 0 and because
the quantity on the right-hand side is negative, we conclude that 𝜕𝛾part

𝜕𝜆
< 0.

The proof of part (ii) proceeds similarly. Taking the derivatives of (14) and (15) with respect
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to 𝑚, we obtain

−𝜆ℎ′′(𝛾abst)
𝜕𝛾abst
𝜕𝑚

= −𝜆ℎ′′(𝛾part)
𝜕𝛾part
𝜕𝑚

(19)

and

− 𝜆ℎ′(𝛾abst)
𝜕𝛾abst
𝜕𝑚

−
((𝜕𝛾part

𝜕𝑚
−

𝜕𝛾abst
𝜕𝑚

)

𝜆ℎ′(𝛾abst) + (𝛾part − 𝛾abst)𝜆ℎ′′(𝛾abst)
𝜕𝛾abst
𝜕𝑚

)

= Δ
𝜕𝛾part
𝜕𝑚

+ 1 − 𝜆ℎ′(𝛾part)
𝜕𝛾part
𝜕𝑚

.

Simplifying and rearranging this last equation gives

−1 − (𝛾part − 𝛾abst)𝜆ℎ′′(𝛾abst)
𝜕𝛾abst
𝜕𝑚

=
𝜕𝛾part
𝜕𝑚

(

Δ − 𝜆ℎ′(𝛾part) + 𝜆ℎ′(𝛾abst)
)

.

By (14), the right-hand side of this equation is equal to zero. Which gives:

−1 = (𝛾part − 𝛾abst)𝜆ℎ′′(𝛾abst)
𝜕𝛾abst
𝜕𝑚

Note that 𝛾part > 𝛾abst and ℎ′′ > 0. It follows that 𝜕𝛾abst
𝜕𝑚

< 0 and, by (19), 𝜕𝛾part
𝜕𝑚

< 0 as well.
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B Robustness
B.1 Heterogeneous priors

Our results are robust to heterogeneity in prior beliefs, as long as all types have an interior par-
ticipation probability. In this case, the probability that an agent with cost parameter 𝜆 participates
depends only on the mean prior amongst all agents with that cost of information acquisition. By im-
plication, all our comparative statics on 𝑝 generalize to the case of heterogeneous priors. Formally,
the following result holds.

Proposition 4. (Robustness to dispersion in prior) Fix 𝑚, 𝜋𝐺, and 𝜋𝐵. Consider a population with

joint distribution of priors and costs of information 𝑓 (𝜇, 𝜆) such that 0 < 𝑝(𝑚, 𝜆, 𝜇) < 1 for all

(𝜆, 𝜇) ∈ supp(𝑓 ). For each 𝜆, let 𝜈(𝜆) = ∫ 𝜇𝑓 (𝜇, 𝜆)𝑑𝜇. Then,

∫ 𝑝(𝑚, 𝜆, 𝜇)𝑓 (𝜆, 𝜇)𝑑𝜇 = 𝑝
(

𝜆, 𝜈(𝜆)
)

Proof. Let 𝛾𝑝𝑎𝑟𝑡 = 𝑃 (𝑠 = 𝐺|participate) and 𝛾𝑎𝑏𝑠𝑡 = 𝑃 (𝑠 = 𝐺|abstain) denote the optimal posteri-
ors. By the law of iterated expectations, 𝜇 = 𝑝𝛾𝑝𝑎𝑟𝑡 + (1 − 𝑝)𝛾𝑎𝑏𝑠𝑡. The participation probability can
thus be written as a function of the chosen posteriors,

𝑝(𝑚, 𝜆) =
𝜇 − 𝛾𝑎𝑏𝑠𝑡

𝛾𝑝𝑎𝑟𝑡 − 𝛾𝑎𝑏𝑠𝑡
(20)

Posterior separability implies that the optimal 𝛾𝑝𝑎𝑟𝑡 and 𝛾𝑎𝑏𝑠𝑡 are independent of 𝜇 as long as 0 <

𝑝(𝑚; 𝜆) < 1. The claim thus follows from the fact that (20) is linear in 𝜇.

B.2 Information cost functions
In this section we test the robustness of our main results, stated in Proposition 1, regarding alter-

native functional form assumptions on the costs of information acquisition. (Recall that Proposition
3 is formally valid for the entire class of posterior-separable cost functions.)
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Figure B.5: Simulation tests of Proposition 1 with Shannon, logit, Tsallis, and Renyi cost
functions.
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We simulate the model for the following four cost-of-information functions studied in the recent
theoretical literature on decision making under rational inattention (Caplin, Dean, and Leahy, 2017;
Morris and Strack, 2019). In each case, the cost of the information associated with a pair of state-
contingent choice probabilities (𝑝𝐺, 𝑝𝐵) is given by 𝑐(𝑝𝐺, 𝑝𝐵) = 𝜆(ℎ(𝜇)−𝑝ℎ(𝛾part)− (1−𝑝)ℎ(𝛾abst)),
where 𝛾part and 𝛾abst are the posteriors in case of participation and abstention, respectively. The cost
functions differ by the functional form of ℎ, which can take the following forms.

• Shannon costs: ℎShannon(𝑥) = −𝑥 log(𝑥) − (1 − 𝑥) log(1 − 𝑥).

• Logit costs: ℎlogit(𝑥) = −𝑥logit(𝑥) − (1 − 𝑥)logit(1 − 𝑥), where logit(𝑦) = log
(

𝑦
1−𝑦

)

.

• Tsallis costs: ℎTsallis(𝑥, 𝜎) =
1

𝜎−1

(

𝑥(1 − 𝑥𝜎−1) + (1 − 𝑥)(1 − (1 − 𝑥)𝜎−1)
)

= 1
𝜎−1

(1 − 𝑥𝜎 − (1 − 𝑥)𝜎)

for 𝜎 ∈ 𝑅, 𝜎 ≠ 1. Note that as 𝜎 → 1, ℎTsallis(𝑥, 𝜎) → ℎShannon(𝑥).

• Renyi costs: ℎRenyi(𝑥, 𝜎) =
1

1−𝜎
log (𝑥𝜎 + (1 − 𝑥)𝜎), for 𝜎 > 0, 𝜎 ≠ 1. Note that as 𝜎 → 1,

ℎRenyi(𝑥, 𝜎) → ℎShannon(𝑥).

Our analytical results apply to the case of Shannon costs, which we include here for reference.
The logit case is of interest because it corresponds to the Wald (1947) sequential information ac-
quisition problem with linear time costs (Morris and Strack, 2019). Tsallis entropy is of interest
because the selection of parameter 𝜎 allows us to differentially vary the relative cost of marginal
changes in the posterior depending on the distance between the posterior and the prior. In our sim-
ulations, 𝜎 = 2 is a case in which the relative cost of adjusting posteriors that are near the prior
is low (ℎ has a 𝑈 -shaped appearance), and 𝜎 = 0.1 is a case in which that relative cost is high (ℎ
has more of a 𝑉 -shaped appearance). Renyi entropy is of interest because it is not separable across
states. We parametrize these costs with 𝜎 = 2.
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The results are shown in Figure B.5, which displays supply curves and the fraction of high-
cost individuals amongst participants for three different prior probabilities, 𝜇 ∈ {0.1, 0.5, 0.9}.
We derive the fraction of high-cost participants under the assumption that both types are equally
prevalent in the population. In each of the first four cases, the supply curve is steeper for the
high-cost type than for the low-cost type as soon as it is interior for both types, paralleling the
analytical result for the case of Shannon costs in Proposition 1 (i). For the case of Tsallis entropy,
we additionally observe that if 𝜎 = 2 and information acquisition costs are low (𝜆 = 0.2), the supply
curve is flat at the level of the prior belief 𝜇. This indicates perfect information acquisition. The
fifth case, Renyi costs, is different. For this cost function, the low-cost type sometimes responds
more strongly to a change in participation payments than does the high-cost type. This tends to
occur near regions of perfect information acquisition.

Regarding the robustness of part (ii) of Proposition 1, we again find in each of the first four cases
that the fraction of high-cost individuals among participants monotonically increases until partic-
ipation payments are so high that high-cost individuals participate with probability one. Again,
behavior with Renyi costs exhibits a pattern different from that under Shannon costs; the composi-
tion of participants no longer changes monotonically as the participation payment increases, even
in regions in which both types participate with an interior probability. These results are suggestive
regarding the extent of the generality of the results we have analytically derived for the Shannon
case.
B.3 Alternative models

There are alternative models of endogenous information acquisition with heterogeneous in-
formation acquisition costs. Some alternative models are ostensibly simpler but are analytically
intractable, such as the Gaussian case we consider in detail below. While there exist simpler mod-
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els that are also tractable, these models are not rich enough to capture the set of comparative statics
we document in this paper. This occurs if agents cannot tailor their desired level of certainty to
the incentive amount. Consider, for instance, a model in which there is a single binary information
structure and agents can pay a fixed cost that is heterogeneous across individuals to access a signal
from that information structure. While a higher incentive leads to the selection of higher cost par-
ticipants, such selection is inconsequential in this model. The reason is that all agents observe the
same information structure or abstain, so the probability of disappointment is independent of the
incentive.

We now turn to exploring a model with normally distributed signals about an imperfectly known
state of the world, as is often considered in the literature (e.g., Morris and Shin, 2002). We first
consider the case of exogenously given signal precision. This model shares with ours the feature
that the decision-maker, by choosing the threshold belief required for participation, can tailor the
degree of certainty required for participation based on the incentive amount. In this model, a change
in the participation payment has the same effect on the threshold belief regardless of the precision
of the signal. Therefore, the effect of such a change on the participation probability is larger for
individuals with less precise information. Consequently, if we associate higher cost in our model
with lower precision in this model, the two models, to some extent, generate qualitatively similar
comparative statics (which we verify numerically, see Appendix B.3.1). However, our main result
on selection holds only for some parameters of this model.

This difference suggests that selection is driven in part by the decision-maker’s ability to choose
the quality of information. Therefore, we then study the case in which the agent can choose the
precision of her signal at a cost. Consistent with the foregoing hypothesis, we find no violations
of our results in numerical simulations of a model with normally distributed signals in which the
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decision-maker chooses the precision of information (with higher precision incurring greater cost).
B.3.1 Exogenous Gaussian signals
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Figure B.6: Comparative statics similar to those of Proposition 1 in a model with exogenous Gaus-
sian signals. Graphs in the top row depict supply curves for each level of the signal precision, as
well as the fraction of high-cost types amongst participants, assuming equal population frequen-
cies of the types. Graphs in the bottom row depict posteriors 𝑃 (𝑠 = 𝐺| participate) and 𝑃 (𝑠 = 𝐺|

abstain).

As in the main text, an agent decides whether or not to participate in a transaction in exchange
for a payment 𝑚. There are two states 𝑠 ∈ {𝐺,𝐵} with prior distribution 𝑃 (𝑠 = 𝐺) = 𝜇. If the
agent participates in state 𝑠, she receives utility 𝜋𝑠 + 𝑚, which is positive if 𝑠 = 𝐺 and negative
otherwise. Non-participation gives utility 0.

The information acquisition technology differs from that in the main text. The agent observes
a stochastic signal 𝑛 that is normally distributed. If 𝑠 = 𝐺, the mean of the signal is 1, if 𝑠 = 𝐵, the
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mean is 0. The variance of the signal is 𝜎2, and is heterogeneous across subjects. While the normal
signal is free to observe, the fact that this signal provides only incomplete information about the
state, and the fact that the extent of incompleteness varies across agents corresponds to an implicit
assumption that information is costly, and that information costs are heterogeneous across subjects.

Conditional on signal realization 𝑛, the agent will participate if (𝜋𝐺 + 𝑚)𝑃𝑟(𝑠 = 𝐺|𝑛) + (𝜋𝐵 +

𝑚)𝑃𝑟(𝑠 = 𝐵|𝑛) ≥ 0, or equivalently, if

𝑃𝑟(𝑠 = 𝐺|𝑛) ≥
−(𝜋𝐵 + 𝑚)
𝜋𝐺 − 𝜋𝐵

. (21)

As noted in the main text, this threshold belief is independent of the signal variance 𝜎2.
To derive the participation probability, observe that the posterior belief of the agent after ob-

serving signal realization 𝑛 is given by

𝑃𝑟(𝑠 = 𝐺|𝑛) =
𝜇 1

√

2𝜋𝜎
exp(− (𝑛−1)2

2𝜎2
)

𝜇 1
√

2𝜋𝜎
exp(− (𝑛−1)2

2𝜎2
) + (1 − 𝜇) 1

√

2𝜋𝜎
exp(− 𝑛2

2𝜎2
)
=

𝜇
𝜇 + (1 − 𝜇) exp(1−2𝑛

2𝜎2
)
.

By (21), the agent will thus participate if

𝑛 ≥ 1
2
− 𝜎2 log 𝛾, (22)

where 𝛾 = − 𝜇(𝜋𝐺+𝑚)
(1−𝜇)(𝜋𝐵+𝑚)

. This yields the state-dependent participation probabilities 𝑝𝐺 = 1 −

Φ
(

− 1
2−𝜎

2 log 𝛾

𝜎

)

and 𝑝𝐵 = 1 − Φ
(

1
2−𝜎

2 log 𝛾

𝜎

)

.
Figure B.7 shows the supply curves implied by this model for 𝜇 ∈ {0.1, 0.5, 0.9}, and two levels

of 𝜎 each. Over a part of the domain, the figures are consistent with both parts of Proposition 1.
First, supply increases more steeply for the high-cost type whenever the prior-based expected value
of the gamble is sufficiently close to zero. Second, as long as 𝑚 is sufficiently small, the probability
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that a participant is a high-cost type increases with the payment 𝑚.
The figure also shows posterior probabilities that 𝑠 = 𝐺 conditional on each action (the upper

two curves in each graph correspond to 𝑃 (𝑠 = 𝐺|accept), and the lower two curves correspond
to 𝑃 (𝑠 = 𝐺|reject)). Mechanically, a lower variance of the signal corresponds to more dispersed
posteriors (that is, posteriors that incorporate more information), which parallels Proposition 3.
B.3.2 Choice of Gaussian signal precision

We consider the same information technology as in Section B.3.1, with the exception that the
agent can now choose the precision of the Gaussian signal at a cost. Specifically, the agent pays
cost 𝑐(𝜎) = 𝜆∕𝜎 to observe a signal with variance 𝜎2. As in the main text, 𝜆 captures individual
heterogeneity in information acquisition costs, and information acquisition costs are discounted
from the agent’s utility.

Conditional on the signal variance 𝜎2, the analysis parallels that of Section B.3.1. Specifically,
if the agent finds it optimal to base her decision on a signal with precision 𝜎2, she will participate
for signal realizations that weakly exceed the bound in equation (22). If the agent finds it optimal
to reach a decision without acquiring any information, she will participate with probability 1 if
𝜇(𝜋𝐺 + 𝑚) + (1 − 𝜇)(𝜋𝐵 + 𝑚) ≥ 0, and abstain otherwise. The condition determining whether the
agent acquires information is somewhat complicated; if she does, one can show that the optimal
signal precision satisfies the first-order condition

( 1
2
+ 𝜎2 log 𝛾)2

2𝜎2
= log

𝜇(𝜋𝐺 + 𝑚)
√

2𝜋𝜆
,

where 𝛾 = − 𝜇(𝜋𝐺+𝑚)
(1−𝜇)(𝜋𝐵+𝑚)

. When combined with the above expressions for the participation proba-
bility, the second derivatives required for our comparative statics results become analytically in-
tractable. We therefore solve the model numerically.
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Figure B.7 shows the supply curves implied by this model for 𝜇 ∈ {0.1, 0.5, 0.9}, and two levels
of 𝜆 each. The figures are consistent with both parts of Proposition 1. First, supply increases more
steeply for the high-cost type whenever it is interior. Second, as long as neither type participates
with probability 1, the probability that a participant is a high-cost type increases with the payment
𝑚. We have not found any counterexamples for a wide range of alternative parameter values we
have checked.

𝜇 = 0.1 𝜇 = 0.5 𝜇 = 0.9

Supply curves and selection
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Figure B.7: Comparative statics similar to those of Proposition 1 in a model with Gaussian signals
with optimally chosen costly precision. Graphs in the top row depict supply curves for each cost
level, as well as the fraction of high-cost types amongst participants, assuming equal population
frequencies of the types. Graphs in the bottom row depict posteriors 𝑃 (𝑠 = 𝐺| participate) and
𝑃 (𝑠 = 𝐺| abstain) and are drawn over the domain on which the agent chooses based on information
rather than on priors alone.
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C Experiment: Additional Materials
C.1 Laboratory sessions

Table C.5 presents details regarding each session. All sessions were conducted by a doctoral
student research assistant in Cologne. We recruited subjects from the existing subject pool of the
University of Cologne’s Laboratory for Economic Research without any targeting of particular
demographics.

The experiment was computerized, based on the Qualtrics survey platform and javascript. Lists
of additions such as in Figure 2 were displayed in a graphic format (HTML5 canvas) rather than as
text in order to prevent computerized checking and searching.

After analyzing the data from the sessions in May, we decided to replicate the results, using a
condition in which performance on the IQ test was incentivized. In sessions 18 and 19, a clerical
error caused an inconsistency in the instructions the experimenter read aloud and the IQ-incentive
condition subjects were actually given. Since responses to incentives can depend significantly on
expectations (Abeler, Falk, Goette, and Huffman, 2011), we discard the IQ data from these sessions.
C.2 Summary statistics

Data overview Table C.6 presents an overview of our data. Each subject provides us with 18
observations, leading to 7,008 observations across the task difficulty levels and 3,504 observations
in the Exogenous Information condition. A handful of subjects choose to take the bet in all rounds of
a condition, or in none of them. The latter behavior is more frequent in the Exogenous Information
condition. Given the limits on information acquisition in that condition, we would expect such
behavior from risk averse individuals.
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Session Date Weekday Time #Subjects Low-cost condition IQ incentives
# correct # incorrect
if 𝑠 = 𝐺 if 𝑠 = 𝐺

1 4/27/17 Mon 10 AM 19 12 8 No
2 5/3/17 Wed 10 AM 32 18 12 No
3 5/3/17 Wed 1 PM 29 18 12 No
4 5/3/17 Wed 4:30 PM 31 18 12 No
5 5/10/17 Wed 10 AM 32 15 10 No
6 5/10/17 Wed 1 PM 31 15 10 No
7 5/11/17 Thur 10 AM 30 15 10 No
8 5/11/17 Thur 1 PM 32 15 10 No
9 5/12/17 Fri 10 AM 32 15 10 No

10 5/12/17 Fri 1 PM 32 15 10 No
11 7/7/17 Fri 1 PM 29 15 10 Yes
12 7/10/17 Mon 10 AM 32 15 10 Yes
13 7/10/17 Mon 1 PM 32 15 10 Yes
14 7/17/17 Mon 10 AM 32 15 10 Yes
15 7/17/17 Mon 1 PM 32 15 10 Yes
16 7/18/17 Tue 10 AM 32 15 10 Yes
17 7/18/17 Tue 1 PM 32 15 10 Yes
18 7/24/17 Mon 10 AM 32 15 10 N.A.
19 7/24/17 Mon 1 PM 31 15 10 N.A.

Table C.5: Laboratory Sessions.
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Information condition Subjects Decisions % bet Always take bet Never take bet
in condition in condition

Endogenous information 584 7008 37.74% 4 6
Exogenous information 584 3504 33.19% 4 91

Table C.6: Data overview. Each subject participated in each treatment, in random order. One
subject chose to never bet in either condition.

Subjects’ background characteristics The average subject is 24.5 years of age. 53.3% are fe-
male. 54.8% of our subjects are enrolled in a STEM major. Amongst those, 11.8% have taken an
honors class in both mathematics and German, 29.9% have taken neither, 33.6% have taken only
mathematics, and 24.7% have taken only German. Amongst those not enrolled in a STEM major,
the respective numbers are 10.5%, 31.9%, 19.8%, and 37.9%.
Correlations between individual-level measures Table C.7 displays pairwise correlations be-
tween our individual-level measures.
C.3 Auxiliary analysis

Order effects There are pronounced order effects regarding the time subjects take to complete
each decision. On average, they examine the first picture for over 2.7 minutes, whereas they examine
the last one for just 1.2 minutes (with standard deviations in the population test subjects of 2 and
1.3 minutes, respectively). The fraction of betting-decisions that are aligned with the state is 79.5%
for the first round, and 71.2% for the last round. Regressing the fraction of decisions that align
with the state on the decision order yields a slope coefficient of 0.38 percentage points per round
(SE 0.10). While this change is statistically significant, it is less pronounced than one might expect
from a 60% drop in examination time. We conclude that the drop in examination time includes a
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Table C.7: Pairwise correlations between subject characteristics.

(1) (2) (3) (4) (5) (6) (7) (8)
CE rank Res. price Raven’s test rank High school mathematics STEM HS German

rank Non-inc. Inc. Honors Grade rank Honors
CE rank 1.0000

Reservation price rank -0.0225 1.0000
(0.5878)

Raven’s test rank

Non-incentivized -0.1241 -0.1449 1.0000
(0.0316) (0.0120)

Incentivized -0.0564 -0.0240 . 1.0000
(0.4039) (0.7224) .

High school mathematics

Honors 0.0258 -0.0735 0.0416 0.2199 1.0000
(0.5442) (0.0841) (0.4929) (0.0011)

Grade rank -0.0560 -0.0712 0.1527 0.2352 0.2284 1.0000
(0.2026) (0.1048) (0.0123) (0.0010) (0.0000)

STEM 0.0686 0.0010 0.0935 0.1687 0.1566 0.1479 1.0000
(0.0977) (0.9802) (0.1062) (0.0120) (0.0002) (0.0007)

High school German

Honors -0.0302 0.0485 -0.0585 -0.2071 -0.2047 -0.1018 -0.1197 1.0000
(0.4793) (0.2551) (0.3355) (0.0022) (0.0000) (0.0225) (0.0049)

Grade rank -0.0138 0.0475 -0.0311 -0.1183 -0.1004 0.1780 -0.1483 0.1757
(0.7554) (0.2815) (0.6209) (0.0960) (0.0247) (0.0001) (0.0007) (0.0001)

Notes: CE rank is the percentile rank of a subjects’ mean certainty equivalent in the risk elicitation task. Higher ranks
correspond to lower risk aversion. Numbers in parentheses display 𝑝-values.
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substantial learning component and reflects to a lesser extent a change in how careful subjects make
decisions.
Implementation of the reservation price elicitation task Of the subjects selected to check a
given number of calculations (according to the reservation price elicitation stage), 90.23% of sub-
jects verified 90% or more correctly, and thus exceeded the quality required for receiving payment
for this task (and avoiding punishment). This statistic is based solely on sessions 5–19; sessions
1–4 are excluded as there was an error with recording the fraction of correctly verified calculations.
Decision reversals After stating their posterior beliefs, subjects had the opportunity to return to
the previous screen to change their decision of whether to accept or refuse the bet. Overall, 1.05%
of all decisions were changed, and 15.6% of subjects changed their decision at least once over the
18 rounds of the experiment.
C.4 Robustness of the empirical results

Participation by state Figure C.8 shows the effect of incentives on participation separately by
state as an additional check whether our results arise for the right reasons. Panel A splits the data by
information cost condition. It that our results are consistent with the intuition outlined in Section
2. A subject who participates in the good state avoids a false negative error; a subject who partic-
ipates in the bad state commits a false positive error. The graph shows that a higher participation
payment leads to an increase in the false positive probability and to a decrease in the false negative
probability within each information cost condition, and that this change is larger in magnitude for
higher information costs, leading to a more elastic supply in these conditions. Panel B shows that
the same result obtains if we instead split the data by whether a subject has an above or below
median reservation price for checking a given number of calculations.
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Figure C.8: State-dependent participation.

A. Supply and selection. B. State-dependent participation.
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Notes: Panel A: Induced information cost. Panel B: Information cost measured as reservation price (WTA) for
checking a fixed number of calculations.

Alternative regression specifications Table C.8 replicates our main table, Table 2, including a
control for subjects’ percentile rank of their mean certainty equivalent to the risk preference elic-
itation questions, as well as the interaction between that variable and the incentive amount. The
parameter estimates and significance levels generally remain similar to Table 2.
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Table C.8: Selection and participation effects controlling for risk preferences.

(1) (2) (3) (4) (5) (6) (7) (8)
Type Selection Slope effect

VARIABLES Info. Res. Res. Res. Gamble Gamble Gamble Gamble
cost price price price accepted accepted accepted accepted

index %ile %ile %ile
Proposition tested 1(ii) 1(ii) - 2𝑎) 1(i) 1(i) - 2
Sample

Endogenous Information ✓ ✓ ✓ ✓ ✓ ✓

Exogenous Information ✓ ✓

Panel A. Main regressions

Gamble accepted 1 ×

× Incentive 0.577*** 0.064*** 0.007 -0.053 -0.073 0.350*** 0.785*** -0.008
(0.049) (0.019) (0.042) (0.036) (0.069) (0.051) (0.065) (0.091)

× Cost index -0.040*** -0.167***
(0.012) (0.012)

× Incentive × cost index 0.065*** 0.239***
(0.018) (0.025)

Gamble rejected Res. Price > median

× Incentive -0.208*** -0.023** -0.009 0.030 0.099** -0.042 -0.130
(0.033) (0.011) (0.016) (0.028) (0.047) (0.054) (0.112)

× Cost index 0.007 -0.053**
(0.005) (0.024)

× Incentive × cost index -0.026** 0.115**
(0.013) (0.050)

× 1 0.559*** 0.064*** 0.001 -0.020 -0.072*** 0.024 0.034
(0.039) (0.016) (0.036) (0.034) (0.025) (0.025) (0.057)

CE rank
×1 0.033* -0.011 -0.010 -0.011 0.026 0.022 -0.026 0.022

(0.018) (0.041) (0.041) (0.041) (0.044) (0.044) (0.049) (0.044)
× Incentive -0.061** -0.005 -0.013 -0.005 0.151* 0.157** 0.336*** 0.157**

(0.026) (0.005) (0.009) (0.005) (0.078) (0.078) (0.102) (0.078)
Observations 7,008 7,008 3,504 7,008 7,008 7,008 3,504 7,008
Subjects 584 584 584 584 584 584 584 584

𝑎) Proposition 2 is stated in terms of slopes on the supply curves only, as tested in Column (8). If there are no counter-
vailing level effects, proposition 2 implies the comparative statics on selection effects tested in column 4.
Notes: This table replicates Table 2 including controls for a subject’s risk-preference percentile (CE rank) and its inter-
action with the incentive amount, as well as an indicator of the cost condition for cases in which information costs are
measured as reservation price for checking a given number of calculations. Standard errors in parentheses, clustered
by subject. ∗𝑝 < 0.1, ∗∗𝑝 < 0.05, ∗∗∗𝑝 < 0.01.



C.5 Experiment instructions

Note: Horizontal lines represent screen breaks. The instructions reproduced here concern the

unincentivized IQ condition. In the incentivized IQ condition, subjects were told that there are three

parts, that they could earn money in each of them, and that the chance of each of the parts counting

for payment was 80%, 10% and 10%, respectively.
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[The subject completes all 18 rounds]
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(Note: The selection of options in the above list is illustration purposes only. For all subjects, no

options were selected until the subject made a selection. Subjects had to make an active choice on
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each line, but could only switch from the option on the right to the option on the left once, or never,

and never in the opposite direction. Subjects also saw corresponding lists for totals of 60, 100, and

200 calculations)

Note: At this stage, subjects solve the Raven’s matrices (not reproduced here for copyright

reasons).
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(Note: The selection of options in the above list is illustration purposes only. For all subjects, no

options were selected until the subject made a selection. Subjects had to make an active choice

on each line, but could only switch from the option on the right to the option on the left once, or
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never, and never in the opposite direction. Subjects decided for 8 further lotteries, in random order.
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We would like to ask you some questions about yourself.
Please answer truthfully.

What is your gender?
[male; female; other (e.g. genderqueer)]

How old are you?

At which faculty do you study?
[Faculty of Economics, Management and Social Science; Faculty of Law; Faculty of Medicine;

Faculty of Philosophy; Faculty of Mathematics and Natural Sciences; Faculty of the Humanities;

I am not a student]

Which state conferred your Abitur (university entrance diploma)?
[Baden-Württemberg; Bayern; Berlin; Brandenburg; Bremen; Hamburg; Hesse;

Mecklenburg-Vorpommern; Niedersaxen; Nordrhein-Westfalen; Rheinland-Pfalz; Saarland;

Sachsen; Sachsen-Anhalt; Schleswig-Holstein; Thüringen; I received the International

Baccalaureate; I do not have an Abitur; I prefer not to say]

What was your Grade Point Average in the Abitur?
[1.0, 1.1, 1.2, . . . , 3.9, 4.0; I do not have an Abitur; I do not remember; I prefer not to say]

What was your Abitur grade in Mathematics?
[15 points (1+), 14 points (1), 13 points (1-), 12 points (2+), 11 points (2), 10 points, (2-), . . . , 3

points (5+), 2 points (2), 1 point (2-), 0 points; I do not have an Abitur; I do not remember; I

prefer not to say]
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What was your Abitur grade in German?
[15 points (1+), 14 points (1), 13 points (1-), 12 points (2+), 11 points (2), 10 points, (2-), . . . , 3

points (5+), 2 points (2), 1 point (2-), 0 points; I do not have an Abitur; I do not remember; I

prefer not to say]

Have you taken an honors class in Mathematics in high school (Leistungskurs im Abitur)?
[Yes; No; I do not have an Abitur]

Have you taken an honors class in German in high school (Leistungskurs im Abitur)?
[Yes; No; I do not have an Abitur]

How much money do you spend on average each month (incl. rent, food, transportation, etc.)
[D 0 - D 150; D 150 - D 300; D 300 - D 450; D 450 - D 600; D 600 - D 750; D 750 - D 900; D 900

- D 1050; D 1050 - D 1200; D 1200 - D 1350; D 1350 - D 1500; D 1500 - D 2000; D 2000 -

D 2500; D 2500 - D 3000; more than D 3000; I prefer not to say]

How much money do you earn each month through your own labor?
[D 0 - D 50; D 50 - D 100; D 100 - D 150; D 150 - D 200; D 200 - D 250; D 250 - D 300; D 300 -

D 350; D 350 - D 400; D 400 - D 450; D 450 - D 500; D 500 - D 600; D 600 - D 700; D 700 -

D 800; D 800 - D 900; D 900 - D 1000; D 1000 - D 1250; D 1250 - D 1500; D 1500 - D 1750;

D 1750 - D 2000; D 2000 - D 2500; D 2500 - D 3000; more than D 3000; I prefer not to say]

How much money do you receive from your parents each month?
[D 0 - D 50; D 50 - D 100; D 100 - D 150; D 150 - D 200; D 200 - D 250; D 250 - D 300; D 300 -

D 350; D 350 - D 400; D 400 - D 450; D 450 - D 500; D 500 - D 600; D 600 - D 700; D 700 -

D 800; D 800 - D 900; D 900 - D 1000; D 1000 - D 1250; D 1250 - D 1500; D 1500 - D 1750;
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D 1750 - D 2000; D 2000 - D 2500; D 2500 - D 3000; more than D 3000; I prefer not to say]

What is the net wealth of your parents (incl. real estate)?
[D 0k - D 25k; D 25k - D 50k; D 50k - D 75k; D 75k - D 100k; D 100k - D 125k; D 125k - D 150k;

D 150k - D 175k; D 175k - D 200k; D 200k - D 250k; D 250k - D 300k; D 300k - D 350k; D 350k -

D 400k; D 400k - D 450k; D 450k - D 500k; D 500k - D 600k; D 600k - D 700k; D 700k - D 800k;

D 800k - D 900k; D 900k - D 1 mio.; D 1 mio. - D 1.5 mio.; D 1.5 mio. - D 2 mio.; D 2 mio. - D 2.5

mio.; D 2.5 mio. - D 3 mio.; D 3 mio. - D 3.5 mio.; D 3.5 mio. - D 4 mio.; more than D 4 mio.; I

prefer not to say]
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