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Abstract— We propose an efficient training-based OFDM chan-
nel impulse response (CIR) and carrier frequency offset (CFO)
estimation algorithm that addresses the problem of phase noise
(PHN), assuming that the PHN has a known prior distribution.
The optimal joint estimation of CIR, PHN and CFO was
described in an earlier work of ours. In this paper, we focus
on the case where a training symbol consists of two identical
halves in the time domain, and propose a variant to Moose’s CFO
estimation algorithm that accounts for PHN in CFO estimation.
This is followed by an optimal joint CIR and PHN estimation
scheme tailored for this “repeating training symbol” setup. It is
assumed that the PHN process is Gaussian with known mean
and covariance matrix. This encompasses both Wiener PHN
and Gaussian PHN. It is shown through simulations that the
proposed algorithm performs almost as well as the optimal
JCPCE algorithm at much lower complexity. To further reduce
the complexity of the proposed scheme, the conjugate gradient
(CG) method is used and we show that it can be realized using
the Fast Fourier Transform (FFT).

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is a
well-known modulation technique that has become a preferred
choice in high-rate wireless and wireline communication sys-
tems such as broadband wireless access (IEEE802.16), wire-
less local area networks (Wi-Fi), high-speed digital subscriber
lines (DSL) and digital broadcasting (DAB and DVB). This
is due to its spectral efficiency – no guard bands are needed
between adjacent frequency channels – and more importantly,
its implementation simplicity compared to traditional time-
domain modulation methods in channels with severe inter-
symbol interference (ISI), encountered whenever bit rates are
required to be very large.

OFDM does have its drawbacks relative to time-domain
modulation, most significantly its extreme sensitivity to time-
varying multiplicative effects such as fast fading, Doppler
shifts, and oscillator jitter. The latter two effects lead to
a mismatch between the carrier frequencies of the received
signal and the local oscillator, so that a frequency offset ∆f
Hz is created. Oscillator jitter also creates a very damaging
effect called phase noise, meaning that the phase of the locally
generated sinusoid randomly changes over time.

Various CFO estimation schemes for OFDM have been
studied in the past without considering the presence of PHN. In
[1], a MUSIC-based blind CFO estimator was proposed. It was

later shown to be a maximum likelihood estimator [2]. In [3],
a CFO estimator of much lower complexity was introduced
which uses repeating training symbols (i.e. a training symbol
with two identical halves in time domain).

To our knowledge, the optimal joint estimation of CFO and
CIR in the presence of PHN was derived for the first time in
[4], where the “complete likelihood function” of the CIR, CFO
and PHN was maximized. This approach yields maximum
a posteriori (MAP) joint estimates of CFO, PHN and CIR
with uniform priors for CFO and CIR, and an informative
prior for PHN which can be obtained from measurements
or hardware specifications. However, the proposed optimal
estimator suffers from the same drawback as [1] and [2] in
that the CFO estimation stage requires a search operation over
a range of candidate values, resulting in excessive complexity
for practical implementation.

In this paper, our goal is to achieve near-optimal CFO
and channel estimation performance with less complexity.
Motivated by [3], we will assume that the training symbols
for channel estimation have a repeating structure. Furthermore,
instead of a single joint optimization routine, we divide the
task into two steps. We first perform CFO estimation by op-
timally canceling the effect of PHN. With the CFO estimated
and removed, we then jointly estimate the CIR and PHN. The
notations used in this paper will follow those in [4].

II. SIGNAL MODEL

We assume a slow fading frequency-selective channel where
the CIR remains constant during each packet of transmission
which consists of multiple OFDM symbols including the initial
preambles for synchronization and channel estimation as well
as the variable-length payload that follows.

Assuming perfect timing synchronization and a cyclic prefix
that is longer than the CIR, the complex baseband received
signal of an OFDM symbol within the training period sampled
at rate N/T can be written as a length-N vector, after the
removal of the cyclic prefix:

r = EPGFHd + n. (1)

In (1), E = diag([1, ej2πε/N , · · · , ej2π(N−1)ε/N ]T ) is the
CFO matrix, where ε = ∆fT is the normalized CFO.
P = diag([ejθ0 , · · · , ejθN−1 ]T ) is the PHN matrix, in which
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TABLE I

JOINT CFO/PHN/CIR ESTIMATOR (JCPCE).

Step 1: ε̂ = arg minε 1T ECCHEH1 − 1T Im(ECCHEH)T

×[Re(ECCHEH) + 2σ2ρ2Φ−1]−1Im(ECCHEH)1;

Ê = diag([1, ej2πε̂/N , · · · , ej2π(N−1)ε̂/N ]T );

Step 2: θ̂ = [Re(ÊCCHÊH) + 2σ2ρ2Φ−1]−1Im(ÊCCHÊH)1;

P̂ = diag([ejθ̂0 , · · · , ejθ̂N−1 ]T );

Step 3: ĝ = (2ρ2)−1WHDHFP̂HÊHr.

the discrete-time PHN process θ = [θ0, · · · , θN−1]T has a
multivariate Gaussian distribution p(θ) = N (0,Φ). The co-
variance matrix Φ can be determined a priori from the power
spectral density (PSD) of the voltage controlled oscillator
(VCO) output as discussed in [4]. In particular, the PHN
process from a free running oscillator may be modeled as
a nonstationary Wiener process (referred to as Wiener PHN).
And the PHN process from a phase-locked oscillator may be
modeled as a wide-sense-stationary coloured Gaussian process
(referred to as Gaussian PHN). Using g = [g0, · · · , gL−1]T

to denote the CIR, where L is the channel length, the channel
convolution matrix G is formed by circular rotations of 1√

N
g.

F ∈ C
N×N is the DFT matrix with the (l,m)th element

being Fl,m = 1√
N

e−j
2π(l−1)(m−1)

N , and d is a data vector
containing constant modulus training symbols. n is complex
white Gaussian noise with variance σ2 per dimension, i.e.
p(n) = CN (0, 2σ2I).

Letting D = diag(d), we have DHD = 2ρ2I, where
Es = 2ρ2 is the symbol energy per subcarrier. We can now
introduce the following equivalent representation of (1) for the
convenience of channel estimation:

r = EPFHDWg + n, (2)

where W is a partition of the DFT matrix, i.e., F = [W|V],
in which W ∈ C

N×L and V ∈ C
N×(N−L).

III. JOINT CFO/PHN/CIR ESTIMATOR (JCPCE)

In [4], we derived the optimal Joint CFO/PHN/CIR Estima-
tor (JCPCE) that optimizes the “complete likelihood function”
p(r, ε,θ,g) = p(r|ε,θ,g)p(ε)p(θ)p(g). Since we assume no
prior knowledge of ε and g, p(ε) and p(g) are constants.
But the prior distribution of θ is available, and takes the
form p(θ) = N (0,Φ). Therefore, the “complete negative log-
likehood function” can be written as

L(ε,θ,g) = − log p(r|ε,θ,g) − log p(θ)
= 1

2σ2 (r − EPFHDWg)H(r − EPFHDWg)
+ 1

2θT Φ−1θ.
(3)

Our objective is to find the optimal estimates

(ε̂, θ̂, ĝ) = arg min
ε,θ,g

L(ε,θ,g). (4)

Table I summarizes the JCPCE algorithm, in which the joint
optimizers ε̂, θ̂, and ĝ may be found in three simple steps.

IV. CFO ESTIMATION BASED ON REPEATING TRAINING

SYMBOLS

A crucial drawback of JCPCE is that ε̂ can only be found
by searching over a range of candidate values, which implies
complexity that scales with the inverse of the resolution
required for ε. For cases where the system has limited compu-
tational power, it is beneficial to obtain a closed form solution
for ε̂. When no PHN is present, the pioneering work of Moose
[3] achieves just that by assuming the two halves of a training
symbol are identical.

A. Moose’s CFO Estimator

In the Moose algorithm, we transmit an OFDM symbol
with two identical halves in the time domain. Such a signal
is easily generated [5] by transmitting N/2 training symbols
d0, · · · , dN/2−1 on the even sub-carriers, and zeros on the odd
sub-carriers. The N -point sequence in time at the receiver,
with CFO and PHN distortion, can be written as

rn =
1√
N/2

ej(θn+2πεn/N)

N/2−1∑
k=0

hkdkej4πnk/N + ηn, (5)

for n = 0, · · · , N − 1.
We shall first assume no PHN, i.e., θn = 0. Denoting r1 =

[r0, · · · , rN/2−1]T and r2 = [rN/2, · · · , rN−1]T , we have

r1 = x + n1

r2 = ejπεx + n2,
(6)

where x = EGFHd ∈ C
N
2 ×1, and FHd ∈ C

N
2 ×1 is

the training symbol that is transmitted twice consecutively,
n1 ∼ CN (0, 2σ2I) and n2 ∼ CN (0, 2σ2I) are independent
additive noise vectors. Here the CFO matrix E, channel
circular convolution matrix G and DFT matrix F follow
similar definitions as before but are only half the size.

The ML estimate of ε is

ε̂ = arg maxε p(r1, r2|ε)
= arg maxε p(r2|ε, r1)p(r1|ε), (7)

which reduces to ε̂ = arg maxε p(r2|ε, r1) if we assume that
p(r1|ε) = p(r1) (this is an approximation since r1 and ε are
in general not independent).

Notice that

r2 = ejπεr1 − ejπεn1 + n2

= ejπεr1 + z, (8)

where p(z) = CN (0, 4σ2I). We then have p(r2|ε, r1) =
CN (ejπεr1, 4σ2I). Therefore, the negative log-likelihood
function becomes

− log p(r2|ε, r1) =
1

4σ2
(r2 − ejπεr1)H(r2 − ejπεr1). (9)

And it follows that

ε̂ =
1
π

�rH
1 r2. (10)

B. CFO Estimator with PHN Rejection

In the presence of PHN, the derivation presented above fails
because (8) no longer holds. We propose, in the following, a
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CFO estimation algorithm that optimally cancels the effect of
PHN, as an alternative to Step 1 of the JCPCE algorithm in
Table I.

Rewriting (6) to include the PHN distortion, we have

r1 = P1x + n1

r2 = ejπεP2x + n2,
(11)

where P1 and P2 contain consecutive PHN sequences θ1 and
θ2. The ML estimate of ε is then

ε̂ = arg maxε p(r1, r2|ε)
= arg maxε

∫
θ2

∫
θ1

p(r1, r2,θ1,θ2|ε)dθ1dθ2
(12)

where

p(r1, r2,θ1,θ2|ε)
= p(r1, r2|ε,θ1,θ2)p(θ1,θ2)
= p(r2|, r1, ε,θ1,θ2)p(r1|ε,θ1,θ2)p(θ1,θ2).

(13)

Assuming p(r1|ε,θ1,θ2) = p(r1) as before, it follows that

ε̂ = arg maxε

∫
θ2

∫
θ1

p(r2|r1, ε,θ1,θ2)p(θ1,θ2)dθ1dθ2.

(14)

Denoting the “differential PHN” sequence θ∆ = θ2 −θ1 ∈
R

N
2 ×1, and P∆ = diag([ejθ∆(0) , · · · , e

jθ∆( N
2 −1) ]T ), r2 can be

written in terms of r1 as

r2 = ejπεP∆r1 − ejπεP∆n1 + n2

= ejπεP∆r1 + z, (15)

where p(z) = CN (0, 4σ2I). In other words,
p(r2|r1, ε,θ1,θ2) = CN (ej2πεP∆r1, 4σ2I). This means
that p(r2|r1, ε,θ1,θ2) is only a function of θ∆ instead of θ1

and θ2 individually. We may therefore rewrite (14) as

ε̂ = arg maxε

∫
θ∆

p(r2|r1, ε,θ∆)p(θ∆)dθ∆

= arg maxε p(r2|r1, ε).
(16)

Lemma 1: If [θT
1 ,θT

2 ]T ∈ R
N×1 is a jointly Gaussian

random vector with distribution N (0,Φ), where Φ ∈ R
N×N

can be partitioned into four N
2 × N

2 blocks:

Φ =
[

Ω1 Υ
ΥT Ω2

]
, (17)

then θ∆ = θ2 − θ1 ∼ N (0,Ω1 + Ω2 − Υ − ΥT ).

Proof: The result follows from the linear transformation
of the Gaussian random vector [θT

1 ,θT
2 ]T .

Denoting Φ∆
.= Ω1+Ω2−Υ−ΥT , we may write p(θ∆) =

N (0,Φ∆). Finally, we use the following lemma to evaluate
p(r2|r1, ε) in (16).

Lemma 2: Given p(r2|r1, ε,θ∆) = CN (ejπεP∆r1, 4σ2I)
and p(θ∆) = N (0,Φ∆), then

p(r2|r1, ε) = CN (ejπεr1,R1Φ∆RH
1 + 4σ2I), (18)

where R1 = diag(r1).

Proof: See Appendix I.

From (16) and Lemma 2, we see that

ε̂ = arg maxε log p(r2|r1, ε)
= arg minε(r2 − ejπεr1)H

×(R1Φ∆RH
1 + 4σ2I)−1(r2 − ejπεr1)

= 1
π � rH

1 (R1Φ∆RH
1 + 4σ2I)−1r2.

(19)

This expression has a very similar correlation form compared
to (10) except for a weighting matrix that accounts for the
distortion caused by PHN.

C. Joint PHN and CIR Estimation

With the CFO estimated using (19), we now turn to the
remaining channel estimation issue in the presence of PHN.
Because of the special structure of the repeating training
symbol, we are required to re-derive the remaining steps of
JCPCE.

Expressing (5) in the matrix form yields

r = ÊPF̌HDWg + n, (20)

where r = [rT
1 , rT

2 ]T ∈ C
N×1 is the time-domain received

repeating training symbol. Ê ∈ C
N×N is the CFO matrix

already estimated; P ∈ C
N×N is the unknown PHN matrix;

F̌ = [F,F] ∈ C
N/2×N is the cascade of two DFT matrices;

D = diag(d) ∈ C
N/2×N/2 contains the length-N/2 training

symbol; g ∈ C
L×1 is the channel impulse response.

Similar to (3), we obtain the “complete negative log-
likelihood function”:

L(θ,g) = − log p(r|θ,g) − log p(θ)
= 1

2σ2 (r − ÊPF̌HDWg)H(r − ÊPF̌HDWg)
+ 1

2θT Φ−1θ.
(21)

1) Forward Substitution: Solving ∂L(θ,g)/∂g∗ = 0 pro-
duces the optimal channel estimate of g in terms of θ

ĝ = (4ρ2)−1WHDHF̌PHÊHr. (22)

Noticing that

(r − ÊPF̌HDWĝ)H(r − ÊPF̌HDWĝ)
= rHr − (4ρ2)−1rÊPF̌HDWWHDHF̌PHÊHr

= 1
4ρ2 rHÊP

[
FHD 0

0 FHD

] [
I + VVH −WWH

−WWH I + VVH

]

×
[
FHD 0

0 FHD

]H

PHÊHr,

(23)
and substituting (23) into (21), we have after simplification

L(θ) = 1
8σ2ρ2 uT ÊAÊHu∗ + 1

2θT Φ−1θ (24)

where

A = RH

[
FHD 0

0 FHD

] [
I + VVH −WWH

−WWH I + VVH

]

×
[
FHD 0

0 FHD

]H

R.

(25)
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TABLE II

MODIFIED JCPCE WITH CLOSED-FORM CFO ESTIMATION.

Step 1: ε̂ = 1
π
� rH

1 (R1Φ∆RH
1 + 4σ2I)−1r2;

Ê = diag([1, ej2πε̂/N , · · · , ej2π(N−1)ε̂/N ]T );

Step 2: θ̂ = [Re(ÊAÊH) + 4σ2ρ2Φ−1]−1Im(ÊAÊH)1;

P̂ = diag([ejθ̂0 , · · · , ejθ̂N−1 ]T );

Step 3: ĝ = (4ρ2)−1WHDHF̌P̂HÊHr.

and R = diag(r), u = [ejθ0 , · · · , ejθN−1 ]T . Therefore,

L(θ) ≈ 1
8σ2ρ2 (1 + jθ)T ÊAÊH(1 − jθ) + 1

2θT Φ−1θ

= θT Re(ÊAÊH)θ + 4σ2ρ2θT Φ−1θ

−2θT Im(ÊAÊH)1.
(26)

Solving ∂L(θ)/∂θ = 0 gives us the optimal estimate of θ

θ̂ = [Re(ÊAÊH) + 4σ2ρ2Φ−1]−1Im(ÊAÊH)1. (27)

2) Backward Substitution: Let P̂ = diag(exp(jθ̂)) and
plug it into (22), the channel estimate after removing the CFO
and PHN is therefore:

ĝ = (4ρ2)−1WHDHF̌P̂HÊHr. (28)

We summarize the modified JCPCE algorithm for the case
of repeating training symbols in Table II.

V. COMPLEXITY ANALYSIS AND LOW COMPLEXITY

IMPLEMENTATION

The proposed modified JCPCE algorithm leads to tremen-
dous computational saving compared to the original one, as
the estimation of the CFO now has a convenient closed
form. However, further complexity reduction is still needed
in order to bring the overall complexity down to the order
of O(N log N), to allow for practical implementation. Note
that in the modified JCPCE, the main computational tasks
reside in evaluating equations (19), (27) and (28). We will
now investigate the complexity of each computation and seek
means to reduce it.

A. Evaluation of ĝ

In (28), we see that D, P̂ and Ê are diagonal matrices,
while F and WH are FFT or partial FFT matrices. Thus each
step of matrix-vector multiplication has a complexity order of
O(N log N) or less.

B. Evaluation of θ̂

We invoke the conjugate gradient (CG) method [6] to lower
the complexity of evaluating θ̂ in (27). The techniques used
here is similar to those in [4], and some details will be omitted
in the subsequent description.

TABLE III

CONJUGATE GRADIENT ALGORITHM FOR EVALUATING (27).

Initialization:
θ̂0 = 0

γ0 = [Re(ÊAÊH) + Ψ−1]θ̂0 − q = −q
ν0 = −γ0 = q

For k = 0 : i − 1

αk = γH
k γk/(νH

k [Re(ÊAÊH) + Ψ−1]νk)

θ̂k+1 = θ̂k + αkνk

γk+1 = γk + αk[Re(ÊAÊH) + Ψ−1]νk

βk+1 =
γH

k+1γk+1

γH
k

γk

νk+1 = −γk+1 + βk+1νk End

1) Wiener Phase Noise: The inverse of Wiener PHN co-
variance matrix Φ has a convenient tridiagonal structure [7].
Writing Ψ = 1

4σ2ρ2 Φ, Ψ−1 = 4σ2ρ2Φ−1 would also be

tridiagonal. Let q = Im(ÊAÊH)1, where q can be computed
efficiently using FFT since all matrices involved in calculating
q are either diagonal or FFT (or partial FFT) matrices. The
evaluation of (27) is now equivalent to solving a linear
equation [Re(ÊAÊH) + Ψ−1]θ̂ = q. This problem can be
easily tackled by the conjugate gradient method. The complete
algorithm is presented in Table III.

Of all the operations in Table III, the dominant com-
plexity is associated with the matrix-vector multiplication
[Re(ÊAÊH) + Ψ−1]νk. Thanks to the tridiagonal form
of Ψ−1, this can be performed easily. More specifically,
evaluating [Re(ÊAÊH) + Ψ−1]νk requires 6N + 2N log N
operations. The CG algorithm requires a maximum of N
iterations to converge to the exact solution. But our simulation
shows that only a small number of iterations are needed for
accurate estimates. Hence, the complexity of evaluating (27)
is O(iN log N), where i is the number of CG iterations.

2) Gaussian Phase Noise: In the case of Gaussian PHN, we
notice that Ψ, as a Toeplitz matrix, can be approximated by a
circulant matrix Ψ̃ [8]. It can be shown that this approximation
is asymptotically exact as N → ∞ for an autocorrelation
matrix Ψ of a first-order autoregressive process, which is a
good fit to the PHN process assumed in [9]. Being a circulant
matrix, the eigenvalue decomposition (EVD) of Ψ̃ is FΛΨ̃FH

and Ψ̃−1 = FΛ−1

Ψ̃
FH , where ΛΨ̃ is a diagonal matrix. It is

well-known that ΛΨ̃ = diag(
√

NFHϕ̃1), where ϕ̃1 is the first
column of Ψ̃. Replacing Ψ by Ψ̃, the simplified estimator for
θ becomes

θ̂ = [Re(ÊAÊH) + Ψ̃−1]−1Im(ÊAÊH)1. (29)

This problem can be treated similar to the Wiener PHN case
using the CG method in Table III by replacing Ψ with Ψ̃. It
can be shown that its complexity is again O(iN log N).

C. Evaluation of ε̂

Complexity reduction is also available for (19) by using the
CG method. First we notice that Φ∆, evaluated according to
Lemma 1, is a Toeplitz matrix for both Wiener and Gaussian
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PHN, hence a close circulant approximation Φ̃∆ can be found
[8]. Then we may concentrate on the matrix-vector product

x = (R1Φ̃∆RH
1 + 4σ2I)−1r2. (30)

This is equivalent to solving a linear equation (R1Φ̃∆RH
1 +

4σ2I)x = r2, which can be computed efficiently using the CG
method analogous to the one described in Table III. For space
limitation, we will not present the complete CG algorithm
here. But it can be easily verified that the complexity of
applying CG method is again O(iN log N).

VI. SIMULATIONS

In the following, we simulate the performance of the
proposed modified JCPCE based on algorithms presented
in Table II. The following system parameters are assumed
in our simulations unless stated otherwise: 1) A Rayleigh
multipath fading channel with a delay of L = 10 taps and
an exponentially decreasing power delay profile that has a
decay constant of 4 taps. 2) An OFDM training symbol size
of N = 64 subcarriers with each subcarrier modulated in
QPSK format. 3) Baseband sampling rate fs = 20 MHz
(subcarrier spacing of 312.5 KHz). 4) The Wiener PHN is
generated as a random-walk process with incremental PHN
standard derivation of αφ = 1.0 deg. The exact expression for
Φ can be found in [4]. 5) The Gaussian PHN has a standard
deviation of θrms = 4 deg (i.e. Rθ(0) = (πθrms/180)2). It is
generated, according to the Matlab code recommended for the
IEEE 802.11g standard [9], as i.i.d. Gaussian samples passed
through a single pole Butterworth filter of 3dB bandwidth
Ωo = 100 kHz. Hence, the PHN covariance matrix Φ
is Φi,j = (πθrms/180)2e−

2πΩo|i−j|
fs . This small amount of

PHN can severely degrade the performance of higher-order
modulation schemes, such as 64-QAM.

The achievable CFO estimation range is |ε| < 0.5 for the
original JCPCE algorithm and |ε| < 1 for the modified JCPCE
algorithm. In the simulations, the CFO term ε will be generated
from a uniform distribution in [−0.8, 0.8] corresponding to a
maximum CFO of 250 KHz.

A. Unresolvable Residual Common Phase Rotation

Fig. 1 plots two instances of the PHN process (from the
Wiener and Gaussian model, respectively) and their estimates
via the modified JCPCE algorithm. At SNR = 30 dB, it is
seen that the Wiener PHN is estimated accurately, while the
estimator for the Gaussian PHN differs from the actual profile
by a constant phase rotation. This constant rotation δ creates
and equal but opposite rotation in the channel estimate – a
phenomenon called residual common phase rotation (RCPR),
which is analyzed comprehensively in [4]. Left untreated, the
effect of RCPR is that in the data detection stage the receiver
will experience an exacerbated PHN distortion. Fortunately,
the statistics of the exacerbated PHN can be easily found [4],
and dealt with accordingly in the data detection stage [10],
[11]. Since this is outside the scope of this paper, we will
simply assume from hereon that δ can be perfectly corrected to
facilitate easy assessment of the quality of channel estimation.
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Fig. 1. Actual vs. estimated PHN profile using modified JCPCE.
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Fig. 2. MSE vs. SNR channel estimation performance with Wiener PHN.

RCPR is only minor in Wiener PHN channel due to the
assumption of perfect phase synchronization at the beginning
of the OFDM symbol.

B. Channel Estimation with Wiener PHN

Fig. 2 plots the channel estimation mean-squared error
(MSE) as a function of the system SNR in the presence of
both CFO and Wiener PHN using repeating training symbols.
The proposed modified JCPCE (Table II) is plotted against
the Cramér-Rao Lower Bound (CRLB) for estimating g in an
OFDM channel free of CFO or PHN, which can be shown
to be CRLB(g) = L/SNR with SNR = Es/No = ρ2/σ2. It
is seen that the modified JCPCE almost completely cancels
the effect of CFO and PHN distortion. We also plot the low
complexity implementation of the modified JCPCE using the
CG method described in Section V. It is shown that even
with as few iterations as i = 5 for the evaluation of (19) and
(27), little performance degradation is introduced as a result.
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Fig. 3. MSE vs. SNR channel estimation performance with Gaussian PHN.

The top-most curve is the conventional channel estimator,
which uses the Moose algorithm [3] to estimate the CFO and
performs the subsequent channel estimation by ignoring the
PHN. An error floor exists in the channel estimate obtained as
such due to the inter-carrier interference (ICI) created by the
PHN that causes a constant SNR degradation to the channel
estimate. It can be checked from [4] that the original JCPCE
performance curve is almost identical to the modified JCPCE
performance curve obtained in this simulation, demonstrating
that the modified JCPCE produces near-optimal performance
while enjoying tremendous computational saving.

C. Channel Estimation with Gaussian PHN

Fig. 3 simulates the modified JCPCE for Gaussian PHN.
Here we keep the same simulation settings except for the PHN
statistics. It is seen again that the modified JCPCE performs
close to the CRLB of the ideal distortionless channel. There-
fore, it is safe to conclude that in practice the modified JCPCE
is a preferred efficient alternative to the original JCPCE. In
addition, we also plot the low complexity implementation of
the modified JCPCE as described in Section V with i = 5 CG
iterations for evaluating (19) and (27).

VII. CONCLUSIONS

This paper studied efficient OFDM channel and CFO esti-
mation in the presence of PHN. We consider a training symbol
structure similar to that in [3] and propose a near-optimal
channel estimator which exploits the repetitive structure of
the training symbol. The resultant modified JCPCE algorithm
improves upon the original JCPCE algorithm as it does not
require the expensive frequency offset search operation.

Furthermore, we explored ways to further reduce the com-
plexity of the proposed estimator through the use of the
conjugate gradient iteration. It is demonstrated that the channel
estimators are able to perform well with a very small number
of CG iterations, where each iteration can be computed
efficiently using FFT. This paper paves the way for the design

of OFDM detectors in the presence of PHN [10], [11], where
the CIR and CFO can now be safely assumed known.

APPENDIX I
PROOF OF LEMMA 2

Using the Iterated Expectation Theorem [12, ch. 14] and
its analog in covariance, given a Gaussian distributed x and a
Gaussian conditional distribution for y|x, the marginal distri-
bution of y is also Gaussian and is related to the conditional
distribution by

E(y) = ExEy(y|x)
V(y) = Vx(Ey(y|x)) + Ex(Vy(y|x)). (31)

Applied to the conditional distribution p(r2|r1, ε,θ∆), we
have

E(r2|r1, ε) = Eθ∆(Er2(r2|r1, ε,θ∆))
V(r2|r1, ε) = Vθ∆(Er2(r2|r1, ε,θ∆))

+Eθ∆(Vr2(r2|r1, ε,θ∆)).
(32)

Also we have

Er2(r2|r1, ε,θ∆) = ejπεP∆r1 ≈ ejπεR1(1 + jθ∆);
Vr2(r2|r1, ε,θ∆) = 4σ2I.

(33)
Therefore, after simple matrix algebra we obtain

Eθ∆(Er2(r2|r1, ε,θ∆)) = ejπεr1;
Vθ∆(Er2(r2|r1, ε,θ∆)) = R1Φ∆RH

1 ;
Eθ∆(Vr2(r2|r1, ε,θ∆)) = 4σ2I.

(34)

We then readily arrive at our final result

p(r2|r1, ε) = CN (ejπεr1,R1Φ∆RH
1 + 4σ2I). (35)
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