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Outline

• Multi-user signal model, with and without coding;

• Multiuser detection with channel coding – turbo MUD;

• Variational inference – free energy, how to use it for approximate
inference, and links to Exp.-Max. (EM) algorithm;

• MUD as variational inference – unified framework for both turbo and
uncoded MUD.

• Summary.
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Multiuser Received Signal Model

• Synchronous DS-CDMA, K users, received signal in t-th symbol
interval is

rt = Stbt + nt, t = 1, . . . , T. (1)

– rt = [r1,t, · · · , rN,t]
T is received data vector sampled at chip rate;

– St = [s1,t, s2,t, · · · , sK,t] is the matrix of received pulse waveforms;
– bt = [b1,t, b2,t, · · · , bK,t]

T contains the channel symbols;
– nt is the noise vector.

• Equivalently, the matched filter output can be used as sufficient
statistics:

yt = ST
t rt = Rtbt + zt, (2)

where Rt = ST
t St.

• Note: bt can represent coded or uncoded symbols so the model applies
to both cases.
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Multi-user decoder. Note time dependency among symbols of the same user, and user

dependency among symbols at the same time.
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Main Points

• Many sub-optimal MUD’s have been derived using different approaches
e.g. linear MMSE, multi-stage SIC, etc.

• Turbo multi-user detection (MUD) has a well-understood, standard
error decoding section, but an ad-hoc MUD section:

– Optimal APP updates for the multi-access interference (MAI)
channel is not feasible ⇒ simplified methods e.g. soft interference
cancellation.

• Main point: variational inference provides coherence and structure to
the design of sub-optimal MUD (turbo or not).

– Secondary point: Variational EM (expectation maximization) makes
parameter estimation natural e.g. noise covariance matrix.
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Optimal MUD: JO and IO Detectors

• The optimal detector requires maximizing the posterior distribution of u

or uk,t given r = [r1; · · · ; rT ], subject to u ∈ {+1,−1}KT – an integer
programming problem with exponential complexity.

• Jointly-optimal (JO) detector

P (u|r) =
p(r|u)P (u)∑
u p(r|u)P (u)

=⇒ û = arg max
u

P (u|r). (1)

• Individually-optimal (IO) detector

P (uk,t|r) =
p(r|uk,t)P (uk,t)∑
uk,t

p(r|uk,t)P (uk,t)
=⇒ ûk,t = arg max

uk,t

P (uk,t|r), (2)

where k = 1, · · · , K and p(r|uk,t) =
∑

uruk,t
p(r|u)P (u).
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Iterative Decoding for Near-Optimal Performance

• Optimal decoding not practical, even without coding.

• With error control code, turbo approach has been attempted:

– FEC decoder is standard SISO (forward-backward), derived from
factor graph of code;

– But factor graph for multi-user channel has variable nodes
representing b1,t, . . . , bK,t all connected to one factor node, hence
factor graph cannot simplify problem.

– Various ad-hoc methods (matched-filter based IC, MMSE-based IC)
have been used with some success.

• Without coding, sub-optimal detectors such as SIC, PIC, LMMSE,
decorrelating decision feedback exist.

• Can coded and uncoded near-optimal MUD’s be derived from the same
starting point?
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Bayesian View of the Turbo MUD Problem

• Turbo MUD = Generate EXT (extrinsic information) of b exactly using
BCJR in decoder, but update EXT’s approximately using near-optimal
MUD in multi-user section.

• Bayesian inference = use prior distribution on unknown variables b,
Pin(b), and use appropriate statistical model and observations to
update that to Pout(b).

– If Pout(b) ∝ p(y|b)Pin(b), then we have exact inference;
– BUT Pout(b) may take a different form, easier to compute. Even

Pin(b) can assume a more convenient structure than its exact
expression. Then we have approximate inference.

• So the MUD section of a turbo MUD can be designed as an
approximate Bayesian inference engine; uncoded MUD can be viewed
similarly, but with uniform priors.
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Variational Inference

• Exact updates too complex because

– P (b|r) is a discrete distribution;
– P (b|r) does not factorize.

• Variational inference tackles these problems by postulating a
distribution Q(b) with a convenient form e.g. a Gaussian.

• Then we minimize the Kullback-Leibler (KL) divergence between Q(b)
and P (b|r). This is also known as variational free energy:

F(λ1, . . . , λJ) =

∫

b

Q(b) log
Q(b)

p(r|b)P (b)
db

where λ1, . . . , λJ are the parameters that specify Q(b).
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Linear MUD: A Simple Example

• General procedure for deriving detectors using variational inference:

– Assume postulated distributions for p(b), p(r|b) and Q(b);
– Calculate closed-form expression for F(λ1, . . . , λJ);
– Minimize F(λ1, . . . , λJ) (exactly or iteratively).

Case 1: Linear Multiuser Detector

p(b) = N (0, I),
p(r|b) = N (Sb, σ2I),
Q(b) = N (µ,Σ).

(1)
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Linear Multi-user Detection

• Now the free energy can be evaluated as

F(µ,Σ) = −1
2 log |Σ| + 1

2σ2{µ
T (STS + σ2I)µ

+tr[(STS + σ2I)Σ] − 2rTSµ}
(1)

• It can be minimized exactly by solving ∂F(µ)/∂µ = 0 and
∂F(Σ)/∂Σ−1 = 0.

µ̂ = (STS + σ2I)−1STr;

Σ̂ = σ2(STS + σ2I)−1.
(2)

• µ̂ approaches the MMSE, decorrelating and matched filter detector
outputs when σ takes on the its true value, 0 and ∞, respectively.
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Iterative Minimization: Linear and Clipped SIC

• What if we choose to iteratively minimize F(µ,Σ)?

Case 2: Linear/Clipped SIC Detectors
Given the expression for F(µ,Σ), in the i-th iteration, for k = 1 to K

µ̂
(i)
k = arg min

µk

F(µ
(i)
1 , · · · , µ

(i)
k−1, µk, µ

(i−1)
k+1 , · · · , µ

(i−1)
K ) (1)

s.t. µmin ≤ µk ≤ µmax, describes a linear SIC if µmin = −∞ and
µmax = ∞, and a clipped SIC otherwise.

• This is equivalent to a coordinate descent algorithm applied to the
minimization of F(µ,Σ). And it leads to a proof of guaranteed
convergence of linear/clipped SIC with at least linear convergence rate.
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Variational EM

• Modify the original formulation by including an unknown parameter θ,
which is constant over T realizations of the channel b1, · · · ,bT .

• Let λ1, · · · , λT be the parameters of Q(b1), · · · , Q(bT ).

Initialization Choose initial values for θ̂(0).

E Step Minimize F(λ1, · · · , λT , θ̂(i−1)) w.r.t. λt

λ
(i)
t = arg min

λt

∫

bt

Q(bt) log
Q(bt)

p(bt, rt|θ̂(i−1))
dbt, (1)

for t = 1, · · · , T .

M Step Minimize F(λ
(i)
1 , · · · , λ

(i)
T

, θ̂) w.r.t. θ̂

θ̂
(i)

= arg min
θ̂

T∑

t=1

(∫

bt

Q
(i)

(bt) log
Q(i)(bt)

p(bt, rt|θ̂)
dbt

)
. (2)
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Relationship to Conventional EM Algorithm

• Conventional E step:

U(θ, θ̂(i)) = E[log p(b|θ, r)]

where expectation is with respect to the distribution p(b|θ̂(i), r).

• But U may be hard to find. If we approximate Q(b) ≈ p(b|θ̂(i), r) by
minimizing variational free energy between the two distributions, we get
the E step of the previous page.

• The M step follows from computing U using the postulated distribution,
and then maximizing the expression.

• Variational EM gives “hard” parameter estimates and “soft” symbol
estimates.
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Applying Variational EM to MUD

Case 3: Mean-Field Multiuser Detector

p(b) =
∏K

k=1 ξ
1+bk

2
k (1 − ξk)

1−bk
2 , bk ∈ {±1},

p(r|b) = N (Sb,Φ),

Q(b) =
∏K

k=1 γ
1+bk

2
k (1 − γk)

1−bk
2 , bk ∈ {±1}.

(1)

• Here ξk and γk are the prior and posterior probabilities of bk being 1.
This looks more appealing than the Gaussian approximations earlier.

• The approximation made here is the independence of posterior:
Q(b) =

∏K

k=1 Q(bk). This is called the mean field approximation.

• We assume the noise covariance matrix Φ is an unknown parameter, to
be estimated together with data iteratively, via variational EM.
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Mean Field Multiuser Detector: E Step

• Evaluate the free energy expression considering T realizations.

F(m, Φ) =
∑ T

t=1

(∑K

k=1

1+mk,t

2 log
1+mk,t

1+b̃k,t
+

1−mk,t

2 log
1−mk,t

1−b̃k,t

)
+ 1

2 log |Φ|

−rT
t Φ−1Smt + 1

2r
T
t Φ−1rt + 1

2m
T
t [STΦ−1S − diag(STΦ−1S)]mt

(1)

where mt = 2γt −1, b̃t = 2ξt −1 and B = STΦ−1S− diag(STΦ−1S).

• E Step: Data Detection – Equating ∂F(m,Φ)/∂mk,t = 0.

mk,t = tanh(ηT
k rt − βT

k mt), (2)

where ηk and βk are the k-th column vector of Φ−1S and B.

• We can use a coordinate descent approach to minimize F(m,Φ) over
mt.
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Multi-Stage PIC Interpretation of the E Step

• A multi-stage parallel update would be

m
(p+1)
k,t = tanh(ηT

k rt − βT
k m

(p)
t )

in the p-th iteration, which is a PIC.
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Mean Field Multiuser Detector: M Step

• M Step: Parameter Estimation – Solve ∂F(m,Φ)/∂Φ−1 = 0.

Φ =
1

T

T∑

t=1

{(rt − Smt)(rt − Smt)
T +

K∑

k=1

(1 − m2
k,t)A

2
ksks

T
k }. (1)

• The last term can be omitted because mk → {±1} as the algorithm
converges.

• This mean field multiuser detector is exactly the same as the one
proposed in [Alexander, Grant and Reed, Euro. Trans. Telecommun.,
Oct. 1998], which was derived heuristically.
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SISO MMSE Multiuser Detector

• Another important turbo multiuser detector. [Wang and Poor, Trans.
Comms., July 1999]

• It can also be derived from variational free energy minimization by
postulating the following distributions:

Case 4: SISO MMSE Multiuser Detector

p(b) = N (b̃,W),
p(r|b) = N (Sb,Φ),
Q(b) = N (µ,Σ).

(1)

• W = diag([1− b̃2
1, · · · , 1− b̃2

K]T ) and b̃ = [b̃1, · · · , b̃K]T are the soft bit
estimates from the MAP decoder.
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SISO MMSE Multiuser Detector (Cont.)

F(µ, Σ, Φ) =

T∑

t=1

1

2
[(rt − Sµt)

T
Φ

−1
(rt − Sµt) + log |Φ| + tr(S

T
Φ

−1
SΣt)]. (1)

• E Step: Solve ∂F(µ,Σ,Φ)/∂µt = 0.

µk,t = eT
k (STΦ−1S + W−1

k,t)
−1STΦ−1(rt − Sb̃k,t), (2)

– ek = [0, · · · , 0, 1, 0, · · · , 0]T , all zero vector with kth element being 1;
– b̃k,t = [b̃1,t, · · · , b̃k−1,t, 0, b̃k+1,t, · · · , b̃K,t]

T ;

– Wk,t = diag([1 − b̃2
1,t, · · · , 1 − b̃2

k−1,t, 1, 1 − b̃2
k+1,t, · · · , 1 − b̃2

K,t]
T ).

• M Step: Solve ∂F(µ,Σ,Φ)/∂Φ−1 = 0.

Φ =
1

T

T∑

t=1

(rt − Sµt)(rt − Sµt)
T + SΣtS

T (3)
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Simulations

• The original SISO MMSE detector assumes known noise variance. Let’s
see how well variational EM works without knowing σ2.
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Summary

• Optimal MUD and its difficulty.

• Concept of variational inference.

• Deriving linear MUD and linear/clipped SIC using variational inference.

• Deriving turbo multiuser detectors using variational inference.
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Thank You!
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