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Abstract

When an agent chooses between prospects, noise in information processing generates

an effect akin to the winner’s curse. Statistically unbiased perception systematically

overvalues the chosen action because it fails to account for the possibility that noise

is responsible for making the preferred action appear to be optimal. The optimal

perception pattern exhibits a key feature of prospect theory, namely, overweighting of

small probability events (and corresponding underweighting of high probability events).

This bias arises to correct for the winner’s curse effect.

1 Introduction

There is considerable evidence that human perception of reality is noisy and biased.1 While

randomness can be understood as a technological limitation of human cognition, systematic

behavioral biases, such as those documented in the psychological experiments of Kahneman
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1McFadden (1999) summarizes the experimental evidence as follows: “humans fail to retrieve and process

information consistently. . . . These failures may be fundamental, the result of the way human memory is
wired. I conclude that perception-rationality fails, and that the failures are systematic, persistent, pervasive,
and large in magnitude.”
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and Tversky (1979), are more puzzling. Since there is no obvious reason why natural or

cultural evolution could not remove these biases, their prevalence suggests that they serve

a purpose.

This paper argues that perception biases arise as a second-best solution when some noise

in information processing is unavoidable. In particular, we show that overweighting of small

probability events optimally mitigates errors due to randomness. Our model also provides

a framework for conceptualizing errors in decision-making, allowing us to consider, for

example, whether overweighting of small probabilities is a mistake or an optimal heuristic.

Finally, our results demonstrate how explicitly modelling the structure of decision-making

can illuminate patterns of observed behavior.

Our model separates decision-making into two stages. At the first stage, the decision-

maker observes the parameters of the decision problem and encodes them using a perception

strategy. In our main model, the encoded values are then subject to stochastic noise. At

the second stage, the decision-maker chooses an action based on these noisy values of the

parameters. The noise can be interpreted as physiological randomness in the functioning of

the brain, as failing to remember or keep track of all relevant information during decision-

making, or as random computational errors. Each of these cases can be viewed as a loss

of information during the decision process. Our main focus is on the optimal design of the

perception strategy: given that noise will prevent the use of the true values in the second

stage, how should those values be encoded beforehand?2

One natural perception strategy to consider is the unbiased one that gives rise, on av-

erage, to the correct parameter values after the noise is introduced. We argue that the

unbiased strategy suffers from a problem akin to the “winner’s curse,” making it subopti-

mal. Just as a bidder in a common value auction should condition her value on winning,

the design of the perception strategy should condition on the chosen action. Unbiased

perception fails to account for the possibility that noise may be responsible for making an

action appear to be optimal. Biases in perception can correct for this winner’s curse by

generating a more cautious evaluation of actions.

The intuition for our results can be described most simply in a related model capturing a

status quo bias.3 Consider an agent who chooses between the status quo and an alternative

2We view the perception strategy as being applied subconsciously and optimized through evolution rather
than through conscious reasoning. Kirkpatrick and Epstein (1992) present experimental evidence suggesting
that subconscious distortions drive choice even when subjects correctly identify objective probabilities. See
also Camerer et al. (2005) for a discussion of conscious and subconscious processing of probabilities.

3See Compte and Postlewaite (2012a) for a formal model and connection to the winner’s curse.
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action. The agent’s perception is chosen from a class of strategies differing only in the degree

of status quo bias, i.e., in the extent to which the perception of the status quo reward is

exaggerated. In particular, the strategy with no status quo bias yields unbiased perception

of rewards, whereas with a nonzero bias, the agent’s average perception systematically

favors one of the two actions. The perception design problem consists of choosing the

degree of bias that maximizes the expected reward the agent receives across all possible

realizations of the binary decision problem. It turns out that the unbiased strategy is

(generically) suboptimal: the optimal perception strategy is unbiased conditional on the

two options being perceived as equally attractive, which implies that, unconditionally, it is

biased.

Suppose that the average status quo is better than typical rewards from the alternative

action (as one might expect if the status quo results from previous optimizing choices).

Then unbiased perception leads to a winner’s curse because, conditional on perceiving the

alternative as optimal, the agent overvalues it. As a result, the optimal status quo bias

is positive, correcting for the winner’s curse; optimal perception makes the agent cautious

about the alternative.

This paper focuses on the perception of probabilities. As in the preceding example,

unbiased perception of probabilities leads to a winner’s curse since errors that increase

the relative attractiveness of an action make that action more likely to be chosen. We

argue that overweighting small probabilities (and underweighting large ones) mitigates the

overoptimism stemming from the winner’s curse.

Probability distortions may, at first blush, seem unlikely to help. Biasing probabilities

does not, on average, make the agent more pessimistic or optimistic; exaggeration of small

probabilities makes the agent less inclined to fly for fear of an accident, but more inclined

to play casino games that offer a small probability of a large reward. However, such a bias

does tend to make the agent more pessimistic about attractive lotteries. The reason is that

lotteries perceived as valuable are much less likely to share the structure of a casino game

than that of a decision to fly. Compare two lotteries offering the same expected reward: one

a “flight lottery” that gives a high probability gain and a low probability loss, and the other

a “casino lottery” that gives a low probability gain and a high probability loss. For any

given loss, the two lotteries can have the same expected reward only if the low probability of

a gain in the casino lottery is compensated with a very high reward. If very high rewards

are rare, then attractive lotteries are typically like the flight lottery. Exaggerating low

probabilities therefore tends to increase the weight given to losses, reducing the perceived
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value of the most attractive lotteries.

As for the status quo bias, the optimal perception of probabilities in a lottery is unbiased

conditional on the lottery being perceived as equal in value to its opportunity cost—the

value of the next best option. Regardless of the opportunity cost, the optimal perception

is unconditionally biased. When the opportunity cost is high relative to average rewards

available to the agent, the bias takes the form of overweighting small probabilities and

underweighting large ones. A high opportunity cost arises naturally when the agent chooses

from a rich set of options, and thus we focus on this case. Our interpretation is that

perception is not tailored to each choice problem, and problems typically involve a large

number of options, including many that individuals scarcely consider because they are

clearly suboptimal. The opportunity cost interpretation is formalized in Section 5.

Is overweighting of small probabilities (and underweighting of large ones) a mistake?

On the one hand, since such a bias in perception is an optimal response to subsequent

information loss, the agent would be worse off on average if he “debiased” his perception

across all decision problems. On the other hand, a globally optimal perception strategy may

perform poorly in some decision problems. In particular, the ex ante optimal perception

strategy performs badly when the agent faces the casino lottery described above. Since the

casino lottery is unlikely to be an attractive option, the ex ante optimal strategy introduces

relatively large perception errors in lotteries of that form. Ex post, an outside observer

who knows that the agent faces such a lottery could reasonably characterize the agent’s

perception bias as a mistake because it is suboptimal given the observer’s information.

Section 6 discusses these issues in more detail.

An important feature of our model is that it involves a friction in information processing,

as opposed to noise in observation (that is, the noise appears after the encoding of the

parameters of the problem, not before). With frictionless information processing and noisy

observation of probabilities, the optimal perception strategy in our model would encode

the expected probability conditional on observed information, leading to behavior identical

to that of a conventional Bayesian decision-maker. Thus we focus on the problem in which

parameters are observed without noise, where biases in perception arise as a way to mitigate

information processing errors. We discuss this distinction in more detail at the end of

Section 3.1.

Although our model of the cognitive process is stylized, the neuroscientific literature

offers some support for a two-stage, noisy decision process. Glimcher (2009) describes the

emerging neuroeconomic consensus that the choice system in primates “involves a two-
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stage mechanism. The first of these stages is concerned with the valuation of all goods and

actions; the second is concerned with choosing. . . [from] the choice set.” Bossaerts et al.

(2009) discuss evidence that there are at least two imperfectly correlated brain signals in-

volved in the choice process, one for assessing value, the other for the choice itself. More

broadly, Glimcher (2005) surveys a body of evidence suggesting fundamental randomness

in the activity of the brain. Tobler et al. (2008) document that probabilities are simultane-

ously encoded in more than one area of the brain, and that neuronal coding of probabilities

in areas associated with probabilistic decision-making shows an inverted S-shaped pattern.

The combination of separate encoding of probabilities and randomness of neural activity

lends support to our approach of modeling encoded probabilities as subject to noise.

Our paper fits into the literature on the principal-agent approach to evolution (see, e.g.,

Robson, 2001b; Samuelson and Swinkels, 2006; Robson and Samuelson, 2011). Robson

(2001a), Rayo and Becker (2007), and Netzer (2009) study the evolutionary design of

incentives for agents who cannot process information perfectly. They find that the optimal

incentives are steeper at ranges of stimuli that the agent encounters more frequently, which

can be interpreted as allocating greater attention to more common problems.4 Our results

can also be understood in terms of optimal attention allocation, but extended to choice

under uncertainty and using a different model of information processing.

Several papers study foundations for the biases captured in prospect theory. Herold

and Netzer (2010) argue that inverted S-shaped probability weighting is an optimal re-

sponse to S-shaped valuation of rewards. Similarly, Frenkel et al. (2012) view the endow-

ment effect as a heuristic benefitting agents who suffer from the winner’s curse in bilateral

trade. In contrast with these two papers, we derive optimal distortions in perception in

the absence of frictions in other dimensions of the decision process. Woodford (2012a,b)

studies optimal perception using insights from the rational inattention literature. Wood-

ford’s analysis focuses on a relatively simple objective (namely, minimization of the mean

square error) while allowing for a rich class of perception strategies. In contrast, we focus

on maximization of expected rewards, and identify systematic deviations relative to the

mean-square-error-minimizing perception.

Compte and Postlewaite (2012a,b) study optimal heuristics for choice under uncer-

tainty, and identify conditions under which a decision-maker exhibits “cautiousness” to-

ward less certain outcomes. While our results can be interpreted similarly as a form of

4Friedman (1989) provides an early analysis of the attention allocation problem using a reduced form of
evolutionary optimization.
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cautiousness, we differ significantly in terms of focus and modelling approach. In particular,

they study the effects of restrictions on strategies in settings with exogenous information,

whereas our results arise from optimization of the information structure.

Eyster and Rabin (2005) formalize a winner’s curse in strategic settings by assuming

that players fail to fully account for how others’ actions depend on their types. The winner’s

curse effect that would arise if the agent used the unbiased perception strategy in our model

is similar in spirit insofar as it can be thought of as a result of failing to correctly account,

at the observation stage, for the strategy used at the decision stage. While Eyster and

Rabin focus on the strategic consequences of incorrect beliefs, we focus on the optimal

design of perception to alleviate the winner’s curse.

2 Model

An agent faces a binary decision problem in which he chooses between an alternative that

delivers payoff s ∈ R—which we refer to as the opportunity cost—and a lottery that pays a

reward r1 or r2 in R with respective probabilities p and 1−p. While all of these parameters

are observable to the agent, he may make suboptimal choices due to errors in information

processing.

We distinguish between two stages of decision-making. In the first stage, an observation

center observes the probability p and sends a message m(p) ∈ [m,m] to a decision center.

The message is subject to random noise captured by a term ε drawn from a non-degenerate

distribution on an interval; we view ε as resulting from physical noise within the agent’s

brain, from a failure to retain information, or from computational errors. The message

m and noise ε combine to form the perceived probability (or simply the perception) q =

c(m, ε) ∈ [0, 1], where c is continuous, increasing in m, and differentiable in m with a

continuous partial derivative. The function c captures both the physical properties of the

communication channel and the way in which the decision center decodes the arriving

stimulus.5

5Eschewing explicit modeling of the message received by the decision center and its decoding simplifies
notation and implicitly allows for considerable generality in communication. One (less general) explicit
model of this process that implies all of our assumptions on c(·) is as follows. The message m sent by
the observation center together with the noise ε determine a received message m̃(m, ε) ∈ [m,m], where
m̃(·) is continuous, increasing in both arguments, continuously differentiable in m, and onto [m,m]. The
decision center translates the received message into a perceived probability according to an onto function
q̃ : [m,m] −→ [0, 1] that is increasing and continuously differentiable. In this case, the messages can be
thought of as capturing the intensity of the signal between the two centers.
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p observation
center

channel
decision
center

lottery if

qr1 + (1 − q)r2 > s

alternative otherwise

m q = c(m, ε)

Figure 1: The two-stage decision process with interim noise.

In the second stage, the decision center chooses the lottery if qr1 + (1 − q)r2 > s, and

chooses the alternative otherwise.6 Thus, for any lottery ℓ = (p, r1, r2) and perception q,

the agent receives expected payoff

f(ℓ, q; s) =







pr1 + (1− p)r2 if qr1 + (1− q)r2 > s,

s otherwise.
(1)

Figure 1 summarizes the decision process.

By taking the distribution of ε as fixed, we implicitly assume that Nature cannot reduce

the amount of noise. Our interpretation is that Nature has already optimized along this

dimension.

The values of the rewards and the alternative are measured in terms of utilities that

represent the expected fitness over the agent’s lifetime associated with each outcome, and

that incorporate risk preferences.7 Although the function c and the choice rule of the deci-

sion center are fixed, we implicitly allow for the possibility that behavior is also optimized

at the decision stage as long as, given the perception strategy, the optimal decision rule

corresponds to one of the functions c that we consider (see Section 5 for details). More-

over, by not insisting on optimality of c, we allow for—but do not require—the existence

of constraints in the evolution of the decision rule.

Draws of p, (r1, r2), and ε are independent. In addition, the distribution of (r1, r2) is

symmetric and p is continuously distributed with a density ψ that is symmetric around

1/2. These symmetry assumptions simplify the characterization of the optimal strategy

and capture the idea that the indices of the rewards have no intrinsic meaning.

Nature chooses a perception strategy m(p; s), where m(·; s) : [0, 1] −→ [m,m], to max-

6We make the implicit assumption that rewards are processed without noise only for tractability. In
Section 7 we discuss noise in processing of rewards, and speculate about the results of a combined model.

7See Robson (2001b) for an elucidation of the connection between utilities and fitness.
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imize, for each p, the agent’s expected payoff given the distribution over lotteries.8 An

optimal perception strategy m∗(p; s) satisfies

m∗(p; s) ∈ arg max
m∈[m,m]

E [f ((p, r1, r2), c(m, ε))] (2)

for each p, where the expectation is over the noise ε and the rewards (r1, r2). Since the

message space is compact and, for each p, the expected payoff is continuous in m, an

optimal strategy always exists. If there are multiple optimal strategies then all of our

results hold for each such strategy. We therefore ignore potential multiplicity and simply

refer to “the” optimal strategy.

Although we take the value s of the alternative to be exogenous here, we argue in

Section 5 that it can be thought of as the opportunity cost associated with choosing the

lottery. If the agent chooses from a large set of independent lotteries, the opportunity

cost—which corresponds to the perceived value of the next-best available lottery—tends

to be high relative to the ex ante expected value of any given lottery. We therefore focus

primarily on the case in which s is relatively high.

3 Special case

Before analyzing the general model, in this section we illustrate the main result in a rela-

tively simple special case with a particular distribution of rewards and additively separable

noise. We relax many of the following assumptions in Section 4.

The rewards r1 and r2 are independently drawn from the standard normal distribution.

For each message m, the perception is given by q = m + ε, where the noise ε attains

values σ and −σ, each with probability 1/2, and σ ∈ (0, 1/2). To avoid complications

due to boundary effects, the density ψ(p) has support [σ, 1 − σ], and the message space is

[σ, 1− σ], ensuring that the perception q is always in [0, 1].

In the absence of noise, the perception optimization problem is trivial: the unbiased

perception strategy m(p) ≡ p achieves the first-best. When there is noise, the optimal

perception strategy exhibits systematic biases.

Theorem 1. The optimal perception strategy m∗(p; s) is nondecreasing in p. Furthermore,

if s > 31/4, then the agent overstates small probabilities and understates large probabilities;

8When it is not needed, we often drop s from the arguments of m(·) and f(·).
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Figure 2: The optimal perception strategy m∗(p; s) (solid curve) for opportunity cost s = 2
relative to the unbiased strategy m(p; s) ≡ p (dashed line).

that is, for all p ∈ [σ, 1 − σ] \ {1/2}, |m∗(p; s)− 1/2| < |p− 1/2|.

Figure 2 depicts the optimal probability perception for a particular opportunity cost.

Although the strategy m(p) describes internal communication within the agent, the

perception is, in principle, observable in an experiment. By varying the rewards, an ex-

perimenter can recover the subject’s stochastic probability perception q = m(p) + ε of the

objective probability p. The average perception across many repetitions of the experiment

is equal to m(p). Theorem 1 therefore indicates that an agent using the optimal strategy

m∗ will be seen to be overweighting small probabilities and underweighting large ones.9

Note that Nature cannot condition the perception of p on the rewards in the lottery.

If the perception could depend on rewards, the first-best could be achieved by effectively

making the observation center compute the optimal action and then send an extreme

message to the decision center indicating which action to take. By requiring the perception

strategy m(p; s) to depend only on p and s, we constrain Nature to choose a heuristic

that performs well on average across all possible rewards. This approach is consistent

with neuroscientific findings that responses to changes in probabilities are associated with

activity in regions of the brain different from those that respond to changes in rewards,

suggesting that probabilities and rewards are processed separately (see Knutson et al.,

9Experimental evidence lends support to idea that probability perception is stochastic. Abdellaoui
(2000) finds that, for each objective probability, both under- and over-weighting are present in data; when
aggregated, the usual inverted S-shape appears.
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2005; Berns et al., 2008; Berns and Bell, 2012).

3.1 Intuition

When does a small change in perception affect choice? If the expected lottery reward and

the opportunity cost are far apart, a small perception change does not affect the choice

and thus has no impact on outcomes. A marginal change in perception is consequential

only when the two alternatives are perceived to be a tie: that is, when qr1 + (1− q)r2 = s.

The design of the optimal perception strategy, then, must condition on a tie occurring.

Conditioning on a (perceived) tie tends to increase the weight placed on more extreme

probabilities because perceptions q close to 0 or 1 are more likely to lead to a tie than are

perceptions close to 1/2. To see this, consider the following two lotteries, labelled with

their perceived probabilities:

❜�
�
�

❅
❅
❅

1
2

1
2

r r1

r r2

❜�
�
�

❅
❅
❅

0

1

r r1

r r2

The perceived value of the first lottery is (r1 + r2)/2. Ex ante, before the rewards r1 and

r2 are realized, the value of this lottery is normally distributed with mean 0 and variance

1/2. The perceived value of the second lottery is r2. Ex ante, the value of the second

lottery also has mean 0, but it has a higher variance (equal to 1). When the opportunity

cost is high, the higher variance makes a tie with the second lottery more likely than with

the first.

More generally, for any given q, the perceived expected reward from the lottery, qr1 +

(1 − q)r2, is normally distributed with mean 0 and variance q2 + (1 − q)2. Given q, the

likelihood that the agent perceives a tie is φq(s), where φq is the density for the normal

distribution N(0, q2 + (1 − q)2). Viewed as a function of q and suppressing s from the

notation, we define the weighting function w(q) to be equal to φq(s). For each q that a

message m may lead to, the effect on fitness of a marginal change in m is larger when

q is more likely to lead to a tie, and hence greater weight—captured by w(q)—must be

accorded to those values of q.10 When s > 1, the weight w(q) is U-shaped, as depicted in

10In the next subsection, where we derive the optimal perception strategy, we find that the correct weight
given to various values of q differs from w(q) by a factor that does not affect the direction of the distortions.
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Figure 3: The likelihood of a tie between a lottery and the alternative as a function of the
perceived probability for s = 2.

Figure 3.

How should the agent distort probabilities in light of the U-shaped weighting function?

We show that increasing the steepness of the perception function tends to reduce the effect

of errors in perception. One can view this as focusing greater attention on probabilities

at which the perception is steeper.11 For a U-shaped weighting function, more attention

should be focused on extreme probabilities than on intermediate ones, suggesting that

probabilities should be distorted according to an inverted S-shape, as in Figure 2. In the

next subsection, we clarify the trade-off between attentiveness and correctness of perception

that determines the optimal perception strategy.

Alternatively, the optimal distortion can be understood by an analogy to the winner’s

curse. Consider the näıve perception strategy m(p) ≡ p. For each p, this strategy leads to

unbiased perception of the expected lottery reward in the sense that

E[r(p + ε)− r(p)] = 0,

where r(p) = pr1+(1−p)r2 and the expectation is over the noise ε. Although the perception

is unbiased unconditionally, it is biased conditional on the agent perceiving a tie between

the lottery and the alternative. In particular, when the opportunity cost is high, one can

11See Tversky and Kahneman (1992) for a similar interpretation.
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show that, for each p,

E[r(p + ε)− r(p) | r(p+ ε) = s] > 0.12

In case of a tie, the näıve perception strategy tends to overvalue the lottery because equality

with s is more likely to occur if the error ε increases the perceived value of the lottery than

if it decreases it.

Relative to the näıve strategy, the optimal strategy decreases the perceived value of

the lottery conditional on a tie (this is loosely analogous to bid-shading in common value

auctions). It turns out that exaggerating small probabilities (and underreporting large

ones) does exactly that. To see how, consider the typical structure of lotteries that the

agent perceives as a tie when the opportunity cost is high. One possibility is that the higher

probability branch is associated with a large reward, while the lower probability branch has

a smaller reward, as in the flight lottery described in the Introduction. Alternatively, as in

some casino games, the lottery can have a low probability of a very large reward coupled

with a higher probability of a lower reward. Lotteries like the flight lottery are much more

common (among ties) because very large rewards are rare. In case of a tie, reducing the

perception of high probabilities and exaggerating small ones therefore tends to reduce the

perceived value of the lottery, helping to overcome the winner’s curse.

An important assumption of our model is that the decision maker loses information

about the probability p during the decision process (through the addition of noise); the

effects we identify do not arise if instead the noise occurs only prior to the initial observation

of p. For the sake of comparison, consider an alternative model in which the agent observes

a signal x = p+ ε of the true probability p, encodes the signal as a perceived probability q,

and then chooses the lottery (p, r1, r2) over the alternative s if and only if qr1+(1−q)r2 > s.

In this case, the optimal strategy is simply to take q to be the posterior expected value of

p, that is, q = E[p | x].
Why does noise in information processing lead to biased perception while noise in

observation does not? In both models, a marginal change in perception of the probability p

affects choice only in the event of a tie between the lottery and the alternative. Therefore,

in both cases, the optimal perception strategy must condition on a tie occurring; the

12Following Shiryaev (1996), given random variablesX and Y , we distinguish between the random variable
E[X | Y ] and the function E[X | Y = y] of y. In this case, although E[r(p+ε)−r(p) | r(p+ε) = s] conditions
on a zero-probability event, one can define it to be equal to limη→0+ E[r(p+ε)−r(p) | s−η ≤ r(p+ε) ≤ s+η].
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Figure 4: The set D of parameters at which a suboptimal choice may occur. An inverted
S-shaped perception strategy m makes D narrower at values of p∗ farther from 1/2 (such
as p

∗
) at the expense of making it wider at values close to 1/2 (such as p∗).

difference between them lies in how this conditioning affects the distribution of noise. In

our model, the message is chosen when the agent knows p but not q = p+ ε, and the event

qr1 + (1− q)r2 = s is not independent of ε conditional on p. In the alternative model, the

message is chosen when the agent knows x = p + ε, and the event of a tie is independent

of ε conditional on x.

3.2 Outline of proof

To make the result as transparent as possible, we outline a direct proof of Theorem 1 in this

subsection (as opposed to proving it as a corollary of the analogous result for the general

model).

Fix s. We begin by identifying those decision problems in which, for a given perception

strategy m satisfying m(p) ∈ [p−σ, p+σ],13 the agent may end up choosing suboptimally.

Intuitively, this will occur when the value of the lottery is close to the opportunity cost.

Given r1 6= r2, let p
∗ ∈ R be the solution to pr1+(1−p)r2 = s; that is, given r1 and r2,

the lottery is the optimal choice whenever p lies on one side of the threshold p∗, and the

13Messages outside of [p− σ, p+ σ] are never optimal.
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alternative is optimal on the other side (which side depends on which of r1 or r2 is greater).

A decision problem is difficult in the sense that the agent can choose suboptimally if the

parameters (p, p∗) lie in the set

D = {(p, p∗) : p∗ ∈ [m(p)− σ,m(p) + σ]} .

To see this, consider p∗ outside of [m(p)− σ,m(p) + σ]. Since p is within that interval and

q ∈ {m(p)− σ,m(p) + σ}, q and p lie on the same side of the threshold p∗, implying that

the choice based on q is optimal. On the other hand, if p∗ ∈ (m(p)− σ,m(p) + σ), then a

suboptimal choice occurs for one of the two realizations of ε. Figure 4 illustrates the set

D.

Given a strategy m(·), define the ex ante expected loss

L = E [max {pr1 + (1− p)r2, s} − f (ℓ,m(p) + ε)] ,

where the expectation is over the lottery ℓ = (p, r1, r2) and the noise ε. The loss L measures

how much the agent’s expected reward falls below the first-best that can be attained in the

absence of noise. The following lemma expresses the loss L as a weighted integral over the

set D. For the correct weights, we must adjust the weighting function from the preceding

subsection to account for the magnitude of loss due to perception errors, which depends on

the size of the gap between the values of the two rewards in the lottery. The larger |r1−r2|
is, the more sensitive the expected value of the lottery is to changes in the probability p,

making errors in perception of the probability more costly. This effect can be accounted

for by viewing the rewards as being drawn from a modified density that assigns greater

weight to pairs that are farther apart. Accordingly, let ρ̃(·, ·) be the probability density

defined by ρ̃(r1, r2) = (r1 − r2)
2φ(r1)φ(r2)/2, where φ(·) is the standard normal density.

For each q ∈ [0, 1], let dq(·) be the density of r(q) = qr1 + (1− q)r2, where the pair (r1, r2)

is drawn according to ρ̃(r1, r2). The weighting function is defined to be π(q; s) = dq(s);

that is, π(q; s) is the likelihood of a tie between the lottery and the alternative when the

rewards are drawn according to ρ̃.14

Lemma 1. The expected loss satisfies L = 1
2

∫

D |p∗ − p|ψ(p)π(p∗)dpdp∗.

Given a threshold probability p∗, the agent suffers a large loss when (i) p∗ is likely to

14To see how this relates to the function w(q) from the last subsection, note that π(q) = w(q)E[(r1 − r2)
2 |

r(q) = s].
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generate a tie, and (ii) r1 and r2 tend to be far apart, making the value of the lottery

sensitive to the probabilities. Both of these effects are built in to the weighting function,

the first through the φ(r1)φ(r2) term, and the second through the (r1 − r2)
2 term in the

density dq(·). Combining these effects, the lemma indicates that the loss tends to be small

when the set D is both narrow and adheres closely to the diagonal.

Figure 4 illustrates how the slope of the perception strategy affects the loss L. The

set D is narrow precisely when m(p) is steep. Thus the inverted S-shaped perception

strategy depicted in Figure 4 performs well toward the extremes at the expense of poorer

performance at intermediate probabilities. If perception errors at intermediate probabilities

generate smaller losses than those at more extreme probabilities then this leads to an overall

gain. The following lemma confirms that this is indeed the case.

Lemma 2. If s > 31/4, then the weighting function π(q) is U-shaped: it is decreasing for

q < 1/2, increasing for q > 1/2, and symmetric with respect to q = 1/2.

To derive the optimal perception strategy, note that the integral in Lemma 1 can be

minimized pointwise with respect to p. Thus, for each p ∈ [σ, 1 − σ], the optimal message

satisfies

m∗(p) ∈ argmin
m

∫ m+σ

m−σ
|p∗ − p|π (p∗) dp∗.

Taking the first-order condition with respect to m proves the following characterization of

the optimal strategy.

Lemma 3. The optimal perception error q − p, weighted by π(q), is unbiased; that is, for

each p,

E [(q − p)π(q)] =
∑

ε∈{−σ,σ}

(m∗(p) + ε− p)π(m∗(p) + ε) = 0. (3)

Theorem 1 follows from Lemmas 2 and 3. To see that the U-shaped weight implies that

it is optimal to exaggerate small probabilities, consider p < 1/2 and s > 31/4. Suppose

the observation center sends the unbiased message m = p, so that the perception is either

p− σ or p+ σ. A marginal increase in m increases the loss by σπ(p + σ) if the error is σ,

and decreases the loss by σπ(p−σ) if the error is −σ. Since π(p−σ) > π(p+σ), increasing

the message reduces the expected loss.

By symmetry, for any s, the optimal perceptionm∗(p;−s) is identical tom∗(p; s).15 The

agent therefore exhibits an inverted S-shaped perception bias whenever s /∈ [−31/4, 31/4].

15To see this, note that dp(·) is symmetric around 0, and hence π(p; s) ≡ π(p;−s) for each s. Lemma 3
therefore implies that m∗(p; s) ≡ m∗(p;−s).
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Figure 5: The optimal perception strategy m∗(p; s) (solid curve) for opportunity cost s = 0
relative to the unbiased strategy m(p; s) ≡ p (dashed line).

For intermediate opportunity costs, although the optimal perception may not exhibit the

inverted S-shape, it always differs from the unbiased strategy; whatever the opportunity

cost, conditioning on a tie leads to a nontrivial weighting function. Figure 5 illustrates this

point for s = 0. We focus on the case when s is large because, as highlighted in Section 5,

the opportunity cost tends to be high when the agent faces a large choice set.

4 The general case

In this section, we return to the general model from Section 2. Compared to the special

case of Section 3, we now allow for a general continuous joint distribution of rewards with

continuous density ρ(r1, r2) and finite third moments, and for general perception formation

q = c(m, ε). The perception is nontrivially stochastic in the sense that for every m and q,

Pr(c(m, ε) = q) < 1.

The additional generality in the perception formation demonstrates that the pattern of

distortions identified in the special case is not driven by the näıveté of the decision center.

In Section 3, the decision center interprets the received message m+ ε at face value, failing

to take into account the messaging strategy m(·) employed by the observation center. The

general model allows for (but does not require) a decision center that correctly interprets

the message, taking into account how the observation center codes the probability. See

Section 5 for a detailed example in a closely related setup.
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In the general formulation of the model, messages are no longer directly comparable

to probabilities. Instead, we compare the optimal perception under two objectives. In the

reward maximization problem, defined in (2), the optimal strategy m∗(p; s) maximizes the

agent’s ex ante expected reward. We use as a benchmark the precision maximization prob-

lem, in which the optimal strategy m̂(p) minimizes the mean square error in perception;16

that is, for each p ∈ [0, 1],

m̂(p) ∈ argmin
m

E
[

(c(m, ε) − p)2
]

.

The precision-maximizing perception is a natural generalization of the unbiased perception

strategy that we use as the benchmark in Section 3: when noise in communication is

additive, the mean square error is minimized by unbiased perception.17

The analysis in Section 3 makes use of the weight π(q) that measures the importance

of precision at each perceived probability q. We extend the construction of the weighting

function to the general case as follows. Without loss of generality, we normalize E[(r1−r2)2]
to 1, and define a density ρ̃(r1, r2) = (r1 − r2)

2ρ(r1, r2). For each q ∈ [0, 1], let r(q) =

qr1 +(1− q)r2, where the pair (r1, r2) is drawn according to ρ̃, and let dq(·) be the density
of r(q). The weighting function is defined to be π(q; s) = dq(s).

As in Section 3, the shape of the optimal perception strategy is closely connected to the

shape of the weighting function. Since r(q) is a weighted average of rewards with weights q

and 1− q, its distribution is relatively concentrated when q is close to 1/2 in a sense made

precise by the following lemma.

Lemma 4. If |q − 1/2| > |q′ − 1/2| then r(q) is a mean-preserving spread of r(q′).18,19

Intuitively, Lemma 4 suggests that, if the opportunity cost is sufficiently high, it should

be more likely to tie with r(q) than with r(q′) (at least for “well-behaved” distributions),

thus giving rise to a U-shaped weighting function. Formalizing this intuition requires some

additional technical assumptions.

16Because the message space is compact and the objective functions are continuous, solutions to the two
problems are guaranteed to exist. However, there may be multiple optima, making the functions m∗ and
m̂ not uniquely defined. Our results hold for any optimal pair of m∗ and m̂.

17In a related setting, Woodford (2012a,b) takes precision maximization as the objective of perception.
18See Appendix B for the definition of mean-preserving spread that is appropriate in this context.
19This lemma is related to a result in Gossner and Kuzmics (2015). In studying the performance of choice

rules when the decision-maker is ignorant about payoffs, they show that for any choice rule that cannot
be supported by strict preferences there exists a mixture over choice rules supported by strict preferences
delivering gains that are a mean-preserving spread of the gains under the first rule.
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(a) A possible violation of A2: the solid and
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and r(q′), respectively, and intersect infinitely
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(b) The distribution of r(q) for independent
standard normal rewards. For each pair q and
q′, the densities intersect twice, and the inter-
section points are bounded above across all such
pairs (by 31/4).

Figure 6: Examples illustrating A2.

For each message m, let q(m) = supε c(m, ε) and q(m) = infε c(m, ε) denote the most

extreme perceptions. We assume:

A1 The extremes cover the full range from 0 to 1, that is, q(m) = 0 and q(m) = 1.

A2 There exists a finite upper bound r∗ such that for any q, q′ ∈ [0, 1/2] such that q 6= q′,

the densities of the random variables r(q) and r(q′) do not intersect above r∗.

Assumption A1, together with the continuity of c(·), implies that all perceived probabil-

ities can occur for some combination of m and ε. This assumption simplifies the statement

of our main result, but is otherwise unimportant; without it, Theorem 2 would hold ex-

cept that the interval of probabilities on which we obtain a strict comparison between the

reward-maximizing and precision-maximizing perceptions would be smaller.

Assumption A2 is a regularity condition ensuring that the tails of the densities of r(q)

are well ordered across different values of q, which in turn guarantees that the weighting

function π(q; s) is U-shaped for all s > r∗. The condition—which is needed only if the

distribution of rewards has unbounded support—rules out densities like those depicted in

Figure 6a that, for some pair q and q′, alternate infinitely often to the right of any point.

18



In addition, it requires that there is an upper bound on intersections that is uniform across

q and q′. Although the uniformity requirement is difficult to interpret, we believe that it

is a mild restriction; we have verified that it holds for any bivariate normal distribution of

rewards, and for independent rewards that have an exponential or Pareto distribution.20

We have not found a distribution that violates the condition. Figure 6b illustrates the

condition for normally distributed rewards.

Define the reward-maximizing perception q∗ = c (m∗(p; s), ε) and the precision-maximizing

perception q̂ = c (m̂(p), ε). The following result extends Theorem 1 to the general setting,

and indicates that, when the opportunity cost is sufficiently high, the optimal perception

of small probabilities is biased upward and that of large probabilities is biased downward

relative to the precision-maximizing perception.

Let σ = supm q(m)− q(m), which can be viewed as a measure of the degree of noise in

information processing.

Theorem 2. For any opportunity cost s, the optimal message function m∗(p; s) is nonde-

creasing in p. Furthermore, if s > r∗ and p ∈ [0, 1]\(1/2−σ, 1/2+σ), then |m∗(p; s)− 1/2| ≤
|m̂(p)− 1/2|, with a strict inequality if, in addition, p ∈ (σ, 1 − σ).

The set of probabilities for which the theorem identifies a nonzero bias is largest when

the noise in information processing is small, with the bias being nonzero on a nonempty

set of probabilities as long as σ < 1/4.

The remainder of this section outlines two lemmas that form the main steps in the

proof of Theorem 2. The next lemma shows that the first-order conditions of the two

optimization problems differ only in the weight attributed to various perception errors.

Let cm = ∂c
∂m .

Lemma 5. For any p ∈ [0, 1] such that m∗(p), m̂(p) ∈ (m,m), we have the first-order

conditions

E [π(q∗)(p − q∗)cm(m∗(p), ε)] = 0,

and E [(p − q̂)cm(m̂(p), ε)] = 0.

As in Section 3, the weighting function is U-shaped.

20In addition, we note that the uniformity requirement would not be necessary if q could take on only
finitely many values.
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Lemma 6. For all s > r∗, π(q; s) is decreasing for q < 1/2 and increasing for q > 1/2.

The last lemma generalizes the intuition from Section 3.1 based on the observation

that, when the opportunity cost s is high, extreme probabilities are more likely to generate

ties with s. In that section, we show that the density of the expected reward r(q) becomes

more spread out as q moves farther from 1/2, which extends more generally to the mean-

preserving spread comparison in Lemma 4. Combined with the regularity condition A2,

this implies that, if |q − 1/2| > |q′ − 1/2|, then r(q) has a thicker tail than r(q′), making

r(q) more likely to tie with the alternative when the opportunity cost is high, which in

turn implies the lemma and hence Theorem 2.

5 Endogenous opportunity cost

In this section, we analyze a variant of the model that differs from the main model in

several respects. First, instead of choosing between a single lottery and a fixed alternative,

the agent chooses a subset from a large set of lotteries (with no alternative). This difference

highlights that, consistent with our terminology, the value of the alternative in the main

model can be thought of as the opportunity cost associated with choosing the lottery—in

this case, the value of the marginal lottery that is not chosen. Second, instead of taking

the decision rule as fixed, we optimize at both the observation and decision stages. This

difference illustrates that our main result does not rely on constraints at the decision stage.

Finally, for the sake of tractability, we replace noise in perception with finiteness of the

message space. At the end of this section, we discuss the difficulty involved in obtaining

this result in the model with noise, and describe a monotonicity restriction under which it

holds in that case.

The individual chooses from the set of all lotteries ℓ = (p, r1, r2) ∈ [0, 1]× R
2, which is

equipped with the product measure, χ, associated with a uniformly distributed probability

p and independent standard normal distributions of rewards r1 and r2. The agent’s problem

is to choose a fixed fraction κ ∈ (0, 1) of the available lotteries; more precisely, the agent

selects a measurable subsetW of lotteries satisfying χ(W ) = κ. To approximate the choice

of one lottery out of a large set of options, we focus on the case where κ is small.21

As in the main model, decision-making occurs in two stages. At the first stage, the

observation center associates to each probability p a message from a finite set M (with

21Modeling the choice as a fraction of a continuum (as opposed to a single option from a large finite set)
simplifies the analysis by eliminating stochasticity in the choice set.
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|M | ≥ 3) to be sent to the decision center. Accordingly, a strategy for the observation

center is a measurable function m : [0, 1] −→ M , with m(p) interpreted as the message

sent to the decision center about each lottery having probability p. The decision center

observes, for each lottery (p, r1, r2), the values of the rewards r1 and r2, and the message

m(p) (but not the probability p itself). A strategy for the decision center consists of a

measurable function g :M×R
2 −→ {0, 1} satisfying χ(g−1(1)) = κ, with the interpretation

that g(m(p), r1, r2) = 1 if and only if the lottery (p, r1, r2) is in the chosen set. We refer to

any such function g(·) as a choice function.

Nature chooses m(·) and g(·) to maximize the agent’s expected reward over the set of

lotteries that are chosen. That is, Nature solves

max
m(·),g(·)

E [pr1 + (1− p)r2 | g(m(p), r1, r2) = 1] (4)

s.t. χ(g−1(1)) = κ.

Given a message function m(·), we say that the choice function g(·) is Bayesian if

g(m, r1, r2) =







1 if E[p | m]r1 + (1− E[p | m])r2 ≥ s,

0 otherwise,

where s solves

Pr(E[p | m(p)]r1 + (1− E[p | m(p)])r2 ≥ s) = κ. (5)

Thus a Bayesian choice function selects the subset of lotteries having the highest expected

value conditional on the information conveyed by the message. Note that s is equal to the

perceived expected value of the marginal lottery.

As in Section 4, we measure biases in perception relative to the precision-maximizing

strategy for the observation center (keeping the strategy of the decision center fixed). In

the present framework, given any strategy for the observation center, there is only a finite

set of Bayesian posterior expectations of p that the decision center could have (one for

each message it could receive). We measure precision relative to that set of posterior

expectations, which we denote by Q; thus

Q = {E[p | m(p) = m] : m ∈M} .
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For each p, let

q̂(p) ∈ argmin
q∈Q

(q − p)2

denote the precision-maximizing perception. With this benchmark, any bias in perception—

that is, any difference between q̂(p) and E[p | m∗(p)]—could be eliminated through a change

only in the strategy of the observation center.

Proposition 1. There exists a solution (m∗(·), g∗(·)) of problem (4) for which E[p | m∗(p)]

is non-decreasing in p. In every solution, the choice function g∗(·) is Bayesian. Moreover,

if κ is sufficiently small, the individual overvalues small probabilities and undervalues large

probabilities. That is, there exists κ∗ > 0 such that whenever κ < κ∗,

E[p | m∗(p)] ≥ q̂(p) (6)

for almost every p ∈ [0, 1/2], with a strict inequality almost everywhere on an open subset

of [0, 1/2]. The symmetric statements hold for p ∈ [1/2, 1].

Numerical results indicate that a value of κ∗ approximately equal to 0.05 is sufficiently

small for the conclusion of the proposition to hold, in other words, inverted S-shaped

distortions arise when the agent is choosing less than 5% of the available options.

This proposition shows how the value of the alternative in the main model can be inter-

preted as an opportunity cost in a problem that involves choosing from multiple lotteries:

the optimal strategy for the decision center selects a lottery if and only if its perceived

expected value exceeds the opportunity cost s, and consequently distortions take on the

same inverted S-shape as in the main model.

Although the choice function in Proposition 1 differs from the simple non-Bayesian rule

considered in Section 3, the intuition in terms of attention allocation carries over. In both

cases, the observation center anticipates errors in perception of probabilities and focuses

on marginal lotteries (what we refer to as “ties” in the binary choice framework of Sections

3 and 4). When κ is small, these marginal lotteries have relatively high expected rewards,

and therefore tend to have probabilities close to 0 and 1 for the same reason as in the bi-

nary case for lotteries that are perceived to tie with a high opportunity cost. Because the

agent focuses on distinguishing among these high value lotteries, the optimal perception

strategy allocates greater attention to more extreme probabilities. In this context, that

means messages sent for probabilities close to 0 and 1 are associated with smaller intervals

of probabilities than those sent for probabilities closer to 1/2. This in turn leads to over-
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estimation of small probabilities and underestimation of large ones: for example, a small

probability just above the threshold between two messages will be closer to the expected

probability associated with the lower message than that with the message it generates.

As noted above, working with a finite message space instead of noisy communication

simplifies the analysis. The main difficulty with the noisy model lies in how the distributions

of posterior beliefs q vary with the message m. The proof of Proposition 1 relies on a

monotone comparative statics result that is applicable only if these distributions can be

ordered by first-order stochastic dominance. With a finite message space and no noise,

such an ordering obtains trivially because the posterior is a deterministic function of m.

With noise, although we conjecture that this property holds quite generally, it appears to

be difficult to prove. However, our proof of Proposition 1 extends to the case of noisy

communication if we restrict the observation center’s set of strategies so as to ensure

that the distribution of posteriors is increasing in m (in the sense of first-order stochastic

dominance).22

6 Debiasing

The gap between the normative basis of expected utility theory and the descriptive origins

of prospect theory (Thaler, 2000) has spurred an ongoing debate on “debiasing”. As

Fischhoff (1982) writes:

Once judgmental biases are identified, researchers start trying to eliminate them

using one of two strategies. The first accepts the existence of the bias and

concentrates on devising schemes, such as training programs, that will reduce

it.

Jolls and Sunstein (2006) argue that many laws are designed to counteract behavioral

biases.

This paper offers a normative foundation for biased perception of probabilities as an

optimal response to constraints in information processing. The optimizing role of biased

perception suggests that caution is warranted when considering whether deviations from

22We have succeeded in verifying the necessary monotonicity property in a variant of the model with
endogenous noise, where the observation center chooses, for each p, the distribution of the message m that
will be observed by the decision center, and pays a cost proportional to the mutual information between m

and p.
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expected utility should be eliminated; removing biases across all decision problems would

harm the decision-maker.

Our theory suggests that probability biases are helpful in certain settings. For exam-

ple, Barseghyan et al. (2013) document overvaluation of small probabilities using data on

insurance deductible choices; clients who overweight low-probability losses prefer smaller

deductibles than would unbiased decision-makers. De Giorgi and Legg (2012) explain

the equity premium puzzle by pointing out that agents with prospect theory preferences

overvalue the probability of rare market crashes. If errorless perception were possible,

probability biases would be harmful in these cases (relative to correct perception). If, how-

ever, perception is noisy, then the observed biases can be beneficial in problems with a low

probability of generating a loss. Overvaluation of small probabilities in those problems can

be understood as a kind of cautiousness, without which the agent would select the risky

action too often when perception errors reduce the perceived likelihood of a loss.

This is not to say that decision making cannot be improved upon. Using horse-race

data, Thaler and Ziemba (1988) and Snowberg and Wolfers (2010) document excessive

betting on low probability events that pay large rewards, leading to expected losses. While

our theory suggests that overweighting of small probabilities can be helpful overall, it can

also be harmful in settings where the distribution of lotteries differs from that faced by the

decision-maker across all problems.

Why then does overvaluation of small probabilities in settings like the racetrack per-

sist? When probabilities and rewards are processed separately, Nature must design the

optimal bias across all types of problems. From the ex ante perspective, the distortion is

optimal; ex post, it can be harmful. Put differently, debiasing may be beneficial in certain

circumstances, but only in those that, from an evolutionary perspective, rarely result in a

tie.

7 Extensions

In this paper, we examine noise in evaluation of probabilities, while assuming for tractabil-

ity that rewards are processed perfectly. In a previous version of the paper (Steiner and

Stewart, 2014), we examine two variations of a model involving a choice between a ran-

dom reward and a status quo option in which information about the reward is processed

with noise. To focus more attention on rewards that are more likely to lead to a tie with

the status quo, the optimal perception strategy is steeper around the average status quo,
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leading to an S-shaped perception of rewards (similar to the S-shaped value function used

in prospect theory). If the observation center is restricted to a simple class of strategies

that introduce a constant bias, the optimal strategy favors the status quo when the status

quo is better than the average reward; in other words, perception introduces a status quo

bias. Combining noise in both probabilities and rewards within a single model may lead

to interesting interaction effects but appears to be intractable. Since Herold and Netzer

(2010) show that inverted S-shaped probability weights are an optimal response to an S-

shaped value function, we conjecture that a combined model would strengthen the degree

of probability weighting.

Our analysis precludes the possibility that perception of probabilities depends on the

value of rewards. At the other extreme, where perception can depend on the exact realized

rewards, the first-best can be attained. But what if perception depends on imperfect

information about realized rewards? We conjecture that this would introduce a difference

between perception of probabilities of gains and those of losses. In addition to the inverted

S-shape, the agent would tend to put less weight on the probability of gains (and more

on the probability of losses) since doing so would help to correct for the winner’s curse.

This conjecture is broadly consistent with experimental results on reference-dependent

probability weights (Tversky and Kahneman, 1992).

Another possibility is that noise in perception could be tailored to decision problem;

when the expected rewards are larger, it seems natural to think that the agent would devote

more mental resources to getting the choice right, corresponding in our model to a reduction

in noise. We conjecture that such a reduction leads to less distortion in probability weights

relative to the unbiased perception strategy. In keeping with this conjecture, Fehr-Duda

et al. (2010) find that experimental subjects exhibit more conservative probability weights

at higher stakes.

Our restriction to binary prospects is again due to issues of tractability. Allowing

for more outcomes leads to interdependencies in the optimal perception that significantly

complicate the problem. We expect that optimal perception in the general case would share

some features of cumulative prospect theory, with inverted S-shaped probability weights

that depend on the relative magnitudes of the probabilities in the lottery.

The problems we study in this paper can be viewed as special cases of a cheap talk

game between a sender and receiver with common interests in which the receiver has
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private information and communication is subject to noise.23 Our results indicate that

the optimal equilibrium in such problems is generally nontrivial; the sender’s choice must

condition on the message being pivotal given the receiver’s private information. We leave

further exploration of this class of problems to future research.

A Proofs for Section 3

Proof of Lemma 1. Write the expected loss L as

1

2

∫ 1−σ

σ

∫

{(r1,r2):(p,p∗)∈D}
|p∗ − p||r1 − r2|φ(r1)φ(r2)dr1dr2ψ(p)dp.

For each p, the inner integral is over the set of pairs (r1, r2) for which a suboptimal choice

can occur. When a suboptimal choice occurs, the difference in expected reward between the

lottery and the alternative is |p∗ − p||r1 − r2|. The factor 1/2 reflects that the suboptimal

choice occurs only for one of the two possible realizations of ε.

Consider the substitution (p∗,∆) = (p∗, r1 − r2) =
(

s−r2
r1−r2

, r1 − r2

)

in the inner inte-

gral. The absolute value of the determinant of the Jacobian matrix associated with this

substitution is 1
|r1−r2|

= 1
|∆| . Therefore, the expression for L becomes

1

2

∫ 1−σ

σ

∫ m(p)+σ

m(p)−σ
|p∗ − p|π(p∗)dp∗ψ(p)dp,

as needed.

Proof of Lemma 2. First note that π(q) = λ(q)w(q), where λ(q) = E[(r1 − r2)
2 | qr1+(1−

q)r2 = s]. We begin by computing λ(q). Write the random variable r1 − r2 as aζ + bζ⊥

where ζ = qr1+(1− q)r2 and ζ⊥ = −(1− q)r1 + qr2. Note that ζ and ζ⊥ are independent.

Comparing the coefficients, we obtain

a = − 1− 2q

(1− q)2 + q2
, b = − 1

(1− q)2 + q2
.

Conditional on ζ = s, the random variable r1 − r2 has mean as and variance V =

23We thank Andy Postlewaite for highlighting this connection. See Blume et al. (2007) for an analysis of
cheap talk with a different form of noise.
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b2Var(ζ⊥) = b2((1− q)2 + q2). Thus we have

λ(q) = E
[

(r1 − r2)
2 | ζ = s

]

= (as)2 + V =
q2 + (1− q)2 + s2(1− 2q)2

(q2 + (1 − q)2)2
.

Multiplying the last expression by w(q) = φq(s) gives

π(q; s) =
q2 + (1− q)2 + s2(1− 2q)2

(q2 + (1− q)2)2
1

√

q2 + (1− q)2
φ

(

s
√

q2 + (1− q)2

)

,

which is symmetric around q = 1/2.

Let y = 1√
q2+(1−q)2

and note that y is increasing in q and attains values in (1,
√
2] if

q ∈ (0, 1/2]. Therefore, it suffices to prove that

π(q(y); s) =
1√
2π
e−

s
2
y
2

2 y3(1 + 2s2 − s2y2)

is decreasing in y on (1,
√
2]. Differentiating gives

∂π(q(y); s)

∂y
=

1√
2π
e−

s
2
y
2

2 y2
[

s4y4 − 2(s2 + 3)s2y2 + 3(2s2 + 1)
]

.

This derivative is negative if the expression in the square brackets is negative, which is the

case whenever

y2 ∈
(

s2 + 3−
√
s4 + 6

s2
,
s2 + 3 +

√
s4 + 6

s2

)

. (7)

For s > 31/4, this interval contains [1, 2], and therefore (7) holds for y ∈ (1,
√
2].

Proof of Theorem 1. We first prove monotonicity of m∗(p; s). For m ∈ [p − σ, p + σ],

define the loss l(m, p) =
∫m+σ
m−σ |p∗ − p|π(p∗)dp∗. Then m∗(p) maximizes −l(m, p). Given

m,m′ ∈ [p − σ, p+ σ] such that m′ > m, we have

−l(m′, p) + l(m, p) = −
∫ m′+σ

m+σ
|p∗ − p|π(p∗)dp∗ +

∫ m′−σ

m−σ
|p∗ − p|π(p∗)dp∗

= −
∫ m′+σ

m+σ
(p∗ − p)π(p∗)dp∗ −

∫ m′−σ

m−σ
(p∗ − p)π(p∗)dp∗,

where the latter equation follows because m′ − σ ≤ p ≤ m + σ. The partial derivative of
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this expression with respect to p is positive, and therefore, by Theorem 1 in Van Zandt

(2002), m∗(p; s) is nondecreasing in p.

Consider p ∈ [σ, 1/2). Suppose for contradiction that m∗ ≤ p (here we suppress the

argument of m∗(p) from the notation). Then, by Lemma 2, π(m∗ − σ) > π(m∗ + σ), and

hence

E[π(m∗ + ε)(m∗ + ε− p)] =
1

2
π(m∗ + σ)(m∗ + σ − p) +

1

2
π(m∗ − σ)(m∗ − σ − p)

< π(m∗ + σ)

(

1

2
(m∗ + σ − p) +

1

2
(m∗ − σ − p)

)

= π(m∗ + σ) (m∗ − p) ≤ 0,

violating (3) in Lemma 3. Therefore, m∗ > p. The argument for p ∈ (1/2, 1 − σ] is

analogous.

B Proofs for Section 4

The proofs in this section follow the order in which the results appear in the main text. In

particular, the proofs of Lemmas 5 and 6 appear below the proof of Theorem 2.

Definition 3. Let X1 and X2 be real-valued random variables with distribution functions

F1 and F2, respectively. We say that X1 is a mean-preserving spread of X2 if

1. E[X1] = E[X2], and

2. for every x ∈ R,
∫ x

−∞
F1(X)dX ≥

∫ x

−∞
F2(X)dX.24 (8)

Proof of Lemma 4. For each r1 and r2, define r+(p) = pr1 + (1 − p)r2, and r−(p) =

(1−p)r1+pr2. Let ℓ̂(p, r1, r2) be the binary lottery (r+(p), 1/2; r−(p), 1/2). The symmetry

of ρ̃ implies that r(p) is equivalent in distribution to the compound lottery in which (r1, r2)

is drawn from ρ̃, and then r(p) is drawn from ℓ̂(p, r1, r2).

Note that, for each draw of (r1, r2), the binary lotteries ℓ̂(p, r1, r2) and ℓ̂(p
′, r1, r2) have

the same mean (r1+r2)/2, and, if |p−1/2| > |p′−1/2|, r+(p′) and r−(p′) lie in between r+(p)

24There is some disagreement in the literature on this terminology. Rothschild and Stiglitz (1970) and
Müller (1998) use the term “mean-preserving spread” more narrowly; what we call a mean-preserving
spread, Müller (1998) calls a mean-preserving φ-increase in risk.
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and r−(p). Hence ℓ̂(p, r1, r2) is a mean-preserving spread of ℓ̂(p′, r1, r2). Thus it suffices to

prove the following general claim. Let X be a random variable with distribution function

F (·). Let Y1(X) and Y2(X) be random variables with distribution functions G1(X)(·) and
G2(X)(·), respectively, such that, for each X, Y1(X) is a mean-preserving spread of Y2(X).

Finally, let Zi be the random variable obtained by composition of X and Yi (so that Zi

has distribution function Hi(Z) =
∫∞
−∞Gi(X)(Z)dF (X)). Then Z1 is a mean-preserving

spread of Z2.

To prove this claim we need to show that (i) Z1 and Z2 have the same mean, and (ii)
∫ t
−∞H1(Z)dZ ≥

∫ t
−∞H2(Z)dZ for every t.

For (i),

E[Z1] =

∫ ∞

−∞
E[Y1(X)]dF (X) =

∫ ∞

−∞
E[Y2(X)]dF (X) = E[Z2].

For (ii),

∫ t

−∞
H1(Z)dZ =

∫ t

−∞

∫ ∞

−∞
G1(X)(Z)dF (X)dZ

=

∫ ∞

−∞

∫ t

−∞
G1(X)(Z)dZdF (X)

≥
∫ ∞

−∞

∫ t

−∞
G2(X)(Z)dZdF (X)

=

∫ t

−∞

∫ ∞

−∞
G2(X)(Z)dF (X)dZ

=

∫ t

−∞
H2(Z)dZ,

where the inequality follows from Y1(X) being a mean-preserving spread of Y2(X) for each

X, and the equations reversing the order of integration follow from Tonelli’s Theorem.

Proof of Theorem 2. We first prove the second sentence of the theorem (the comparison

between m∗(p; s) and m̂(p; s)). The statement is vacuous if σ > 1/2. Accordingly, suppose

that σ ≤ 1/2, and consider p ∈ [0, 1/2 − σ]. The argument for p > 1/2 + σ is analogous.

Fixing p ∈ [0, 1/2 − σ] and omitting the arguments from the notation for m∗(p; s) and

m̂(p; s), it follows from Lemma 5 together with the corresponding inequalities for corner

solutions that
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E [(p− c(m∗, ε))cm(m∗, ε)π(c(m∗, ε))]



















≤ 0 if m∗ = m,

= 0 if m∗ ∈ (m,m),

≥ 0 if m∗ = m,

E [(p − c(m̂, ε))cm(m̂, ε)]



















≤ 0 if m̂ = m,

= 0 if m̂ ∈ (m,m),

≥ 0 if m̂ = m.

Let m1/2 = sup{m : q(m) ≤ 1/2}, and recall that σ := supm q(m) − q(m). For any

m > m1/2, since c(m, ε) is increasing in m, it follows that, for every ε, c(m, ε) ≥ q(m)−σ >
1/2 − σ ≥ p. Hence m cannot satisfy the first-order condition for either problem, and we

must have m̂,m∗ ≤ m1/2. Therefore, we can restrict attention to messages m satisfying

m ≤ m1/2. For this range, since c(m, ε) is increasing in m,

c(m, ε) < c(m1/2, ε) ≤ q(m1/2) ≤ 1/2,

and hence by Lemma 6, π(c(m, ε)) is decreasing in m.

Let

∆∗(m′,m) = E
[

f(ℓ, c(m′, ε))− f(ℓ, c(m, ε))
]

and

∆̂(m′,m) =
π(p)

2

(

−L̂(m′, p) + L̂(m, p)
)

,

where ℓ = (p, r1, r2) and L̂(m, p) = E
[

(c(m, ε) − p)2
]

. These two expressions may be

interpreted as the payoff difference between messages m′ and m under fitness and preci-

sion maximization, respectively, with the caveat that we have rescaled the payoffs in the

precision maximization problem by π(p)
2 .

We claim that

∆∗(m′,m) > ∆̂(m′,m)

whenever m′ ∈ (m,m1/2). This implies that m∗(p) ≥ m̂(p) by Theorem 1 in Van Zandt

(2002).

To prove the claim, first define

δ∗(q′, q) = E
[

f(ℓ, q′)− f(ℓ, q)
]
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and

δ̂(q′, q) =
π(p)

2

(

−(q′ − p)2 + (q − p)2
)

.

Note that ∆∗(m′,m) = E [δ∗(c(m′, ε), c(m, ε))] and ∆̂(m′,m) = E
[

δ̂(c(m′, ε), c(m, ε))
]

.

Since c(m, ε) is increasing in m, we have 1/2 ≥ c(m1/2, ε) > c(m′, ε) > c(m, ε), and hence

it suffices to show that

δ∗(q′, q) > δ̂(q′, q) (9)

for all q′, q ∈ [0, 1/2] such that q′ > q.

Note first that

δ∗(q′, q) =

∫ q′

q
(p − p∗)π(p∗)dp∗. (10)

This follows from the same computation as for (14) below, except with c(m, ε) = m, from

which we obtain ∂
∂p∗E [f(ℓ, p∗)] = (p− p∗)π(p∗).25 Second,

δ̂(q′, q) =

∫ q′

q
(p − p∗)π(p)dp∗; (11)

which can be verified directly by integration. Inequality (9) holds whenever q < q′ ≤ 1/2

because, by Lemma 6, π is decreasing in that interval, and hence the integrand in (10)

strictly exceeds that in (11) for all p∗ ∈ [q, q′] \ {p}.
So far we have established only a weak inequality between m∗ and m̂; we will show

that the inequality must be strict for all p ∈ (σ, 1 − σ) \ [1/2 − σ, 1/2 + σ] (which is

nonempty if σ < 1/4). Note first that if p > σ then, by assumption A1 and the definition

of σ, c(m, ε) ≤ σ < p for all ε, and hence m cannot solve the optimality condition for

either problem. Similarly, m cannot be optimal, and we can restrict attention to interior

solutions.

Consider p ∈ (σ, 1/2−σ) (a symmetric argument applies for p ∈ (1/2+σ, 1−σ)). Sup-

pose that m̂(p) = m ∈ (m,m). By the first-order condition for the precision maximization

problem,

E [(p − c(m, ε))cm(m, ε)π(p)] = 0. (12)

25For a more intuitive argument, note that if perceptions q and q′ are on the same side of the critical
probability p∗ then they generate the same choice behavior, and thus the payoff difference is 0. If p∗ ∈ [q, q′],
then only one of the two perceptions leads to an error in choice, with an associated payoff loss of π(p∗)|p∗−p|.
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Since

(p− c(m, ε))cm(m, ε)π(c(m, ε)) ≥ (p− c(m, ε))cm(m, ε)π(p) (13)

for every ε, the left-hand side of (12) is at most E [(p− c(m, ε))cm(m, ε)π(c(m, ε))]. More-

over, the inequality in (13) is strict unless c(m, ε) = p, which happens with probability less

than 1. Therefore, E [(p− c(m, ε))cm(m, ε)π(c(m, ε))] > 0, and hence m does not solve the

reward maximization problem.

To prove that m∗(p) is nondecreasing, note first that δ∗(q′, q) is increasing in p when

q′ > q. Since ∆∗(m′,m) = E [δ∗(c(m′, ε), c(m, ε))] and c(m, ε) is increasing inm, ∆∗(m′,m)

must be increasing in p whenever m′ > m. The result then follows from Theorem 1 in

Van Zandt (2002).

Proof of Lemma 5. The second equation follows directly from the first-order condition for

the precision maximization problem.

For the first equation, since qr1 + (1− q)r2 = s if and only if s−qr1
1−q ,

π(q; s) =
∂

∂s

∫ ∞

−∞

∫

s−qr1

1−q

−∞
(r1 − r2)

2ρ(r1, r2)dr2dr1

=

∫ ∞

−∞
(r1 − r2(r1; q))

2 ρ (r1, r2 (r1; q))

1− q
dr1,

where r2(r1; q) :=
s−qr1
1−q .

Given any p, let F = E[f((p, r1, r2), c(m, ε))] be the expected reward when the obser-

vation center observes p and sends message m. We have

F = E

[

∫

c(m,ε)r1+(1−c(m,ε))r2<s
sρ(r1, r2)dr1dr2

+

∫

c(m,ε)r1+(1−c(m,ε))r2>s
(pr1 + (1− p)r2)ρ(r1, r2)dr1dr2

]

,

where the expectation is with respect to the noise ε, as are all other expectations for the

remainder of this proof.

The expected reward F is continuous inm and the message space is compact. Therefore,

an optimal message exists. Moreover, since F is continuously differentiable in m, the

optimal message must, for each p, satisfy the first-order condition ∂
∂mF = 0 whenever it is
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interior. Computing the derivative, we obtain

∂F

∂m
= E

[

cm(m, ε)

∫ ∞

−∞
(s− (pr1 + (1− p)r2(r1; c(m, ε))))

s− r1
(1− c(m, ε))2

ρ(r1, r2(r1; c(m, ε)))dr1

]

= E

[

cm(m, ε)

∫ ∞

−∞
(c(m, ε)r1 + (1− c(m, ε))r2(r1; c(m, ε)) − (pr1 + (1− p)r2(r1; c(m, ε))))

·c(m, ε)r1 + (1− c(m, ε))r2(r1; c(m, ε)) − r1
(1− c(m, ε))2

ρ(r1, r2(r1; c(m, ε)))dr1

]

= E

[

cm(m, ε)

∫ ∞

−∞

p− c(m, ε)

1− c(m, ε)
(r1 − r2(r1; c(m, ε)))

2 ρ(r1, r2(r1; c(m, ε)))dr1

]

= E [(p− c(m, ε))cm(m, ε)π(c(m, ε))] , (14)

as needed.

Proof of Lemma 6. Consider p and p′ such that |p − 1/2| > |p′ − 1/2|. Let X1 = −r(p)
and X2 = −r(p′). By Lemma 4, X1 is a mean-preserving spread of X2. Let F1(x) =
∫ +∞
−x dp(x

′)dx′ and F2(x) =
∫ +∞
−x dp′(x

′)dx′ be the distribution functions of X1 and X2,

respectively.

By the regularity condition A2, either dp(x) > dp′(x) for all x > r∗, or dp(x) < dp′(x)

for all x > r∗. For the sake of contradiction, suppose the latter. Then F1(x) < F2(x) for

all x < −r∗ and hence
∫ −r∗

−∞
F1(x

′)dx′ <

∫ −r∗

−∞
F2(x

′)dx′,

which contradicts that X1 is a mean preserving spread of X2.

C Proof of Proposition 1

Proof of Proposition 1. First note that, given any m(·), the objective in problem (4) is

maximized when the choice function is Bayesian. It follows that if there exists a solution

to (4), then the same strategym(·) coupled with the corresponding Bayesian choice function

also solves (4).

For any given Bayesian choice function g(·), we can think of the observation center as

choosing a perception q(p) = E[p | m(p)] ∈ Q for each probability p. Given a Bayesian

choice function associated with some (not necessarily optimal) strategy m(·), any optimal
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strategy for the observation center solves, for almost every p,

max
q∈Q

E [f(ℓ, q; s)] , (15)

where ℓ = (p, r1, r2), f(ℓ, q; s) is as in (1), and s solves (5) given the message strategy m(·).
The expectation is with respect to the rewards r1 and r2 in the lottery ℓ. Note that this

problem has a solution since Q is finite. Note also that this problem is essentially the same

as that in (2) except that there is now a finite set Q of feasible perceptions, and there is

no noise.

A calculation that is essentially identical to that in the proof of Lemma 5 (and which

we therefore omit) shows that q(p) solves (15) if and only if it solves

min
q∈Q

∫ q

p
(p∗ − p)π(p∗; s)dp∗, (16)

where π(·) is the weighting function defined in Section 3.

The objective in (16) has increasing differences in (p, q), and hence, by Theorem 1 in

Van Zandt (2002), the solution q∗(p) is nondecreasing in p. Therefore, the optimal message

strategy is measurable with respect to a partition of the interval [0, 1] of probabilities into

(at most) |M | subintervals. Fixing an assignment of messages to elements of the partition,

such perception strategies are characterized by |M |−1 thresholds in the interval [0, 1], and

hence can be identified with a compact subset of [0, 1]|M |−1. Moreover, within this class of

strategies m(·), together with Bayesian choice functions with respect to strategies m̃(·) in
this class, there exists a pair maximizing the objective in (16) since it is continuous with

respect to changes in the thresholds characterizing both m(·) and m̃(·). This solution must

involve m̃(·) = m(·) (a.e.) since that defines the optimal choice function given m(·).
For κ sufficiently small, s > 31/4 since the distribution of q(m)r1+(1−q(m))r2 first-order

stochastically dominates that of min{r1, r2}, which has unbounded support. Therefore, the

weighting function π is U-shaped for sufficiently small κ. Inequality (6) now follows by the

same monotone comparative statics argument as in the proof of Theorem 2. Moreover, the

thresholds for the two problems must differ, making the inequality strict for those values

of p lying between the thresholds corresponding to a given pair of values of q.

All that remains is to show that the solution within the class of threshold strategies also

solves the original problem. If not, there exists a pair (m0(·), g0(·)) giving a higher value

of the objective function. Letting g1(·) denote the Bayesian choice function given m0(·),
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m1(·) the optimal message function given g1(·), and g2(·) the Bayesian choice function

given m1(·), the pair (m1(·), g2(·)) lies in the class described by threshold strategies and

gives at least as high a value of the objective function as (m0(·), g0(·)), a contradiction.
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