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Abstract— We propose a unified approach for deriving and
studying multiuser detection algorithms using the concept of
variational free energy minimization. Under this generalized
framework, we readily arrive at many popular multiuser de-
tection schemes. In addition to its systematic appeal, there are
several other advantages of this viewpoint. First of all, by
condensing the design of multiuser detectors into the selection
of a few key probability distributions, namely p(b), p(r|b) and
Q(b), we provide rigorous justifications for numerous detectors
that were proposed on heuristic grounds and recommend new
and improved designs. Furthermore, the free energy formulation
facilitates convenient joint detection and decoding (utilizing the
turbo principle) when error-control codes are incorporated,
as well as efficient parameter estimation via the variational
expectation maximization (EM) algorithm.

I. INTRODUCTION

Multiuser detection (MUD) in CDMA has been an exten-
sively studied area for a number of years [1]. In addition to the
jointly-optimal (JO) and individually-optimal (IO) detectors,
there are many sub-optimal multiuser detectors which may
be categorized as linear or non-linear. These were derived
using radically different approaches: minimizing mean squared
error (MSE) at the output of a linear filter, estimating and
cancelling interference user by user, and so on. This diversity
of viewpoints makes the comparison and analysis of multiuser
detectors difficult. Attempts to unify the diverse range of
multiuser detectors have been numerous, among which [2] and
[3] establish the uncoded linear and optimal detectors as pos-
terior mean estimators of the Bayes retrochannel and evaluate
their bit error rate (BER) performance in the large system
limit, while [4] generalizes iterative multiuser joint decoding
in coded CDMA as an approximate sum-product algorithm in
a factor-graph, which leads to elegant performance analysis
using density evolution.

This paper contributes to these pioneering works in that it
serves as a natural extension of [2] and [3] into the realm
of non-linear (and iterative) detectors and it supplements [4]
as a probabilistic-inference interpretation of uncoded iterative
MUD by temporarily removing the code constraints (instead
of considering the channel and code constraints jointly). The
technique we adopt is called variational inference [5, pp. 422–
436], which, like the sum-product algorithm, is an approximate
inference algorithm in probabilistic models. Our goal is to
study multiuser detection in coded CDMA, but with focus
on the multiuser channel layer by assuming the common

MAP decoding in the convolutional code layer. The iterative
decoding is naturally incorporated as message passing between
the two layers through the relay nodes (Section IV-A).

The implications of this new generalized framework are
significant. We will highlight this by examining the algorithms
proposed in [6] and [7], which are arguably among the most
important literature on turbo MUD. Much work has been
devoted to their analysis, yet still little is known to strengthen
their theoretical justifications, let alone revealing their intimate
connections to each other. In this paper, we will show how both
algorithms can be rigorously justified from a single unified
principle and systematically improved. All these are accom-
plished within the framework of the variational expectation-
maximization (variational EM) algorithm [8], which is a gen-
eralized EM algorithm with the exact inference in the E step
replaced by variational inference. Central to the variational
inference technique is the formulation of the variational free
energy, which can be used to formulate both basic inference
techniques and joint parameter estimation and data detection
schemes.

The rest of the paper will be organized as follows: Section II
describes the synchronous CDMA channel model and formu-
lates the optimal multiuser detector; Section III introduces the
variational inference technique and the unified multiuser de-
tection framework; Section IV demonstrates how to rigorously
derive turbo multiuser detectors within the variational EM
formulation; Section V provides simulation results that verifies
the performance of multiuser detectors incorporating adaptive
parameter estimation; Section VI contains the conclusions.

II. SIGNAL MODEL

Consider a synchronous DS-CDMA wireless link with K
users. By sampling the chip matched filter output at chip rate,
the received signal in one symbol interval, r ∈ R

N×1, can be
written in the well-known vector form:

r = SAb + n, (1)

where S = [s1, s2, · · · , sK ] is the spreading code matrix
consisting of the normalized spreading sequences of the K
active users, A = diag(A1, A2, · · · , AK) is the channel
matrix representing each user’s signal amplitude and b =
[b1, b2, · · · , bK ]T contains the transmitted BPSK channel bits
from each user. n is a white Gaussian noise vector with
distribution p(n) = N (0, σ2I).
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After bit-level matched filtering at the receiver, we may
write the matched filter output, y ∈ R

K×1, as:

y = ST r = RAb + z, (2)

where R = ST S is the symmetric normalized signature corre-
lation matrix with unit diagonal elements, and z is a coloured
Gaussian noise vector with distribution p(z) = N (0, σ2R).

Given the prior distribution of p(b) and the conditional dis-
tribution p(r|b), the jointly optimal (JO) detector is obtained
by using Bayes rule to compute

p(b|r) =
p(r|b)p(b)∑
b p(r|b)p(b)

. (3)

For BPSK modulated information symbols, the decision is
made as the binary vector b ∈ {+1,−1}K that maximizes
p(b|r). Similarly, the individually optimal (IO) detector is
obtained by evaluating the marginal posterior distribution of
bk (k = 1 to K):

p(bk|r) =
p(r|bk)p(bk)∑
bk

p(r|bk)p(bk)
, (4)

where p(r|bk) =
∑

b�bk
p(r|b)p(b). Due to the discrete

nature of the information symbols, both JO and IO detectors
entail prohibitive exponential complexity.

The IO detector is the optimal soft-in-soft-out (SISO) mul-
tiuser detector in terms of minimizing bit error rate (BER)
and the JO is very close to optimal. It is well-known that
practical suboptimal SISO multiuser detectors may be derived
by taking in the prior information p(bk) and producing a
posterior estimate p(bk|r) or p(bk|y) through some intelligent
approximation which does not lead to exponential complexity.
Section III will start this discussion by introducing a novel
approach such that the “intelligent approximation” can be done
systematically.

III. MULTIUSER DETECTION AS VARIATIONAL INFERENCE

In [3], the linear multiuser detectors are treated as posterior
mean estimators of the Bayes retrochannel with appropriately
postulated distributions p(b) and p(r|b). For example, if a
Gaussian prior is assumed, i.e. p(b) = N (0, I), and the
channel is modelled as p(r|b) = N (SAb, σ2I), the posterior
mean estimator, i.e. E(b|r), is a generalized linear detector
given by

b̂ = A−1[ST S + σ2A−2]−1ST r. (5)

By choosing different values for σ, we arrive at different
linear detectors. If σ2 equals the true noise variance, we get
the MMSE detector. If σ → 0, we approach the decorrelating
detector. And if σ → ∞, the matched filter output is attained.

However, this model has its limitations in that it excludes
some of the useful nonlinear detectors as p(b) can only
be modelled as a continuous distribution for the evaluation
of the posterior p(b|r) to be tractable1, which is obviously
unsatisfactory since b by nature takes on values in a discrete

1We loosely define tractability as computations that can be done with
polynomial complexity.

alphabet. In this paper, we wish to extend the coverage of the
posterior mean estimator by introducing an additional degree
of freedom in approximating the posterior distribution. More
specifically, we will not limit ourselves to applying Bayes rule
to calculate the posterior, but instead we use the more general
and flexible variational inference technique.

A. Variational Inference and Free Energy

We shall explain the variational inference method specifi-
cally in terms of its application to multiuser detection, while a
more general and in-depth treatment, as well as its connection
to statistical physics, can be found in [5] and [9].

As stated earlier, the general task of the SISO multiuser
detector is to perform inference on b given the observation r
or y (we will simply use r from here on, as it is understood that
both are equivalent). Suppose our objective is the JO detector,
then the distribution of interest is p(b|r) (strictly speaking,
IO detector minimizes the BER. But since the difference is
minimal, we may consider the JO detector for simplicity).
Very often, however, the direct evaluation of p(b|r) is com-
putationally intractable when Bayes rule is applied directly,
in particular, when p(b) is a discrete distribution. In such a
case, the variational inference technique assumes a tractable
approximation to p(b|r), written as Q(b), where the constant
r is omitted.

A good approximation Q(b) needs to resemble p(b|r) as
closely as possible, and the Kullback-Leibler divergence (or
relative entropy) D(Q(b)‖p(b|r)) offers an excellent measure
of similarity. But since the computation of p(b|r) is intractable
as we have assumed, an equivalent alternative, p(b, r), is
used, where p(b, r) is called the complete likelihood function.
D(Q(b)‖p(b, r)) is the variational free energy:

F(Q, p) =
∫
b

Q(b) log
Q(b)
p(b, r)

db. (6)

If no constraints are placed on Q(b), by minimizing
F(Q, p), we reach Q(b) = p(b|r) and nothing is gained. Yet
if we parameterize Q(b) by assuming that it comes from a
restricted family of distributions (for example, a Gaussian),
we may very easily find its closed-form expression which
approximates p(b|r) well by minimizing the variational free
energy. This method of performing approximate inference is
called variational inference [9].

One important instance of the variational method is to
assume that Q(b) is factorized as

∏K
k=1 Qk(bk) (we shall

omit the subscripts in Qk from here on), and find indepen-
dent distributions {Q(bk)}K

k=1 that minimize the free energy.
This factorization of a distribution and the independence
assumption associated with it is referred to as the mean-field
approximation in statistical physics. A demonstration of its
application will be presented in detail in Section IV-C.

B. Linear Multiuser Detectors and Free Energy Minimization

In this Section, we will derive the linear multiuser
detectors from variational inference, and thus show that
changing the postulated distributions p(b), p(r|b) and Q(b)
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is all that is needed to arrive at individual detectors. Although
the exercises presented here are somewhat trivial, it lays
the foundation for more sophisticated variations in Section IV.

Case 1: Linear Multiuser Detectors

p(b) = N (0, I),
p(r|b) = N (SAb, σ2I),
Q(b) = N (µ,Σ).

(7)

Proof: Evaluating F(Q, p) as in (6), we have a function
of µ and Σ:

F(µ,Σ) = − 1
2 log |Σ| + 1

2σ2 {µT (AT ST SA + σ2I)µ
+tr[(AT ST SA + σ2I)Σ] − 2rT SAµ}

(8)
The final estimate of Q(b) is given by the minimizers µ̂ and Σ̂
of F(µ,Σ). Calculating ∂F(µ)/∂µ and ∂F(Σ)/∂Σ−1 and
equating to zero, we have

µ̂ = (AT ST SA + σ2I)−1AT ST r;
Σ̂ = σ2(AT ST SA + σ2I)−1,

(9)

where µ̂ approaches the MMSE, decorrelating and matched
filter detector outputs when σ takes on the its true value, 0
and ∞, respectively. Note that given the postulated priors
in (7), the exact posterior p(b|r) is tractable and is in fact
Gaussian. Therefore, the solved Q-function, N (µ̂, Σ̂), is the
exact posterior distribution which could also have been found
by applying Bayes rule directly.

C. IC-MUD and Coordinate Descent Algorithm

Iterative multiuser detectors, especially their convergence
behavior, have been actively researched in the past. In [10],
linear SIC and PIC are categorized as the Gauss-Seidel
and Jacobi iterations for solving linear equations. SIC is
also analyzed in greater depth in [11]. The study is later
extended to clipped SIC in [12] through the investigation
of the variational inequality (VI) problem. Here we offer
an alternative interpretation for the SIC detectors as the
coordinate descent algorithm applied to the minimization of
variational free energy in (8).

Case 2: Linear/Clipped SIC Detectors
Given (7) and (8), in the i-th iteration, for k = 1 to K

µ̂
(i)
k = arg min

µk

F(µ(i)
1 , · · · , µ

(i)
k−1, µk, µ

(i−1)
k+1 , · · · , µ

(i−1)
K )

(10)
s.t. µmin ≤ µk ≤ µmax, describes a linear SIC if µmin =
−∞ and µmax = ∞, and a clipped SIC otherwise.

Proof: Formulating ∂F(µ)/∂µk = 0 based on (8) yields

AksT
k SAµ − AksT

k r + σ2µk = 0. (11)

Rearranging the terms and defining µ\k =
[µ1, · · · , µk−1, 0, µk+1, · · · , µK ]T , the optimal µk is then
expressed in the familiar interference cancellation form:

µ̂k =
1

A2
k + σ2

AksT
k (r − SAµ\k), (12)

if µk is unbounded (i.e. µmin = −∞ and µmax = ∞).
Since updating µk (k = 1, · · · ,K) consecutively subject to
∂F(µ)/∂µk = 0 is the coordinate descent algorithm for
minimizing F(µ), then similar to the linear detectors, σ taking
its true value corresponds to the coordinate descent imple-
mentation of the MMSE detector, and σ → 0 corresponds
to the coordinate descent implementation of the decorrelating
detector. On the other hand, if µmin and µmax are finite, we
need to solve (11) subject to µmin ≤ µk ≤ µmax, which
corresponds to clipped SIC.

To verify that (12) does converge to MMSE or decorrelator
solutions, and to gain further insight into the convergence
behavior when the optimization constraints are active (Clipped
SIC), we invoke the following theorem [13]:

Theorem 1: Consider an optimization problem:

min f(x) = g(Ex) + cT x, s.t. x ∈ X , (13)

where X is a box (possibly unbounded) in R
n, f is a proper

closed convex function in R
n, g is a proper closed convex

function in R
m, E is an m×n matrix having no zero column,

and c ∈ R
n. Also assume

1) The set of optimal solutions for (13), denoted by X ∗ is
nonempty;

2) dom g is open and g is strictly convex twice continuously
differentiable on dom g;

3) ∇2g(Ex∗) is positive definite for all x∗ ∈ X ∗.

Then if {xr} is a sequence of iterates generated by coordi-
nate descent method according to the Almost Cyclic Rule or
Gauss-Southwell Rule, {xr} converges at least linearly to an
element of X ∗.

Since the objective function of optimization, F(µ), satisfies
all conditions in the theorem when the spreading codes are
linearly independent, it is clear that this theorem applies to the
general linear/clipped SIC setting. Also due to the objective
function being quadratic and the constraints being linear, there
is a unique optimal solution in X ∗. We may thus conclude
that linear and clipped SIC are guaranteed to converge to
the unique minimum free energy defined by F(µ) and the
constraint (µmin ≤ µk ≤ µmax), and the rate of convergence
is at least linear. This result is rather significant, and is proved
for the first time to our knowledge.

Furthermore, we may relax the conventional cyclic order
of iteration for SIC and assert that as long as the coordinates
are iterated upon according to either the Almost Cyclic Rule or
Gauss-Southwell Rule, we still can guarantee the at least linear
convergence rate. For details regarding the relaxed iteration
rules, please refer to [13].

IV. TURBO-MUD AND VARIATIONAL EM ALGORITHM

With the preliminaries laid out in the preceding sections, we
are now ready to investigate more sophisticated implications
of this free energy formulation. In Section IV-A, we will first
describe how to interface the variational inference multiuser
detectors with a MAP convolutional decoder by following
the message-passing rule in graphs. The detector and decoder

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject 

IEEE Globecom 2005 1572 0-7803-9415-1/05/$20.00 © 2005 IEEE



combined in this fashion will be used to justify the formu-
lation of turbo multiuser detection. In Section IV-B, we will
introduce an extension of the variational inference algorithm,
called variational EM, to facilitate joint parameter estimation
in turbo multiuser detection. Then in the two case studies in
Sections IV-C and IV-D, we will explore how the variational
EM algorithm provides a concrete explanation for existing
algorithms and how it leads to additional improvements.

A. Message-Passing in Coded CDMA

SISO MUD

b1 b2 b4b3

SISO MUD

b1 b2 b4b3

MUD

MAP
k=1

b1 b2 b4b3

MUD

b1 b2 b4b3

MAP
k=4

MAP
k=3

MAP
k=2

MAP
k=1

t = 1,   ,T

k = 1,   ,K

t  = T

t = 1

x1 x2 x3 x4

MAP
k=2

MAP
k=3

MAP
k=4

(a) (b)

Fig. 1. Message-passing in coded CDMA.

From Fig. 1(a), it is seen that the nodes representing the
channel bits {bt,k}K

k=1 are the relay nodes that separate the
graph into two halves, where on one side the decoder runs
belief propagation (BCJR) to perform MAP decoding locally
and on the other side the multiuser detector runs variational
inference. The process by which the MAP decoder retrieves
prior information and generates extrinsic information is stan-
dard (see [7]) and will be skipped. Here we concentrate on how
the multiuser detector based on variational inference accepts
and generates information. Although the variational inference
is generally not the exact inference, we will assume that Q(bk)
is a good approximation to the exact posterior. Following
the message passing rule stated in [4], Q(bk) calculated by
ignoring the prior p(bk) generates the extrinsic information
sent back to the decoder. Fig. 1(b) depicts how a multiuser
detector of K = 4 users accepts the incoming messages from
the decoder for {bk}k �=2(which are used as the prior p(b)),
to generate the extrinsic information for b2 to send back to
the MAP decoder. Such a procedure is repeated for all k =
1, · · · ,K. After several rounds of message passing between
multiuser detectors and MAP decoders, the MAP decoders
make final decisions on the information bits {xk}K

k=1.

B. Variational EM

While the variational inference technique offers a powerful
means to perform data detection, it assumes perfect knowl-
edge of system parameters, such as the noise variance and
channel amplitudes. One way to incorporate the uncertainties
of these parameters in the model is through the variational EM
algorithm [8].

Denoting the unknown parameter as θ, we assume θ remains
static over T i.i.d. realizations of the channel. In the context
of CDMA, this implies that we assume θ, the noise variance

σ2 for example, remains constant when a block of T bits are
transmitted by each user (T could be the code word length).
The variational EM algorithm extracts point estimates for θ
and postulated posterior over the channel bits. Therefore, the
new Q-function may be written as:

Q(θ,b1, · · · ,bT ) = δ(θ − θ̂)
T∏

t=1

Q(bt), (14)

where bt contains the channel bits carried in the t-th realiza-
tion of the channel. Recall that for i.i.d. data, p(b, r, θ) =
p(θ)

∏T
t=1 p(bt, rt|θ). Substituting (14) into (6) yields the

following free energy:

F = − log p(θ̂) +
T∑

t=1

(∫
bt

Q(bt) log
Q(bt)

p(bt, rt|θ̂)
dbt

)
.

(15)
The first term on the right hand side of the equation

constitutes the prior knowledge of the parameter. While this
is an important factor in general, in this paper we assume no
parameter prior knowledge, i.e. p(θ) = constant.

As proven in [14], alternating between minimizing (15)
w.r.t. {Q(bt)}T

t=1 in the E step, and w.r.t. θ̂ in the M Step
leads to the exact EM algorithm where {bt}T

t=1 are the
“complete data” and θ̂ is the unknown parameter of interest.
Unfortunately, the exact EM is only possible in special cases
because the solution to the E step is Q(bt) = p(bt|rt, θ̂) (s.t.∫
bt

Q(bt)dbt = 1), which is often intractable. But suppose
we use a postulated (and simple) distribution Q(bt), with
parameter λt, and then find λt that minimizes (15). We then
arrive at the variational EM algorithm, which consists of the
initialization plus the E step and M step in the i-th iteration:

Initialization Choose initial values for θ̂(0).
E Step Minimize F(λ1, · · · , λT , θ̂(i−1)) in (15) w.r.t. λt

λ
(i)
t = arg min

λt

∫
bt

Q(bt) log
Q(bt)

p(bt, rt|θ̂(i−1))
dbt, (16)

for t = 1, · · · , T .
M Step Minimize F(λ(i)

1 , · · · , λ
(i)
T , θ̂) in (15) w.r.t. θ̂

θ̂(i) = arg min
θ̂

T∑
t=1

(∫
bt

Q(i)(bt) log
Q(i)(bt)

p(bt, rt|θ̂)
dbt

)
.

(17)

C. Mean-Field Multiuser Detection

In [6], a surprisingly simple (linear complexity) multiuser
detector was proposed for coded CDMA producing near
optimal performance at very high network load. The authors
applied a simple interference cancellation scheme and made
the following approximation:

p(yk|bk,b\k = b̂\k)
= 1√

2πσ2 exp
{
− 1

2σ2 (yk − AksT
k SAb̂\k − A2

kbk)2
}

= 1√
2πσ2 exp

{
− 1

2σ2 [A2
kbk − AksT

k (r − SAb̂\k)]2
}

(18)
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where b̂ is the average bit estimate received from the MAP
decoder, and b̂\k = [b̂1, · · · , b̂k−1, 0, b̂k+1, · · · , b̂K ]T . Here
σ2 = σ2

n +σ2
MU is the combination of channel noise and mul-

tiple access interference modelled as Gaussian noise, which
can be heuristically computed as

σ2 = var[A2
k b̂k − AksT

k (r − SAb̂\k)]. (19)

The soft bit decision is then drawn from (18) and fed
back to the MAP channel code decoder for the algorithm to
iterate. Though free energy appears rather distant from this
simple while effective detection scheme, we will show that it
is exactly an instance of the variational EM algorithm when
σ2 is an unknown parameter to be estimated. To generalize,
we will assume a channel noise covariance matrix Φ instead
of white noise.

Case 3: Mean-Field Multiuser Detector

p(b) =
∏K

k=1 ξ
1+bk

2
k (1 − ξk)

1−bk
2 , bk ∈ {±1},

p(r|b) = N (SAb,Φ),

Q(b) =
∏K

k=1 γ
1+bk

2
k (1 − γk)

1−bk
2 , bk ∈ {±1}.

(20)
Proof: In (20), we omitted the realization index in bt

and rt for simplicity since the E step in (16) is invariant w.r.t.
t. Here ξk and γk are the prior and approximate posterior
probability of bk being 1.

In the E step, we keep Φ constant. Hence, with some
mathematical manipulation, we have

F(γ,Φ) =
∑K

k=1 γk log γk

ξk
+ (1 − γk) log 1−γk

1−ξk

+2[γT Bγ − (1T B + rT Φ−1SA)γ],
(21)

where B = AT ST Φ−1SA − diag(AT ST Φ−1SA). (21) is
obtained by utilizing the property that E(bT Cb) = (2γ −
1)T [C − diag(C)](2γ − 1) + 1T diag(C)1 for b ∈ {±1}K .
diag(C) denotes a diagonal matrix with the diagonal elements
of square matrix C on its diagonal.

Rearranging ∂F(γ,Φ)/∂γk = 0 gives

log
γk

1 − γk
= log

ξk

1 − ξk
+ 2[ηT

k r − βT
k (2γ − 1)], (22)

where ηk and βk are the k-th column vector of Φ−1SA and
AT ST Φ−1SA, respectively. Applying the message passing
rule discussed in Section IV-A, we extract the extrinsic infor-
mation by setting ξk = 1/2. Let mk = 2γk − 1 represent the
posterior average of the estimate for bk, then from (22) mk

can be evaluated as

mk = tanh(ηT
k r − βT

k m). (23)

This equation describes a coordinate descent algorithm to
minimize the free energy in (21) with ξk = 1/2, whose
convergence cannot be guaranteed, however, since (21) is not a
strictly convex function. In [6], instead of solving a system of
K nonlinear equations, an approximation is essentially made
by letting mk = tanh(ηT

k r−βT
k b̂) (which follows from (18)).

Thus we have completed the E step and rigorously justified

the detection step in [6].
In the M step, we consider all T realizations of the channel

to estimate Φ. Therefore,

F(γ,Φ) =
∑T

t=1
1
2 log |Φ| − rT (t)Φ−1SAmt + 1

2r
T (t)Φ−1rt

+ 1
2m

T (t)[AT ST Φ−1SA − diag(AT ST Φ−1SA)]mt .
(24)

Solving ∂F(γ,Φ)/∂Φ−1 = 0 as in (17) yields (we omit
the technical details of this operation for limited space):

Φ = 1
T

∑T
t=1{(rt − SAmt)(rt − SAmt)T

+
∑K

k=1(1 − m
2(t)
k )A2

ksksT
k }.

(25)

It is clear that mk → {±1} as the algorithm converges.
Hence, the last term in (25) eventually vanishes. By omitting
the vanishing term, this is exactly the equation to estimate
σ2 = σ2

n + σ2
MU in [6] in the case of white noise. Together

with (23), we have provided a theoretical explanation for [6],
and extended it to the case of arbitrary noise.

In preparing this paper, we discovered that a similar mean-
field multiuser detector has been independently proposed in
[15], but our paper formulates the coded version and estab-
lishes the connection to [6] through variational EM.

D. SISO MMSE Multiuser Detection

A rather different turbo multiuser detection scheme was
proposed in [7] which involves a two stage process: First,
the soft bit estimate from the MAP decoder is remodulated
and subtracted from the matched filter output; Second, a
linear MMSE filter is used to further suppress the residual
interference. We will now demonstrate that with variational
EM formulation, the two-stage process can be derived from
a single optimization procedure.

Case 4: SISO MMSE Multiuser Detector

p(b) = N (b̃,W),
p(r|b) = N (SAb,Φ),
Q(b) = N (µ,Σ).

(26)

Proof: In (26), W = diag([1 − b̃2
1, · · · , 1 − b̃2

K ]T ) and
b̃ = [b̃1, · · · , b̃K ]T are the soft bit estimates from the MAP
decoder. We assume perfect knowledge of Φ in the E step and
it can be shown that

F(µ,Σ,Φ) = 1
2 [µT (AT ST Φ−1SA + W−1)µ
−2(rT Φ−1SA + b̃W−1)µ].

(27)

Solving ∂F(µ,Σ,Φ)/∂µ = 0, we arrive at

µ − b̃ = (AT ST Φ−1SA + W−1)−1AT ST Φ−1(r − SAb̃).
(28)

The extrinsic information is extracted following the rule
described in Section IV-A, by ignoring the prior informa-
tion for bk. That is, for the k-th bit, we define b̃k =
[b̃1, · · · , b̃k−1, 0, b̃k+1, · · · , b̃K ]T and Wk similarly. And thus

µk = eT
k (AT ST Φ−1SA + W−1

k )−1AT ST Φ−1(r − SAb̃k),
(29)

where ek denotes a K-vector of all zeros, except for the k-th
element being 1. Assuming white noise, i.e. Φ = σ2I, we get,
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after some matrix manipulation

µk = AkeT
k [AT WkA+σ2(ST S)−1]−1[(ST S)−1Sr−Ab̃k],

(30)
which is equivalent to zk in [7]. From µk, the extrinsic
information for bk can be generated.

It is also straightforward to incorporate the iterative noise
variance estimation by continuing with the M step similar to
Case 3. Considering the entire data block of size T ,

F(µ,Σ,Φ) =
∑T

t=1
1
2 [(rt − SAµt)T Φ−1(rt − SAµt)

+ log |Φ| + tr(AT ST Φ−1SAΣt)].
(31)

Solving ∂F(µ,Σ,Φ)/∂Φ−1 = 0 yields

Φ =
1
T

T∑
t=1

(rt−SAµt)(rt−SAµt)
T +SAΣtAT ST , (32)

where Σ is found in the E step to be Σ = (AT ST Φ−1SA +
W−1)−1. When the noise is white, we then have an update
for σ2 of the form

σ2 = 1
KT

∑T
t=1[(yt − RAµt)T R−1(yt − RAµt)

+tr(AT RAΣt)].
(33)

V. SIMULATIONS

In this section we briefly study the performance of the iter-
ative noise variance estimation algorithm as an improvement
to [7]. In the simulation, we perform the M step before the E
step by letting µ

(0)
t = 0 and Σ(0)

t = 0.
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Fig. 2. BER vs. SNR performance for SISO MMSE detector in turbo MUD.

Fig. 2 compares the performance of the SISO MMSE
multiuser detector with perfect channel knowledge compared
to unknown noise variance. The settings are the same as in [7]:
A four-user system is assumed with equal cross-correlation
ρij = 0.7. All users have equal power and employ the same
rate 1/2 convolutional code with generators 10011 and 11101.

The variational EM algorithm is utilized to iteratively update
the estimate for σ2 in each round of iteration. It is seen
that at high SNR, there is no performance degradation as the
variational EM detector converges to the single user bound
after seven iterations similar to the SISO MMSE detector with
perfect noise variance information.

VI. CONCLUSIONS

The concept of free energy is a far-reaching one [8][16].
One contribution of this paper is adopting the notion of
free energy minimization in establishing and analyzing mul-
tiuser detectors. Furthermore, we extended the initiative to
variational-EM-based multiuser detectors, in which channel
parameters may be efficiently and blindly estimated in con-
junction with turbo multiuser detection. This theoretical study
finds an interesting fundamental link between two celebrated
turbo multiuser detectors in [6] and [7]. We believe such
an elegant generalization is not coincidental, but just one
example of many potential applications of variational inference
in communications.
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