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Abstract

In one-shot games, an analyst who knows the best response corre-
spondence can only make limited inferences about the players’ payoffs.
In repeated games with full monitoring, this is not true: we show that,
under a weak condition, if the game is repeated sufficiently many times
and players are sufficiently patient, the best response correspondence
completely determines the payoffs (up to positive affine transforma-
tions).

1 INTRODUCTION

How much can one infer about players’ payoffs in a game based only on their

best response correspondences? In static games, such inferences are quite

limited; while best responses convey some information about a player’s pref-

erences over her own actions for any given profile of the other players’ actions,

they say nothing about that player’s preferences as the others’ actions vary.

Among other things, this makes welfare comparisons essentially impossible:

one can show that for any profile of best response correspondences and any
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L R
T a b
B c d

L R
T 1 θ
B 0 θ + p∗

1−p∗

Figure 1: A simple 2 × 2 game. Payoffs are for the row player. The matrix
on the right illustrates the extent to which payoffs can be identified if the
game is not repeated.

action profile a in a finite game, there exist payoffs according to which a is

Pareto efficient, and payoffs according to which a is Pareto dominated, both

of which lead to the given best response correspondences.

In repeated games with full monitoring, one can potentially infer much

more. To the extent that other players’ future actions depend on one’s own

current action, best responses convey information about preferences over

others’ actions. We show that this can be enough to fully identify payoffs (up

to positive affine transformations). More precisely, as long as no player has an

action ensuring that—regardless of others’ actions—she obtains her highest

possible payoff, the best response correspondences uniquely determine the

payoffs when the game is repeated sufficiently many times and players are

sufficiently patient.1

To illustrate, consider the 2 × 2 stage game depicted in Figure 1. First

suppose this game is played once, and the best response correspondence for

the row player is such that T is a best response if and only if the probability

p that the column player assigns to L is at least p∗ ∈ (0, 1), while B is best

response if and only p ≤ p∗. What can we infer about the payoffs? First,

a > c and d > b. Without loss of generality, through an appropriate positive

affine transformation, we may normalize a and c to be 1 and 0, respectively.

Second, given this normalization, the row player’s indifference between T and

B when the column player chooses p = p∗ implies that d − b = p∗/(1 − p∗).

These conditions determine payoffs up to a constant parameter capturing the

1 In the terminology of Myerson (2013), best-response equivalence implies full equiva-
lence under these conditions.
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row player’s preferences across the two columns, and capture all that can be

inferred from best responses. In particular, there is a continuum of distinct

games having this best response correspondence.

Now suppose the game is played twice without discounting. Consider

the row player’s best responses to strategies that play L in the first period,

followed by L in the second period if the row player played T in the first

period, and a mixture assigning probability p to L and 1 − p to R otherwise.

Suppose we observe that the row player is indifferent between T and B in

the first period when the column player uses this strategy with p = p∗∗. If

p∗∗ > p∗, then T is the best response for the row player in the second period

regardless of her first-period action. Hence the indifference condition is

1 + 1 = 0 + p∗∗ + (1 − p∗∗)θ,

from which we obtain θ = (2−p∗∗)/(1−p∗∗). Thus we can pin down the exact

payoffs. This approach succeeds whenever θ > (2 − p∗)/(1 − p∗), ensuring

that p∗∗ is indeed greater than p∗.

By varying the column player’s strategy and checking for indifferences for

the row player between her first-period actions, one can identify θ in this way

regardless of its value. More generally, however, if there is no strategy for the

column player that makes the row player indifferent in the one-shot game,

then more periods may be needed. For example, if in the game depicted in

Figure 1 we have a = 1, b = 3/2, c = 0, and d = 1/2, then three periods

are needed; with only two periods, varying the column player’s action in

the second period does not provide a strong enough incentive for the row

player ever to prefer B in the first period. In general, although the number

of repetitions needed depends on the payoffs, one can see from the best

responses whether the payoffs can be identified.

This example is relatively simple, in part because the row player’s payoffs

can be identified in the static game up to the addition of a constant to each

outcome in one column. In general, this may not be possible, as Figure 2
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L C R
T 2 2 2

M 0 3 0
B 3 0 0

L C R
T 2 2 2

M 0 3 0
B 4 -2 -2

Figure 2: Two games with the same best response correspondence for the
row player (when the game is not repeated).

indicates: the row player’s set of best responses to any mixed strategy of the

column player is identical in the two games depicted in the figure, but neither

game can be obtained from the other by adding constants to columns.2

A number of papers have examined the testable restrictions of equilib-

rium notions in certain classes of games with various assumptions about

what is observable to the analyst (Bossert and Sprumont, 2013; Chambers,

Echenique, and Shmaya, 2010; Ledyard, 1986; Ray and Zhou, 2001; Ray and

Snyder, 2013; Sprumont, 2000). We depart from this line of work in several

respects. First, we take the game form as fixed and focus on identification

rather than testable restrictions. Second, we do not assume that only equi-

librium play is observable.3 Experimental evidence suggests that subjects

are often rational in the sense that they maximize expected utility with re-

spect to some belief, but do not form correct beliefs about others’ strategies

(see, e.g., Costa-Gomes and Crawford (2006); Kneeland (2015)). In this case,

although players may not play Nash equilibrium, best responses can be ob-

served if beliefs are elicited (as in Nyarko and Schotter (2002)) or determined

by experimental design (as in Agranov, Potamites, Schotter, and Tergiman

(2012)). Although the assumption that the analyst can observe the full best

response correspondence is quite strong, as we discuss below, our results re-

quire only knowledge of best responses to a small class of strategies. We do,

however, require that the analyst know the extensive form structure of the

2 Morris and Ui (2004) discuss a similar example.
3 Abito (2015) studies partial identification of payoffs in repeated games based on equi-

librium play. Nishimura (2014) considers the testable implications of individual rationality
in extensive games when other players may not be rational.
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game (in particular, that payoffs are constant across repetitions of the stage

game).

Our work can be viewed as a strategic analogue of the classical problem of

identifying preferences based on choices from menus (see, e.g., Arrow (1959)).

In the classical model, if the set of menus is rich enough, one-shot choices are

sufficient to fully identify preferences. The strategic structure of our setting

effectively limits the kinds of menus from which the agent can choose, in

which case making future menus contingent on the agent’s choice can help

to recover more information about preferences.

2 SETUP

2.1 Stage Game

A stage game is a tuple (I, A, g), where A :=
∏

i∈I Ai and g = (gi)i∈I such

that

(i) I denotes the set of players;

(ii) for all i ∈ I, Ai denotes player i’s action set; and

(iii) for all i ∈ I, gi : A → R denotes player i’s payoff function.

We assume that I and each Ai are finite and have at least two members.

For the remainder, we fix I and A so that each stage game is identified by

its payoffs g. We also let Ai := ∆(Ai) denote the set of i’s mixed actions and

let A :=
∏

i∈I Ai denote the set of all mixed action profiles. We frequently

abuse notation by identifying mixed action profiles with the product measure

generated by them. Furthermore, let gi : A → R be extended to gi : A → R

in the usual way.4

4 Thus gi(a) =
∑

a∈A
gi(a)a(a) for all a ∈ A.

5



Let BR1
i (a−i) denote the set of i’s pure action best responses to the

opponents’ mixed action profile a−i ∈ A−i; that is,

BR1
i (a−i) := {ai ∈ Ai | gi(ai, a−i) = max

bi∈Ai

gi(bi, a−i)}.

2.2 Repeated Game

Now suppose that the game is played T times, where 1 ≤ T ≤ ∞. Let

H<T :=
⋃T −1

t=0 At denote the set of all partial histories, where A0 is a singleton

consisting only of the empty history ∅. For any τ ≥ 1, t ≤ τ , and h ∈ Aτ , let

ht denote the projection of the t-coordinate so that h = (ht)τ
t=1. Furthermore,

let ht
i denote the i-coordinate of ht so that ht = (ht

i)i∈I .

Player i’s (pure) strategy set in this repeated game is Si := AH<T

i (i.e.,

a strategy is a map si : H<T → Ai that specifies the planned action at each

partial history). Let Si := ∆(Si) denote the set of i’s mixed strategies, and

let S :=
∏

i∈I Si and S :=
∏

i∈I Si.

Let ω : S → AT map each strategy profile to the outcome that it induces.

Furthermore, for all 1 ≤ t < T , let ωt denote the t-coordinate of ω, i.e., if

ω(s) = (at)T
t=1, then ωt(s) = at.

Player i’s payoffs are given by the map gT
i : S → R defined by

gT
i (s) :=

T
∑

t=1

δt−1
i gi(ωt(s)) (1)

for all s ∈ S, where δi ∈ (0, 1] and δi < 1 if T = ∞.5

We extend the maps ω : S → AT to ω : S → ∆(AT ), ωt : S → A to

ωt : S → A, and gT
i : S → R to gT

i : S → R in the usual way.

The normal form of the repeated game is (I, S, gT ). Let BRT
i (s−i) denote

the set of i’s pure strategy best responses to the opponents’ mixed strategy

5 If δi = 1, we adopt the convention that
1−δ

t

i

1−δi

= t − 1.
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profile s−i ∈ S−i; that is,

BRT
i (s−i) := {si ∈ Si | gT

i (si, s−i) = max
ri∈Si

gT
i (ri, s−i)}.

2.3 Interactive Payoffs

Definition 2.1. An action ai ∈ Ai is an always-best response if ai ∈

BR1
i (a−i) for every a−i ∈ A−i.

Definition 2.2. A payoff function g is interactively determined for player i

(or i-interactive) if there is no always-best response a∗
i such that

min
a−i

gi(a
∗
i , a−i) = max

a−i

gi(a
∗
i , a−i).

To put it another way, g is i-interactive if i cannot unilaterally determine

her own payoff while choosing optimally; her payoff is determined jointly by

her own (optimal) action and the actions of the other players. This is a very

weak condition: it is violated only if there is some action for i in the stage

game that, regardless of the other players’ actions, gives i her maximum

payoff in the game.

Whether g is i-interactive can be confirmed based on the best response

correspondence in the repeated game. For any given δi and T , if there does

not exist an action ai for i such that the strategy si(h) ≡ ai is a best response

to every strategy profile s−i, then g is i-interactive. Conversely, if g is i-

interactive, then there exist pairs (δi, T ) for which this last condition holds.

However, even if g is i-interactive, if i has an always best response in the

stage game, then there are values of δi and T for which this is not possible

to verify based only on the best response correspondence.

Lemma 2.3. A payoff function g is i-interactive if and only if

min
a−i

max
ai

gi(ai, a−i) 6= max
a−i

max
ai

gi(ai, a−i).
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Proof. Suppose that g is not i-interactive. Then there is some a∗
i such that

(i) for all a−i ∈ A−i, gi(a
∗
i , a−i) = maxai

gi(ai, a−i); and

(ii) mina−i
gi(a

∗
i , a−i) = maxa−i

gi(a
∗
i , a−i).

It follows that mina−i
maxai

gi(ai, a−i) = maxa−i
maxai

gi(ai, a−i).

For the other direction, suppose that

min
a−i

max
ai

gi(ai, a−i) = max
a−i

max
ai

gi(ai, a−i).

If there is some always-best response a∗
i , then the result follows immediately

from the above equality.

Suppose by way of contradiction that there is no always-best response.

Then, for all (a∗
i , a∗

−i) such that a∗
i ∈ BR1

i (a∗
−i), there is some b∗

−i such that

a∗
i /∈ BR1

i (b∗
−i).

6 Thus

min
a−i

max
ai

gi(ai, a−i) = max
a−i

max
ai

gi(ai, a−i)

= gi(a
∗
i , a∗

−i)

= gi(b
∗
i , b∗

−i)

> gi(a
∗
i , b∗

−i).

It follows that against any mixed action profile a+
−i = (a+

k )k 6=i made up of

full-support mixed actions,

gi(·, a+
−i) < min

a−i

max
ai

gi(ai, a−i) = max
a−i

max
ai

gi(ai, a−i), (2)

which implies that

min
a−i

max
ai

gi(ai, a−i) ≤ max
ai

gi(ai, a+
−i) < min

a−i

max
ai

gi(ai, a−i),

6 Otherwise, a∗
i would be a best response to every pure action profile, and hence also a

best response to every mixed action profile (i.e., it would be an always-best response).
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a contradiction.

3 RESULTS

We begin by examining the case in which the discount factor δi is known, and

show that if δi is large enough, the payoffs of player i can be identified with

enough repetitions of the game as long as they are i-interactive. Proposition

3.5 shows that if δi is unknown, it too can be identified from the best response

correspondence.

The main result (Proposition 3.3) follows from a key lemma (Lemma 3.1).

Lemma 3.1. Fix any a∗
−i, a−i ∈ A−i and j 6= i such that a∗

k 6= ak if and only

if k = j. Furthermore, suppose that ai, a∗
i , b∗

i , c∗
i ∈ Ai and b∗

−i, c∗
−i ∈ A−i

satisfy the following:

(i) a∗
i ∈ BR1

i (a∗
−i), b∗

i ∈ BR1
i (b∗

−i), and c∗
i ∈ BR1

i (c∗
−i);

(ii) 0 < gi(b
∗
i , b∗

−i) − gi(c
∗
i , c∗

−i); and

(iii) gi(a
∗
i , a∗

−i) − gi(ai, a∗
−i) ≤

δ2

i
(1−δT −2

i
)

1−δi
(gi(b

∗
i , b∗

−i) − gi(c
∗
i , c∗

−i)).

Then there exists a unique p ∈ [0, 1] such that

gi(a
∗
i , a∗

−i) − gi(ai, a∗
−i) = p

δ2
i (1 − δT −2

i )

1 − δi

(gi(b
∗
i , b∗

−i) − gi(c
∗
i , c∗

−i)). (3)

In particular, for all p̂ ∈ [0, 1],

p̂ ≥ p ⇐⇒ ∃si ∈ BRT
i (sp̂

−i) with si(∅) = ai (4)

and p̂ ≤ p ⇐⇒ ∃ri ∈ BRT
i (sp̂

−i) with ri(∅) = a∗
i , (5)
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where s
p̂
−i is defined by

s
p̂
k(h) :=























































a∗
k if h = ∅

a∗
k if h ∈ A1 ∧ k 6= j

p̂a∗
j + (1 − p̂)aj if h ∈ A1 ∧ k = j

b∗
k if h1 = (ai, a∗

−i) ∧ h2
−i = a∗

−i

c∗
k if h1 6= (ai, a∗

−i) ∨ h2
−i 6= a∗

−i.

(6)

Proof. Let p be the unique solution to the equation

gi(a
∗
i , a∗

−i) − gi(ai, a∗
−i) = p

δ2
i (1 − δT −2

i )

1 − δi

(gi(b
∗
i , b∗

−i) − gi(c
∗
i , c∗

−i)).

For any h ∈ A1, let ri(h) = si(h) ∈ BR1
i (pa∗

−i + (1 − p)a−i). For any h such

that h1 = (ai, a∗
−i) and h2

−i = a∗
−i, let ri(h) = si(h) = b∗

i . For any h such that

h1 6= (ai, a∗
−i) or h2

−i 6= a∗
−i, let ri(h) = si(h) = c∗

i . At such partial histories, i

can do no better than choosing the stage game best response since the action

profiles planned under s
p
−i at all subsequent partial histories do not depend

on that choice.

Now let ri(∅) = a∗
i and si(∅) = ai so that the expected utilities for ri and

si against s
p
−i are, respectively,

gT
i (ri, s

p
−i) = gi(a

∗
i , a∗

−i) + δi max
di

gi(di, pa∗
−i + (1 − p)a−i)

+
δ2

i (1 − δT −2
i )

1 − δi

gi(c
∗
i , c∗

−i)

and

gT
i (si, s

p
−i) = gi(ai, a∗

−i) + δi max
di

gi(di, pa∗
−i + (1 − p)a−i)

+
δ2

i (1 − δT −2
i )

1 − δi

(pgi(b
∗
i , b∗

−i) + (1 − p)gi(c
∗
i , c∗

−i)).
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Then the difference gT
i (ri, s

p
−i) − gT

i (si, s
p
−i) equals

gi(a
∗
i , a∗

−i) − gi(ai, a∗
−i) − p

δ2
i (1 − δT −2

i )

1 − δi

(gi(b
∗
i , b∗

−i) − gi(c
∗
i , c∗

−i)) = 0.

It follows that ri, si ∈ BRT
i (sp

−i). The remainder is immediate from the strict

monotonicity (in p) of the left-hand side in the equation above.

Definition 3.2. Given δi, a best response correspondence BRT
i reveals gi if,

up to positive affine transformations, there is a unique payoff function for

which BRT
i is the best response correspondence.

Proposition 3.3. Let g be i-interactive. Given any δi ∈ (0, 1] sufficiently

close to 1 and T sufficiently large, BRT
i reveals gi.

Proof. Suppose there exist some a0
i , ā0

i , ā0
−i such that gi(ā

0
i , ā0

−i)−gi(a
0
i , ā0

−i) >

0 and ā0
i ∈ BR1

−i(ā
0
−i); if there are no such a0

i , ā0
i , ā0

−i, then i-interactivity

ensures that there exist strategies for which the corresponding inequality

holds in the twice-repeated game, in which case the following argument goes

through with the twice-repeated game as the stage game to show that g2
i is

revealed by BRT
i for sufficiently large T and δi, and hence so is gi.

Choose m̂i, m̂∗
−i, m̌i, and m̌∗

−i so that

(i) m̂i ∈ BR1
i (m̂∗

−i) and m̌∗
i ∈ BR1

i (m̌∗
−i);

(ii) gi(m̂i, m̂∗
−i) = maxd−i

maxdi
gi(di, d−i) = M̂ ; and

(iii) gi(m̌i, m̌∗
−i) = mind−i

maxdi
gi(di, d−i) = M̌ .

Because g is i-interactive, we have M̂ > M̌ .

For any ai, a∗
i , b∗

i , c∗
i ∈ Ai and a∗

−i, b∗
−i, c∗

−i ∈ A−i ∪{m̌∗
−i, m̂∗

−i}, there exist

sufficiently large δi ∈ (0, 1] and T such that if 0 < gi(b
∗
i , b∗

−i)−gi(c
∗
i , c∗

−i), then

gi(a
∗
i , a∗

−i) − gi(ai, a∗
−i) ≤

δ2

i
(1−δT −2

i
)

1−δi
(gi(b

∗
i , b∗

−i) − gi(c
∗
i , c∗

−i)).
7 Furthermore,

7 This is immediate from limδi↑1
δ

2

i

1−δi

= +∞ and limT →∞
δ

2

i
(1−δ

T −2

i
)

1−δi

=
δ

2

i

1−δi

.
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there exist sufficiently large δi ∈ (0, 1] and T such that this property holds

for all ai, a∗
i , b∗

i , c∗
i ∈ Ai and b∗

−i, c∗
−i ∈ A−i ∪ {m̌∗

−i, m̂∗
−i}.8 Fix such δi and

T .

From Lemma 3.1, we can see that BRT
i reveals the cardinal utility differ-

ences gi(b
∗
i , b∗

−i) −gi(bi, b∗
−i) for all bi, b∗

i , b∗
−i such that b∗

i ∈ BR1
i (b∗

−i). In fact,

we can see that each such difference can be expressed as a scalar multiple of

the difference M̂ − M̌ , where the scalar p(·) ∈ [0, 1] depends on (bi, b∗
−i):

gi(b
∗
i , b∗

−i) − gi(bi, b∗
−i) = p(bi, b∗

−i)
δ2

i (1 − δT −2
i )

1 − δi

(M̂ − M̌). (7)

If gi(b
∗
i , b∗

−i) − M̌ = 0, (7) gives

gi(bi, b∗
−i) = gi(b

∗
i , b∗

−i) − p(bi, b∗
−i)

δ2
i (1 − δT −2

i )

1 − δi

(M̂ − M̌)

= M̌ − p(bi, b∗
−i)

δ2
i (1 − δT −2

i )

1 − δi

(M̂ − M̌). (8)

Now suppose gi(b
∗
i , b∗

−i)−M̌ > 0. From Lemma 3.1, we can see that BRT
i

reveals the cardinal utility differences gi(ā
0
i , ā0

−i) − gi(a
0
i , ā0

−i). In fact, for all

(b∗
i , b∗

−i) such that b∗
i ∈ BR1

i (b∗
−i) and gi(b

∗
i , b∗

−i)−M̌ > 0, the difference can be

expressed as a scalar multiple of the difference gi(b
∗
i , b∗

−i)−M̌ , where the scalar

q(·) ∈ (0, 1] depends on b∗
−i; q(·) is strictly positive because gi(b

∗
i , b∗

−i)−M̌ > 0

and gi(ā
0
i , ā0

−i) − gi(a
0
i , ā0

−i) > 0. Thus we have

gi(ā
0
i , ā0

−i) − gi(a
0
i , ā0

−i) = q(b∗
−i)

δ2
i (1 − δT −2

i )

1 − δi

(gi(b
∗
i , b∗

−i) − M̌).

Substituting (7) yields

q(b∗
−i)

δ2
i (1 − δT −2

i )

1 − δi

(gi(b
∗
i , b∗

−i) − M̌) = p(a0
i , ā0

−i)
δ2

i (1 − δT −2
i )

1 − δi

(M̂ − M̌).

8 For each ai, a∗
i , b∗

i , c∗
i , b

∗
−i, c

∗
−i, find the smallest δi and T that work and take the

maximum of all such δi and T since there finitely many of them.
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Solving leads to

gi(b
∗
i , b∗

−i) = M̌ +
p(a0

i , ā0
−i)

q(b∗
−i)

(M̂ − M̌).

Since the game can be normalized by letting M̌ = 0 and M̂ − M̌ = 1,

the cardinal utility of any (bi, b∗
−i) such that gi(b

∗
i , b∗

−i) − M̌ > 0 (where

b∗
i ∈ BR1

i (b∗
−i)) can be expressed as

gi(bi, b∗
−i) = gi(b

∗
i , b∗

−i) − p(bi, b∗
−i)

δ2
i (1 − δT −2

i )

1 − δi

=
p(a0

i , ā0
−i)

q(b∗
−i)

− p(bi, b∗
−i)

δ2
i (1 − δT −2

i )

1 − δi

. (9)

Similarly, if gi(b
∗
i , b∗

−i) − M̌ = 0, then by (8),

gi(bi, b∗
−i) = −p(bi, b∗

−i)
δ2

i (1 − δT −2
i )

1 − δi

. (10)

Let g̃i be a payoff function with the same best response correspondence

BRT
i as gi. We claim that g̃i is an affine transformation of gi. Indeed, if g̃i

is normalized in the same way as gi (so that M̌ = 0 and M̂ − M̌ = 1), then

by the same derivation as for gi, g̃i must satisfy (9) and (10), and by (4) and

(5), p(·) and q(·) are the same for g̃i as for gi. It follows that gi is revealed

by BRT
i .

Proposition 3.3 indicates that if g is i-interactive, then i’s payoffs can be

pinned down completely based on her best responses in the repeated game

(for sufficiently large δi and T ). What if g is not i-interactive? In that

case, for each T , BRT
i reveals only which action profiles give i her maximum

payoff in the game; identifying i’s preferences among any other outcomes

is impossible. In particular, repeating the game makes no difference for

identification of payoffs.

Although Proposition 3.3 is stated in terms of the entire best response
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correspondence for player i, much less is needed to identify payoffs; all that

is required are the best responses to one class of strategy profiles of the form

described in (6). In these profiles (of i’s opponents), there is a “target” period

1 action for player i. In period 2, some player j 6= i randomizes between two

actions with some probability p̂ on a given action a∗
j , while the other players

play as they did in period 1. Actions from period 3 onward are constant

and take on one of two values, which might respectively be described as

“good” and “bad” for player i in the sense that player i gets a higher payoff

from best-responding to the former than she does from best-responding to

the latter. If no player deviates from the given strategies, the profile that

is played from period 3 onward is determined jointly by player i’s period

1 action and the outcome of player j’s period 2 randomization. The good

action profile is played from period 3 onward if player i played the target

action in period 1 and player j played a∗
j in period 2. Otherwise, the bad

action profile is played. In other words, probability p̂ of getting the good

action profile is offered as an incentive to play the target action in period 1

instead of myopically best-responding.

Our final result shows that if δi is unknown, it too can be identified from

the best response correspondence under the same conditions as the stage

game payoffs.

Definition 3.4. A best response correspondence BRT
i reveals δi if there is

unique discount factor such that BRT
i is the best response correspondence for

some payoff function.

Proposition 3.5. Let g be i-interactive. Given any δi ∈ (0, 1] sufficiently

close to 1 and T sufficiently large, BRT
i reveals δi.

Proof. Let m̂i, m̂∗
−i, m̌i, m̌∗

−i, M̂ , and M̌ be as in the proof of Proposition

3.3. Also as in the proof of Proposition 3.3, let δi and T satisfy

gi(a
∗
i , a∗

−i) − gi(ai, a∗
−i) ≤

δ2
i (1 − δT −2

i )

1 − δi

(gi(b
∗
i , b∗

−i) − gi(c
∗
i , c∗

−i)).

14



for all ai, a∗
i , b∗

i , c∗
i ∈ Ai and b∗

−i, c∗
−i ∈ A−i ∪ {m̌∗

−i, m̂∗
−i} such that 0 <

gi(b
∗
i , b∗

−i) − gi(c
∗
i , c∗

−i).

Let ai, a∗
i , and a∗

−i be such that gi(a
∗
i , a∗

−i) − gi(ai, a∗
−i) > 0 (if no such

ai, a∗
i , and a∗

−i exist, the following argument applies to the twice-repeated

game, just as in the proof of Proposition 3.3). Consider (7) from the proof

of Proposition 3.3. The value of p(ai, a∗
−i) depends on T , so let us indicate

this dependence with a superscript as follows:

gi(a
∗
i , a∗

−i) − gi(ai, a∗
−i) = pT (ai, a∗

−i)
δ2

i (1 − δT −2
i )

1 − δi

(M̂ − M̌). (11)

In the proof, we used the fact that BRT
i reveals pT (ai, a∗

−i) when gi(a
∗
i , a∗

−i)−

gi(ai, a∗
−i) ≤

δ2

i
(1−δT −2

i
)

1−δi
(M̂ −M̌ ). It is clear from the inequality that if it holds

for T = T ∗, then it also holds for T = T ∗ + 1. Therefore, we have

pT ∗+1(ai, a∗
−i)

pT ∗(ai, a∗
−i)

=
1 − δT ∗−2

i

1 − δT ∗−1
i

. (12)

Furthermore, the constant ratio on the left-hand side is revealed by BRT ∗+1
i .

Note that pT ∗+1(ai, a∗
−i)/pT ∗

(ai, a∗
−i) belongs to the unit interval because 0 <

pT ∗+1(ai, a∗
−i) < pT ∗

(ai, a∗
−i). Let f(δi) = (1 − δT ∗−2

i )/(1 − δT ∗−1
i ) and f(1) =

limδi↑1 f(δi) = (T ∗−2)/(T ∗−1). Then f : [0, 1] → [0, 1] is a strictly decreasing

function of δi. Hence the solution to (12) is unique.
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