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Abstract

This paper considers the equilibrium selection problem in coordination games

when players interact on an arbitrary social network. We examine the impact of

the network structure on the robustness of the usual risk dominance prediction as

mutation rates vary. For any given network, a sufficiently large bias in mutation

probabilities favoring the non-risk dominant action overturns the risk dominance

prediction; bounds are obtained on the size of this bias depending on the network

structure. As the size of the population grows large, the risk dominant equilibrium is

highly robust in some networks. This is true in particular if the risk dominant action

spreads contagiously in the network and there does not exist a sufficiently cohesive

finite group of players. Examples demonstrate that robustness does not coincide with

fast convergence.
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1 Introduction

In large population coordination games, social conventions are often thought to provide

common expectations of behavior, thereby allowing coordination on a particular equilib-

rium. A fundamental problem in the literature on conventions has been to understand

which properties lead to the selection of a particular convention in the presence of multiple

equilibria. Unique outcomes generally emerge in the long-run under evolutionary dynamics

in which agents play myopic best responses except for a small probability of mutation.

These outcomes are called stochastically stable. The basic question posed in this paper is

the following: how robust is the stochastically stable equilibrium selection to changes in

mutation rates?

Foster and Young (1990) and Kandori, Mailath, and Rob (1993) introduced the criterion

of stochastic stability, and showed that when players are randomly matched to play a 2×2

coordination game, coordination on the risk dominant action is the unique stochastically

stable outcome. Bergin and Lipman (1996) criticize this approach on the grounds that

the results are sensitive to the formulation of mutation rates that are freely chosen by the

modeller. They show, in particular, that any equilibrium of the dynamic process without

mutations is selected for some specification of mutation probabilities. When the matching

process selects from neighbors in a social network, the risk dominance prediction holds for

the specific formulations of mutation rates that have appeared in the literature, regardless

of the structure of the network (Pe֒ski (2004), Young (1998)). However, the robustness of

this prediction as the mutation rates vary depends heavily on this structure. The main

results of this paper provide sufficient conditions on the structure of the interaction network

to guarantee robustness.

First we consider a fixed population interacting on a given network. The risk dominance

prediction is found to be robust when all players interact with roughly the same number

of other players, and there do not exist small, highly cohesive clusters in the network. If
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there exist some players who interact with many others, then it is possible that mutation

by these players alone could influence enough of the population to move away from the risk

dominant action to a different equilibrium. If the number of required mutations is small,

then the risk dominant equilibrium will tend not to be robust. Similarly, if there exists a

small, highly cohesive set of players in the network, then mutation by these players alone

suffices to move away from the equilibrium coordinated on the risk dominant action.

In general, a sufficiently large bias in mutation probabilities always suffices to overturn

the risk dominance prediction in a population of a given size. However, as the size of the

population grows, there exist networks for which this prediction is robust to arbitrarily large

mutation biases. As in the case of a fixed population, the nonexistence of a finite highly-

cohesive cluster in the network is a necessary condition for the risk dominance prediction

to be robust. When the risk dominant action spreads contagiously in the network, this

nonexistence condition is also sufficient. Intuitively, contagion makes it possible to reach

coordination on the risk dominant action from any initial strategy profile with a relatively

small number of mutations. As the size of the population grows, a much larger number

of mutations is required to move away from this coordinated equilibrium. When mutation

probabilities are small, this implies that transitions to the risk dominant equilibrium occur

much more frequently than transitions away from it, regardless of the specification of

mutation rates.

Ellison (1993) argues that when mutation probabilities are small, the expected time

to convergence to a stochastically stable outcome may be unreasonably long for practical

applications. Furthermore, he demonstrates that the stucture of the interaction network

has a strong influence on the speed of convergence. Intuitively, fast convergence occurs if

“not many” simultaneous mutations are required for best response dynamics to lead play

to the predicted outcome from any initial strategy profile. It may therefore be tempting to

believe that the structural properties generating fast convergence should coincide with those

leading to robustness to varying mutation rates. Section 7 presents examples demonstrating
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that this intuition is false: neither of these properties is sufficient to guarantee the other.

This suggests that in order to evaluate the relevance of stochastically stable outcomes

in a particular game, it is necessary to examine both the speed of convergence and the

robustness to varying mutation rates.

2 Literature review

The model studied in this paper is based on that of Kandori, Mailath, and Rob (1993)

(henceforth KMR), in which a large population of agents are matched in each of an infinite

sequence of periods to play a 2 × 2 coordination game. Matches are drawn according to a

uniform distribution over the entire population. Each player chooses a best response to the

distribution of actions in the preceding period, except for a small probability of mutation,

in which the action is chosen randomly according to a uniform distribution. Mutation

probabilities are independent across players and periods, and constant across players and

strategy profiles. If there is a strictly risk dominant action, A, in the 2 × 2 game, KMR

show that as the mutation probabilities tend to zero, the probability that the population

will be coordinated on A in a given period tends to one in the long-run. In other words,

coordination on A is the unique stochastically stable state.

Young (1998) and Pe֒ski (2004) consider variants of the KMR model in which each player

is matched according to a uniform distribution over a particular subset of the population,

namely that player’s neighbors in a fixed social network. Under the uniform mutation

rates considered by Pe֒ski and the payoff-dependent mutation rates used by Young, the risk

dominance result continues to hold subject to mild regularity conditions. Goyal and Vega-

Redondo (2005) and Hojman and Szeidl (2006) find similar results when players interact

in endogenously formed networks as long as the cost of forming links is small.

A more general model of evolutionary processes is employed by Bergin and Lipman

(1996), who show that any distribution over states that is stable in the process without
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mutations can be obtained as the (unique) long-run distribution as mutation probabilities

tend to zero for some specification of mutation rates. Blume (2003) addresses this critique of

stochastic stability results by considering a class of payoff-dependent mutation probabilities,

and identifying conditions on these probabilities under which the usual results are preserved.

Lee, Szeidl, and Valentinyi (2003) study the robustness of the risk dominance prediction

to varying mutation rates when players lie on a 2-dimensional torus, and each interacts with

her four nearest neighbors. They show that, for given mutation rates, as the size of the

torus grows large, the risk dominant equilibrium will eventually be stochastically stable.

In contrast, with the general interaction structures considered here, the analogous result

need not hold.

3 The model

A population of N agents forms the nodes of a (social) network Γ = (V, L), where V is the

set of nodes, and L is a set of unordered pairs of distinct elements of V . The elements of

L are called the links of the network, and nodes i, j ∈ V are said to be neighbors in Γ if

{i, j} ∈ L. We will say that i interacts with j if i and j are neighbors in Γ. Note that the

neighbor relation is symmetric, so that i interacts with j whenever j interacts with i.

Each agent plays one of two actions, A or B. Payoffs from each interaction are given

by a function u (·, ·) corresponding to the matrix

A B

A a, a c, d

B d, c b, b

.

The 2 × 2 game with these payoffs will be referred to as the underlying game.

The following restrictions are imposed on the payoffs:

1. (A, A) and (B, B) are Nash equilibria; that is, a > d and b > c.
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2. A is strictly risk dominant; that is, a + c > b + d.

The first of these conditions ensures that the equilibrium selection problem is nontrivial.

The case that has received the most attention in the literature is when the risk dominant

and payoff dominant equilibria differ; under the best response dynamics considered here,

however, payoff dominance plays no role, so it is not necessary to identify the payoff dom-

inant equilibrium. As will become clear below, the analysis is trivial when risk dominance

is not strict (i.e. when a + c = b + d), and the choice of A as the strictly risk dominant

action is therefore without loss of generality.

Player i’s payoff Ui (si, s−i) from playing si when the remaining agents play the profile

s−i is given by adding the payoffs u (si, sj) over all neighbors j of i. Formally, payoffs are

given by

Ui (si, s−i) =
∑

{i,j}∈L

u (si, sj) .

In order to distinguish it from the underlying game, the N player game with these payoffs

will be referred to as the population game. Assume for simplicity that each agent’s best re-

sponse correspondence is single-valued. In other words, letting δ(i) = # {j ∈ V |{i, j} ∈ L},

assume that b−c
a−d+b−c

δ(i) is not an integer for any i.

In the unperturbed best response dynamics, the population game is played over infinitely

many periods t = 0, 1, . . .. Starting from some strategy profile in period 0, in each period

t ≥ 1, each player updates her action with independent probability π ∈ (0, 1), and otherwise

plays the same action as in period t−1. When updating, players myopically choose the best

response to the strategy profile played in the preceding period. The reason for introducing

randomness into the updating process is technical: it guarantees that the stable states of

the unperturbed process are precisely the Nash equilibria of the game. This is formalized

in Lemma 2.

Note that action A is a best response for player i in the population game if and only if
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the fraction of her neighbors choosing action A is at least

p =
b − c

a − d + b − c
.

Therefore, for any initial strategy profile, the unperturbed dynamics depend only on the

values of π and p.

The perturbed best response dynamics agree with the unperturbed dynamics except that

players may “mutate” by switching to an action that is not a best response. Fix α > 0 and

ε ∈ (0, 1). In each period in which a given player i is called upon to update her strategy,

i mutates to B with probability εα if A is the best response to the strategy profile of the

previous period, and mutates to A with probability ε if B is the best response. In both

cases, player i plays her best response otherwise. Note that ε and α depend neither on the

player nor the state. Random draws are independent across players and time.

The parameter α captures the bias in mutations toward action A. When α is small,

players are much more likely to mutate to action B when A is a best response than they are

to mutate to A when B is a best response. If mutations are interpreted as experimentation

by boundedly rational players, such a bias may result, for example, from a tendency to try

to attain the payoff-dominant outcome. As usual in models of this type, only the orders

of magnitude of the mutation probabilities are relevant in determining the stochastically

stable outcomes. If the probability εα were to be replaced by αε in the above formulation,

then α may affect the stationary distribution over outcomes, but not the set of stochastically

stable states.

Both the unperturbed and the perturbed best response dynamics define finite Markov

chains whose states are the strategy profiles of the population game. Recall that two states

σ, σ′ are said to communicate in a Markov chain if, beginning from σ, there is a positive

probability that σ′ will occur within a finite number of periods, and vice versa. A recurrent

class is a set of states within which each pair of states communicate, and from which no
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other state occurs with positive probability in finite time. A Markov chain is irreducible

if the entire state space forms a recurrent class; otherwise, it is reducible. A finite Markov

chain possesses a unique stationary distribution if and only if it is irreducible (see, e.g.,

Young 1998).

Whereas the unperturbed best response dynamics form a reducible Markov chain, the

Markov chain defined by the perturbed dynamics is irreducible. For each ε and α, let µε,α(·)

denote the stationary distribution of the perturbed process.

Definition 1 Given α, the state σ is stochastically stable if limε→0 µε,α(σ) > 0.

The main question to be addressed here concerns the extent to which, depending on the

structure of the interaction network, mutations must be biased in favor of action B in order

to overturn the risk dominance prediction. Accordingly, define the mutation robustness

threshold α to be

α := inf {α | σA is stochastically stable} ,

where σA denotes the state in which all players play action A. If α < α, then the stochasti-

cally stable states may contain the equilibrium σB coordinated on B, or may contain only

coexistent conventions, equilibria in which the population is not coordinated on a single

action.

4 Ellison’s radius and coradius

This section introduces some Markov chain terminology and describes Ellison’s radius-

coradius method (Ellison 2000), which will be used to compute bounds on the threshold

value α. The reader who is familiar with this material may wish to jump ahead to the next

section.

Fix α > 0, and let Pε(σ, σ′) denote the transition probability from σ to σ′ in the Markov

chain describing the perturbed dynamics. For any states σ, σ′, define the transition cost
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c(σ, σ′) to be the unique real number satisfying

lim
ε→0

Pε(σ, σ′)

εc(σ,σ′)
∈ (0,∞).

Note that since best response updating is random, there may be different ways to transition

from σ to σ′ in a single period depending on which players update and which mutate.

The cost c(σ, σ′) is the minimum value of the sum nA + αnB over all such single-period

transitions, where nA is the number of mutations required from B to A, and nB is the

number required from A to B.

A path from σ to σ′ is a finite sequence (σ0, σ1, . . . , σn) of distinct states such that

σ0 = σ and σn = σ′. Let Π(σ, σ′) denote the set of all such paths. Define the cost c(σ) of

the path σ = (σ0, σ1, . . . , σn) to be

c(σ) = c(σ0, σ1) + c(σ1, σ2) + · · · + c(σn−1, σn).

Paths that minimize the transition cost between states play a special role in identifying the

stochastically stable states, as these are the transitions that occur most frequently in the

limit as mutation probabilities vanish. Accordingly, for each pair of states σ, σ′, define the

minimal cost m(σ, σ′) by

m(σ, σ′) = min
σ∈Π(σ,σ′)

c(σ).

Let Ω be a union of recurrent classes of the unperturbed dynamics. The basin of attraction

B(Ω) of Ω is the set of states from which some state in Ω is almost surely reached in finite

time under the unperturbed dynamics. Equivalently, B(Ω) consists of those states from

which there exists a zero-cost path to some state in Ω, but there exists no such path to any

recurrent class not in Ω.
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Ellison (2000) defines the radius R(Ω) of the basin of attraction of Ω by

R(Ω) := min
σ∈Ω,σ′ /∈B(Ω)

m(σ, σ′).

Thus the radius R(Ω) is the lowest cost associated with any transition that does not almost

surely return to Ω under the unperturbed dynamics. Similarly, the coradius C(Ω) of the

basin of attraction of Ω is defined by

C(Ω) := max
σ′ /∈B(Ω),σ∈Ω

m(σ′, σ).

Thus, starting from any initial state, the coradius of Ω is the greatest cost that could be

necessary in order to reach Ω. Ellison shows that if R(Ω) > C(Ω) then Ω contains the

set of stochastically stable states. Intuitively, when this is the case, transitions to Ω occur

more frequently than transitions away from it, so as the mutation probabilities approach

zero, much more time is spent at states in Ω than at any other state.

Since the radius-coradius condition is sufficient but not necessary, it can be used to

identify upper bounds on the threshold α by taking Ω = {σA}. If, for some β, R({σA}) >

C({σA}) whenever α > β, then we have α ≤ β. Similarly, by taking Ω to be the union

over all recurrent classes except {σA}, then we obtain a lower bound on α by identifying β

such that R(Ω) > C(Ω) whenever α < β.

5 Fixed populations

Given a fixed network, it is possible to derive bounds on the mutation robustness threshold

α based on the network structure and the value of the payoff parameter p. Since both

of the methods described in the previous section involve transition costs among recurrent

classes of the unperturbed dynamics, we begin by identifying these classes.

10



Lemma 2 The recurrent classes of the unperturbed best response dynamics are precisely

the singleton sets containing the Nash equilibria of the population game.

Proof. Clearly each Nash equilibrium forms a recurrent class.

For the converse, we must show that, beginning from any state σ0, a Nash equilibrium

will be reached with positive probability in finite time. It suffices to construct a finite

sequence of states σ0, σ1, . . . , σm such that for each k = 1, . . . , m, σk differs from σk−1 only

through best response updating by a single player. Without loss of generality, suppose that

action A is a best response for some player who plays action B under σ0. Choose any such

player i, and define σ1 to be equal to σ0 except that player i plays action A. Repeat this

step until a state σr is reached at which no such player remains. Now repeat this process

beginning from σr, except with actions A and B reversed.

I claim that the final state σm attained under this process is a Nash equilibrium. Suppose

for contradiction that player i plays an action σi
m that is not a best response under σm. It

is clear by construction that σi
m = B and player i’s best response under σm is A. Since

the number of i’s neighbors playing action A is nonincreasing along the path σr, . . . , σm, A

must also be a best response for player i under each σk for k = r, . . . , m. Therefore, player

i must choose action B under σr, contradicting the construction of σr.

Pe֒ski (2004) considers the special case of the present model in which α = 1. He shows

that the state σA is stochastically stable regardless of the structure of the network, which,

in our terminology, immediately implies the upper bound α ≤ 1 on the mutation robustness

threshold. To obtain tighter bounds, some definitions are required concerning structural

properties of networks.

Definition 3 The degree δ(i) of node i is the number # {j ∈ V | {i, j} ∈ L} of its neigh-

bors in the network.

Let δmin = mini∈V δ(i) and δmax = maxi∈V δ(i).
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Figure 1: 2
3
-cohesive and 1

2
-cohesive sets of nodes in a finite lattice.

Definition 4 Given r ∈ [0, 1], a subset S of the set of nodes V of the network Γ = (V, L)

is r-cohesive in Γ if for every i ∈ S,

# {j ∈ S | {i, j} ∈ L} ≥ r# {j ∈ V | {i, j} ∈ L} .

In words, each node in S has a fraction of at least r of its neighbors in S.

Figure 4 exhibits two sets of r-cohesive nodes in a finite lattice. For each set, the given

value of r is the largest for which the set is r-cohesive.

The cohesiveness of sets of nodes in the network is directly related to the best response

dynamics of the interaction game. If i lies in a p-cohesive set of nodes S, then A is a best

response for i whenever all other players in S play A. Similarly, if S is (1 − p)-cohesive,

then B is a best response for i whenever all other players in S play B. Identifying each

strategy profile with the set S of agents playing A, S is a Nash equilibrium if and only if

it is p-cohesive and its complement V \ S in V is (1 − p)-cohesive.

Consider the (1 − p)-cohesive sets in Γ. These are partially ordered by inclusion and

include the sets ∅ and V . A chain of (1 − p)-cohesive sets of length l is an increasing

sequence of l + 1 distinct sets V0 ( V1 ( · · · ( Vl. Such a chain is maximal if V0 = ∅,

Vl = V , and for each k = 1, . . . , l, there does not exist any (1− p)-cohesive set U such that
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Vk−1 ( U ( Vk.

Lemma 5 When α = 1, the coradius of the basin of attraction of σA is at most the length

l of the shortest maximal chain of (1 − p)-cohesive sets.

Proof. Let σB denote the state in which all players choose action B, and identify each

state with the set of agents choosing action B. Thus, in particular, σA = ∅ and σB = V .

First we show that C(σA) = m(σB, σA). For each state σ let B(σ) denote the set of

agents for which B is a best response to σ in the population game. Given any path

σ = (σ0, . . . , σk) ∈ Π(σB, σA), define the set

MA(σ) := {v ∈ V |∃j ∈ {1, . . . , k} such that v ∈ σj−1 \ σj and v ∈ B(σj−1)} .

Thus the set MA(σ) consists of all nodes that mutate to action A at some point along the

path (σ).

I claim that for any state σ, there exists a zero-cost path from σ \ MA(σ) to σA; that

is, beginning from σ, if all agents in MA(σ) switch to (or remain at) action A, then it is

possible to reach σA through best responses alone. If not, then let j < k be the largest

index for which there exists a state σ′ ⊂ (σj \ MA(σ)) such that m(σ \ MA(σ), σ′) = 0.

Then there is some v ∈ σ′ \σj+1 for which v ∈ B(σ′). Since σ′ ⊂ σj , v ∈ B(σ′) implies that

v ∈ B(σj), and hence v ∈ MA(σ), contradicting that v ∈ σ′ and σ′ ∩ MA(σ) = ∅.

The claim implies that, for any state σ and any path σ ∈ Π(σB, σA), the minimal cost

m(σ, σA) is at most |MA(σ)|. If σ is a cost-minimizing path from σB to σA, then it cannot

involve any mutations to action B. Thus we have

m(σB, σA) = |MA(σ)| = max
σ

m(σ, σA),

and therefore, C(σA) = m(σB , σA).

13



Let ∅ = V0 ⊂ V1 ⊂ · · · ⊂ Vl = V be a shortest maximal chain of (1 − p)-cohesive sets.

For i ∈ {1, . . . , l}, consider the initial state σ0 = Vi in which precisely the agents in Vi

choose action B. Suppose some agent v0 ∈ Vi \ Vi−1 mutates to action A, so that the state

becomes σ1 = Vi \ {v0}. If Vi \ {v0} 6= Vi−1, then Vi \ {v0} cannot be (1 − p)-cohesive by

the maximality of the chain V0 ⊂ · · · ⊂ Vl. Since Vi−1 is (1 − p)-cohesive, there must exist

some v1 ∈ (Vi \ {v0}) \ Vi−1 such that v1 /∈ B (Vi \ {v0}). Repeating this argument with

σ2 = Vi \ {v0, v1} in place of Vi \ {v0}, and continuing recursively in this fashion gives rise

to a path σ = (σ0, σ1, . . . , σk) of states such that σk = Vi−1 and c(σ) = 1. Connecting these

paths in sequence over all i ∈ {1, . . . , l} gives a path in Π(σB, σA) having cost l, as needed.

Definition 6 An r-cohesive set of nodes S is a minimal r-cohesive set if it contains no

nonempty r-cohesive proper subset.

Theorem 7 Let k be the size of the smallest nonempty (1 − p)-cohesive set whose comple-

ment in V is p-cohesive (or empty), and let K be the size of the largest minimal (1 − p)-

cohesive set in V . We have the following upper bound:

α ≤
(δmax + δmin − 2 ⌊pδmin⌋) (N − K + 1)

(δmin − 2 ⌊pδmin⌋) k
.

Proof. Let R and C respectively denote the radius and coradius of σA when α = 1. For

general α, the coradius of σA is the same, whereas its radius is equal to αR. The state

σA is therefore stochastically stable if αR > C, indicating that the ratio C
R

is an upper

bound on the threshold α. The proof proceeds in two steps. The first is to demonstrate

that R ≥ δmin−2⌊pδmin⌋
δmax+δmin−2⌊pδmin⌋

k. Showing that C ≤ N − K + 1 then gives the result.

Suppose that the initial state is σA. If the radius is R, then there exists a set S0 of R

agents and a sequence i1, ..., im of agents such that B is a best response for il if every agent

in S0 ∪ {i1, ..., il−1} chooses B (that is, if a fraction of at least (1 − p) of il’s neighbors lie
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in S0 ∪ {i1, ..., il−1}), and there is a coexistent convention in which at least one agent in

S0 ∪ {i1, ..., ir} chooses B.

Recall that any coexistent convention corresponds to a partition of the nodes into a

p-cohesive set and a (1 − p)-cohesive set. Let SB denote the set of agents who play B in

the final equilibrium. Note that we may restrict ourselves to the subgraph containing only

those links involving at least one node in SB. Let δR (SB) be the sum of the degrees of the

R nodes in this subgraph having the largest degrees. That is, denoting the subgraph by

Γ (SB), and the degree of node j in Γ (SB) by δΓ(SB) (j), define

δR (SB) := max
{j1,...,jR}

R
∑

l=1

δΓ(SB) (jl) .

In order for the sequential best response condition mentioned above to hold, it must be the

case that for each il, the number of edges connecting il to nodes in S0 ∪ {i1, ..., il−1} is at

least ⌈(1 − p) δ (il)⌉. After adding node i1, that leaves at most

δR (SB) − ⌈(1 − p) δ (i1)⌉ + δ (i1) − ⌈(1 − p) δ (i1)⌉ = δR (SB) − (δ (i1) − 2 ⌊pδ (i1)⌋)

edges to be connected to other il’s. Continuing recursively in this fashion, we obtain the

following inequality:

⌈(1 − p) δ (ir)⌉ ≤ δR (SB) −
r−1
∑

j=1

(δ (ij) − 2 ⌊pδ (ij)⌋) .

This implies the weaker condition that

δR (SB) ≥
r

∑

j=1

(δ (ij) − 2 ⌊pδ (ij)⌋) .
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Since δ (ij) − 2 ⌊pδ (ij)⌋ ≥ δmin − 2 ⌊pδmin⌋ for each ij , this implies that

Rδmax ≥ r (δmin − 2 ⌊pδmin⌋) .

By definition of k, we must have R + r ≥ k, which, when substituted for r in the last

expression, gives

R ≥
δmin − 2 ⌊pδmin⌋

δmax + δmin − 2 ⌊pδmin⌋
k,

as desired.

For the coradius, C, note that the existence of a minimal (1 − p)-cohesive set U of size K

implies that there is a maximal chain of (1 − p)-cohesive sets ∅ = V0 ⊂ V1 ⊂ · · · ⊂ Vl = V

such that V1 = U . By Lemma 5, the coradius of σA is at most l, which cannot exceed

N − K + 1.

In the special case in which there are no coexistent conventions in the population game,

the structural conditions of Theorem 7 follow from a simpler property of the network,

namely, the existence of a small p-cohesive set. This observation is formalized in the

following result.

Corollary 8 Suppose that there are no coexistent conventions in the population game. If

the network Γ contains a p-cohesive set of size m, then we have the bound

α ≤
(δmax + δmin − 2 ⌊pδmin⌋) (m − 1)

(δmin − 2 ⌊pδmin⌋)N
.

Proof. If we show that in the absence of any coexistent convention, the existence of a

p-cohesive group S of size m implies the existence of a minimal (1 − p)-cohesive group of

size at least N − m + 2, then we are done. To see this, it suffices to show that there is

no (1 − p)-cohesive group of nodes containing at most one element of S. Note first that

since S is p-cohesive, any set S ′ of nodes containing exactly one element of S cannot be

(1 − p)-cohesive since the node in both sets cannot have enough neighbors in S ′. Thus we
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Figure 2: Nearest neighbor interaction on the circle.

need only consider sets S ′ disjoint from S.

Suppose for contradiction that S ′ is a (1 − p)-cohesive set disjoint from S. Now apply

the following recursive procedure to the remaining nodes in V \ (S ∪ S ′): (i) take all nodes

having a fraction of at least (1 − p) of their neighbors in S ′ and assign them to S ′; (ii)

repeat step (i) until there are no more such nodes, and assign all remaining nodes to the

set S. I claim that the resulting partition of the nodes describes a coexistent convention.

By abuse of notation, let S and S ′ denote the resulting sets after all other nodes have been

assigned, so that S ∪ S ′ = V . It is clear by construction that S ′ is (1 − p)-cohesive, and

that each element of S has a fraction of at most (1 − p) of its neighbors in S ′. But then

since S ∪ S ′ = V , each element of S must have a fraction of at least p of its neighbors in

S, proving the claim.

The p-cohesiveness condition of the corollary may be interpreted as the existence of a

small clique. In a regular network that does not support any coexistent convention for the

given value of p, the existence of a single clique that is small relative to the size of the

population is sufficient to guarantee the robustness of the risk dominance prediction. The

regularity assumption precludes the existence of a leader who, by single-handedly changing

her action, could affect the incentives of a large number of players.

For the given structural properties, Theorem 7 is tight, as the following example demon-

strates.
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Example 9 (Nearest-neighbor interaction on the circle) An even number, N , of

players lie at distinct points on a circle. Each agent interacts with the immediate neighbors

lying to each side (see Figure 2). Formally, let {1, . . . , N} be the set of agents. The nodes i

and j are neighbors in the network if and only if i− j ≡ ±1 (mod N). For any p ∈
(

0, 1
2

)

,

it suffices for one agent to choose action A in order for A to be a best response for both of

her neighbors. Therefore, there are no coexistent conventions in the population game, as

any such convention must involve at least two neighboring agents who play different actions.

In order to apply Corollary 8, note that the set {1, 2} is p-cohesive, so we may take m = 2.

Further, we have δmax = δmin = 2, and ⌊pδmin⌋ = 0. Corollary 8 therefore gives the bound

α ≤
2

N
.

As N grows large, the threshold α tends to zero. The risk-dominance prediction is therefore

strongly robust for this network when the population is large.

To check that this bound is tight, we may compute the precise value of the threshold

α. Since there are only two recurrent classes, σA and σB, Ellison’s radius-coradius method

provides both necessary and sufficient conditions for stochastic stability whenever the in-

equality R(σ) > C(σ) is strict. Note that, beginning from σB, it suffices for a single agent

to mutate to action A in order for there to exist a zero-cost path to σA. Thus we have

C(σA) = r(σB, σA) = 1. To compute the radius of σA, note that if two neighboring players

choose action A, then A will be a best response for both no matter what actions the other

players take. Thus any path from σA to σB must involve a mutation to action B by at least

one from every pair of neighboring agents, which implies that R(σA) ≥ N
2
α. Conversely,

there exists a zero-cost path to σB from the state σ in which precisely the even-numbered

players choose action A. Since σ can be reached from σA by N
2

mutations to action B,

we have R(σA) = N
2
α. Combining these results, σA is stochastically stable precisely when
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N
2
α ≥ 1, and therefore

α =
2

N
,

demonstrating that the bound of Theorem 7 is tight.

The preceding upper bounds exploit Ellison’s radius-coradius theorem to identify con-

ditions under which coordination on the risk dominant action is stochastically stable. Ap-

plying the same theorem to the collection of all recurrent classes except for σA gives rise

to a lower bound.

Theorem 10 Suppose that there exists a (1 − p)-cohesive set of size r in Γ. Then the we

have the lower bound α ≥ 1
r−1

.

Proof. Let Ω be the set of all Nash equilibria of the population game except for σA.

Beginning from any state outside of Ω, either there exists a zero-cost path to some state in

Ω, or there exists a zero-cost path to σA. Thus for computing the radius and coradius of

Ω it suffices to consider paths to and from σA.

Let S be a (1 − p)-cohesive set of size r, and let σ denote the state in which all agents

in S play action B, and all other agents play action A. Let σ′ be identical to σ except

that one of the agents x in S plays A. Since S is (1 − p)-cohesive, B is the best response

for x to the profile σ′. Hence we have c(σ′, σ) = 0, and m(σA, σ) ≤ α(r − 1). In order to

reach σA from σ, at least one agent in S must mutate to action A. Therefore, σ lies in the

basin of attraction of Ω, and we have C(Ω) ≤ α(r − 1). Since σA cannot be reached from

any state in Ω without at least one mutation to action A, the radius R(Ω) is at least one.

Therefore, the condition R(Ω) > C(Ω) holds whenever 1 > α(r − 1), in which case every

stochastically stable state lies in Ω.

The lower bound of Theorem 10 is also tight. In the trivial example of two interacting

agents, the unperturbed dynamics are symmetric with respect to the two actions. The state

σB is therefore the unique stochastically stable state whenever α < 1, and the threshold α

is equal to one.
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6 Large population games

One difficulty in interpreting the preceding finite network results is that, without a com-

pelling justification for any particular mutation probabilities, the question of how small the

value of the threshold α must be in order to accept the risk dominance prediction remains

open. In general, this value is bounded below by the reciprocal of the population size.

Thus it is natural to consider conditions under which α approaches zero as the population

grows large, ensuring that coordination on A is stochastically stable for a wide range of

mutation probabilities.

Consider a network Γ = (V, L) on a countably infinite set of nodes V . Assume that

there is a uniform upper bound ∆ ∈ N on the number of neighbors of any node; that is,

assume that for all i ∈ V ,

# {j ∈ V | {i, j} ∈ L} ≤ ∆.

The approach taken here to understand stochastic stability in large population games will

be to consider a increasing sequences of finite networks that approach the infinite network

in the limit. Such a sequence may be obtained from a labelling of the set of nodes V , that

is, from a bijection ι : N −→ V . Given any labelling ι, define for each n ∈ N the subnetwork

Γι(n) of Γ whose nodes are given by the set Vι(n) := ι ({1, . . . , n}), and whose links Lι(n)

consist of all links in L between any two nodes in Vι(n); thus

Lι(n) :=
{

{i, j} ∈ L | ι−1 ({i, j}) ⊂ {1, . . . , n}
}

.

Fixing the payoffs in the underlying 2 × 2 game, define for each n ∈ N the mutation

robustness threshold αι(n) to be the value of α for the network Γ(n).

Definition 11 Mutation robustness holds in the infinite network Γ = (V, L) if there exists

a labelling ι of V such that limn→∞ αι(n) = 0.

If mutation robustness holds, then the range of mutation probabilities giving rise to σA
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as a stochastically stable outcome can be made arbitrarily large by taking a sufficiently

large population. Note that the set of limit points of the sequence αι(n) depends in general

on the choice of labelling ι. For example, it is always possible to choose a labelling such

that, for each n, the network Γ(n) contains at least one isolated node that has no neighbors.

In this case, since such an isolated node forms a (1 − p)-cohesive set of size 1, it follows

from Theorem 10 that αι(n) = 1 for all n.

Morris (2000) characterizes conditions under which the risk dominant action spreads

contagiously in a similar model, which differs only in that the dynamics are deterministic:

in each period, every player chooses a best response to the strategy profile of the previous

period. Contagion occurs in the infinite network Γ if, starting from some initial strategy

profile in which only a finite number of agents play action A, every member of the population

plays A in the limit as time tends to infinity. Morris shows in particular that contagion

occurs in Γ if and only if there exists a labelling ι of the nodes of Γ such that for some

sufficiently large N ∈ N, A is a best response for ι(n) whenever each node ι(1), . . . , ι(n−1)

plays A and n ≥ N .

Although we have not defined analogues of Ellison’s radius and coradius for games

played on infinite networks, the occurrence of contagion corresponds intuitively to the

coradius of σA being finite. Thus mutation robustness should hold as long as the radius

of σA is infinite. Morris (2000) shows that it is impossible for action B to spread to an

infinite set of agents from an initial strategy profile in which only a finite set of agents

play B, suggesting that mutation robustness should hold as long as there is no coexistent

convention in which a finite set of agents plays B. This intuition is formalized in the

following theorem.

Theorem 12 If there exists a finite (1 − p)-cohesive set of nodes in Γ then mutation

robustness does not hold. Conversely, if contagion occurs in Γ and there does not exist a

(1 − p)-cohesive set of nodes, then mutation robustness holds.
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Proof. For the first part, let S be a (1 − p)-cohesive set of nodes in Γ of finite size m. It

suffices to note that given any labelling ι, there exists some N such that ι assigns a label

of at most N to every node in S. By Theorem 10, αι(n) ≥ 1
m

for all n > N .

For the converse, first consider, for each n, the coradius of σA in the game played on

the network Γι(n). Since contagion occurs, there exists some labelling ι for which there

is some absolute bound MCR and some sufficiently large N such that whenever n ≥ N ,

this coradius is at most MCR. To prove this, choose a finite set S of nodes from which,

if all of these choose A, best response dynamics lead to all agents choosing A. Consider

best response dynamics where, in period 0, only members of S choose action A. For each

node v, there is some earliest period k (v) after which A is always a best response for v

as the best response dynamics are iterated. The desired labelling is any for which k ◦ ι is

nondecreasing (that is, the lowest labels are assigned to the nodes that switch to A earliest).

Let MCR = |S|. It is clear by construction that, beginning from σB, mutation of all MCR

nodes in S is sufficient to lead to σA.

All that remains is to show that for some labelling ι satisfying the requirement of the

preceding paragraph, the radius of σA in Γι(n) tends to infinity as n grows large. Note

that any (1 − p)-cohesive group in Γι (n) must contain some member of S by the way in

which the labelling ι was chosen. Recall that the degrees of the nodes of Γ are uniformly

bounded by some number ∆. For each n, and each d ∈ N, let gd (n) ∈ N be the smallest

number for which all nodes within distance d of any node in ι ({1, ..., n}) are in Γι

(

gd (n)
)

.

Suppose that the radius of σA in Γι (n) does not tend to infinity with n. Then there

exists some MR ∈ N such that for each N , there exists some n > N for which the radius

of σA in Γι (n) is at most MR. I claim that there exists a number K, depending only on p

and ∆, such that beginning from σA, any number m of mutations to B can lead, through

best response dynamics, to at most Km players choosing B. Assuming for now that the

claim is true, let N = gKMR+1 (|S|). For some n > N , there exists a (1 − p)-cohesive

set S1−p in Γι (n) of size at most KMR, for otherwise the radius of σA would be greater
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than MR for all n > N . As noted above, this set S1−p must contain some element of S.

Since we may assume without loss of generality that this set is connected (otherwise take

some component), it follows that every node in S1−p lies within distance KMR of some

member of S, and therefore that every neighbor of every node in S1−p lies in Γι (n). But

then S1−p is (1 − p)-cohesive in Γ, contradicting the assumption that Γ contains no finite

(1 − p)-cohesive group.

All that remains is to prove the claim of the preceding paragraph. Accordingly, let S1−p

be any (finite) (1 − p)-cohesive group of size M in an arbitrary network Ω, and suppose

that m mutations suffice for the members of S1−p to switch to playing B. Then there exists

a labelling κ : {1, ..., M} ։ S1−p such that for each n > m, a fraction of at least (1 − p)

of κ (n)’s neighbors in Ω lie in the set {1, ..., n − 1}. For each l = 1, ..., M , let δl be the

degree of κ (l). For each l > m, there must be at least (1 − p) δl links connecting κ (l) to

nodes with smaller labels, and hence at most pδl links connecting κ (l) to nodes with higher

labels. Thus we have
m

∑

l=1

δl + p
M

∑

j=m+1

δj ≥ (1 − p)
M

∑

k=m+1

δk.

Assuming a uniform upper bound of ∆ on the degrees of the nodes in Ω, this implies that

m∆ ≥ (1 − 2p)

M
∑

k=m+1

δk.

Assuming that Ω contains no solitary nodes, so that δk ≥ 1 for all k, this gives

m∆ ≥ (1 − 2p) (M − m) ,

and therefore,

m ≥
(1 − 2p)

∆ + (1 − 2p)
M.

Taking K = ∆+(1−2p)
(1−2p)

therefore gives the desired result.
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In a similar model, Lee et al. (2003) consider the interaction structure formed by a

2-dimensional torus, and find that an analogue of mutation robustness holds for all values

of p, that is, given any model of the mutation probabilities, the risk dominant equilibrium

is stochastically stable when the population on the torus is sufficiently large. As they

explain, this result is driven by the existence of small p-cohesive sets of nodes that cover

the entire network combined with a stochastic form of contagion. Significantly, however,

the result depends on the fact that, for each p ∈
(

0, 1
2

)

, the size of the smallest (1 − p)-

cohesive set of nodes on the torus grows without bound as the size of the network grows

large. On the other hand, the stochastic contagion underlying their robustness result is a

weaker property than the deterministic contagion of Theorem 12, suggesting that it may

be possible to generalize this result.

In networks possessing enough symmetry, contagion cannot occur if there exists a finite

(1 − p) cohesive set of nodes. To be precise about the relevant notion of symmetry, we

require the following definition:

Definition 13 an automorphism φ of Γ is a bijection φ : V −→ V such that x and y are

neighbors in Γ if and only if φ(x) and φ(y) are neighbors in Γ.

Thus an automorphism of a network is a permutation of its nodes that preserves the link

structure, and each nontrivial automorphism corresponds to a symmetry of the network.

Proposition 14 Suppose that for each x ∈ V there exist infinitely many y ∈ V such that

there is some automorphism φ of Γ satisfying φ(x) = y. Then contagion cannot occur if

there exists a finite (1 − p)-cohesive set in Γ.

Proof. Suppose that contagion occurs in Γ, and that there exists a finite (1 − p)-cohesive

set of nodes C. Then there exists a finite set of nodes S whose complement does not contain

a (1− p)-cohesive set (see Morris (2000)). Let dC be the diameter of the set C; that is, dC

is the greatest distance between any two nodes in C. Since S is finite and the degrees of
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the nodes of Γ are uniformly bounded, given any d ∈ N, there are only finitely many nodes

y for which there exists a node in S within distance d of y. Therefore there exists some y

lying at a distance strictly greater than d from all nodes of S such that y is the image of

some x ∈ C under some automorphism φ of Γ. By construction, the set φ(C) is disjoint

from S, and φ(C) is (1 − p)-cohesive since C is, contradicting the choice of S.

The following corollary is immediate from Theorem 12 and Proposition 14.

Corollary 15 Under the symmetry assumption of Proposition 14, the occurrence of con-

tagion is a sufficient condition for mutation robustness.

7 Waiting times

Ellison (1993) argues that the relevance of stochastically stable outcomes depends on the

expected waiting time to convergence, which in turn depends on the interaction structure.

Young (1998) extends an argument due to Ellison (1993) to bound the expected waiting

time in local interaction games when each node in the network lies in a sufficiently close-

knit group. Close-knittedness is a clustering property similar to, but stronger than, the

r-cohesiveness used above. Fast convergence occurs under Young’s conditions because the

required mutations can take place in small steps, each of which is much more likely to occur

than are many simultaneous mutations.

In a more general setting, Ellison (2000) bounds the expected waiting time using only the

coradius of the set of stochastically stable states, showing that a small coradius is sufficient

to ensure fast convergence. Since a small coradius of σA tends to favor mutation robustness,

one might expect fast convergence and mutation robustness to be closely related. The

examples below demonstrate that this intuition is false in general. First, however, we must

give a more precise definition of fast convergence for large networks.

Consider a sequence Γ = (Γ1, Γ2, . . .) of networks such that |V (ΓN ′)| > |V (ΓN)| when-

ever N ′ > N ; that is, the size of the population is strictly increasing along the sequence.
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Any labelling ι of the nodes of an infinite network Γ naturally gives rise to such a sequence

Γι by taking ΓN = Γι(N) for all N .

Definition 16 Fast convergence occurs in Γ if there exists some T not depending on N

such that, for each N , from any initial state, the expected time until σA is reached in ΓN

is O
(

ε−T
)

when α = 1.

This definition captures the idea that, for convergence to be fast, the expected waiting

time should not grow by orders of magnitude as the network becomes large. Since best

response dynamics typically require more periods to adjust following mutations in a large

network compared to a small one, the constant implied by the big-O will generally depend

on N . However, the order of magnitude, as measured by the exponent T , must remain

bounded as the network grows large.

We say that fast convergence occurs in an infinite network Γ if there exists a labelling ι

such that fast convergence occurs in the sequence Γι. If contagion occurs in Γ, then there

exists a labelling ι and a set of nodes S of size K such that, for large enough N , any state in

which all members of S choose action A lies in the basin of attraction of σA in the network

Γι(N). In particular, fast convergence holds in Γ with T = K since, from any initial state,

mutation of all members of S to action A is sufficient for the unperturbed dynamics to lead

to σA.

Example 17 (Nearest-neighbor interaction on the circle) In this case, mutation ro-

bustness and fast convergence both hold. For each N , let ΓN be the network corresponding

to nearest-neighbor interaction on a circle of size N , as in Example 9. Since σA can be

reached through the unperturbed dynamics whenever a single agent chooses action A, fast

convergence holds with T = 1. From Example 9, the threshold α tends to zero as N grows

large.

The preceding example captures the intuition that mutation robustness and fast con-

vergence coincide if σA can be reached from any initial state by a small number of muta-
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Figure 3: Uniform interaction.

tions. This coincidence, however, does not extend more generally, as the following examples

demonstrate.

Example 18 (Uniform interaction) In this case, fast convergence fails for any p, but

the threshold α is small when p is small. Let ΓN be the complete network on N nodes;

that is, every player interacts with every other player (see Figure 3). Ellison (1993) shows

that fast convergence fails in this network. The mutation robustness threshold, however,

is approximately constant as the network grows large. Since there are only two equilibria

of the population game, the radius and coradius of σA may be used to compute the precise

value of α. Accordingly, we have C(σA) = ⌈p(N − 1)⌉ and R(σA) = ⌈(1 − p)(N − 1)⌉, and

hence

α =
⌈p(N − 1)⌉

⌈(1 − p)(N − 1)⌉
.

In particular, the threshold α is small for large N when the payoff parameter p is small.

Example 19 (Regions of size m) In this case, for some values of p, fast convergence

holds but mutation robustness fails. Consider an infinite network Γ in which the nodes

correspond to elements of Z × {1, . . . , m}. Each node (i, j) interacts with all m − 1 other

nodes having coordinates (i, ·), as well as to the two nodes (i−1, j) and (i+1, j) (see Figure

4). The sets {{i, 1}, . . . , {i, m}} are the regions of the network, within which interaction

is uniform, and between which links are relatively rare. For each m, contagion occurs
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Figure 4: Regions of size m for m = 4 (Morris, 2000).

if and only if p < 1
m+1

. If p > 1
m+1

, then any two adjacent regions together form a

(1 − p)-cohesive set, so by Theorem 12, mutation robustness holds in Γ if and only if

p < 1
m+1

. On the other hand, fast convergence holds for all p < 1
2
.1 Intuitively, when

p > 1
m+1

, convergence is fast because transitions to σA can occur in many small steps

through a sequence of coexistent conventions. This rich structure of conventions, however,

also ensures that mutation robustness fails because, no matter how large the network, some

coexistent convention may be reached from σA by only a fixed number of mutations.

8 Discussion and conclusion

The structure of social networks has been widely studied in the sociology literature, and a

number of regularities have been empirically observed in a variety of settings (see Newman

(2003) for a survey). We may consider, then, how these properties relate to the structural

conditions described above that are relevant for mutation robustness in order to assess the

relevance of the risk dominance prediction in real-world networks when mutation prob-

abilities are unmodelled. This discussion must, however, necessarily remain vague since

definitions of observed network properties vary, and quantification is difficult in general.

1The proof of this result relies on a strengthening, also due to Ellison, of the radius-coradius method, in
which the coradius is replaced by the (smaller) modified coradius (Ellison 2000). One can show that, for an
appropriate labelling of Γ, the modified coradius of σA in Γι(N) is at most 2m regardless of N . Theorem 2
of Ellison (2000) then implies that fast convergence holds for T = 2m. The details of the modified coradius
calculation are somewhat involved, and are omitted here.
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• Small-world networks. A number of real-world networks have been found to have

significant local clustering, but at the same time a small global diameter relative

to certain highly structured networks; that is, the distance between any two nodes

is “small” given the size of the population. Such networks are said to possess the

small-world property. Clustering alone, if sufficiently dense, can correspond to the

existence of small highly cohesive groups of nodes, thereby placing a lower bound on

the threshold parameter α that depends on the size of the smallest such group. In

large populations, the existence of such a group may preclude mutation robustness.

Furthermore, Morris (2000) provides sufficient conditions for contagion that include

“low neighbor growth,” which is inconsistent with a small diameter. Thus insofar

as contagion may contribute to mutation robustness, the small diameter property of

small-world networks also appears to be contrary to the structural properties required

for a robust risk dominance prediction, although one must be cautious here since this

is based only on sufficient conditions for mutation robustness.

• Community structure. The nodes in networks sometimes form identifiable groups or

communities in such a way that the density of links is much higher within groups than

between them. As in the regions example of the preceding section, if these communi-

ties are sufficiently strong in the sense that a sufficiently large proportion of links in

the network are within groups, then highly cohesive sets of nodes will exist, some of

which will be small relative to the size of the population if many communities exist in

the network. Thus community structure may also prevent mutation robustness from

occurring.

• Scale-free networks. The distribution of degrees of nodes in a purely random network,

in which there is a fixed independent probability that a link exists between any two

nodes of the network, is binomial, approaching a Poisson distribution as the popu-

lation grows large (Newman 2003). In real-world networks, the degree distribution
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typically features a heavier tail than that for random networks, corresponding to a

greater number of high-degree nodes. Recall that the upper bound on the thresh-

old value α given in Theorem 7 is strongest when all nodes have the same degree,

and becomes weaker as the distribution becomes more dispersed. The presence of

high degree nodes can reduce the radius of coordination on the risk dominant action,

lessening the bias in mutations necessary to overturn the stability of this equilibrium.

• Tie strength. The model employed here assumes for simplicity that all links are

given equal weight in each player’s payoffs. In general, however, these weights may

differ, for example because of non-uniform probabilities of matching. The analysis

extends naturally to this more general setting, with the role of p-cohesiveness replaced

by weighted p-cohesiveness: action A is a best response for player i if the share

of weights associated with those of i’s neighbors who play action A is at least p.

Strong links, corresponding to those which are assigned higher payoff weights, tend

to exhibit greater clustering than weak links (Granovetter 1973). Weighting links will

therefore increase the likelihood that a small highly (weighted) cohesive set will exist

in the network, which again limits the size of the bias necessary to overturn the risk

dominance prediction.

To summarize, for each of the network properties that have been most prominent in the

empirical literature, none contributes to mutation robustness. This suggests the need to

be careful when modelling mutation rates in local interaction environments, as large biases

in mutation probabilities may not be necessary to alter the set of stochastically stable

outcomes.
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