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I. Problem Description

• The role of channel estimation in OFDM receiver design:
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I. Problem Description

• OFDM channel with PHN (Phase Noise) and CFO (Carrier Frequency
Offset):
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I. Signal Model in Matrix Form

• Complex baseband received signal in one OFDM symbol interval:

r = EPGFHd + n, (1)

– r ∈ C
N×1: received OFDM symbol with cyclic prefix removed;

– E = diag([1, ej2πǫ/N , · · · , ej2π(N−1)ǫ/N ]T ): CFO matrix;
– P = diag([ejθ0, · · · , ejθN−1]T ): PHN matrix;
– G: channel circular convolution matrix, formed by CIR g;
– F ∈ C

N×N : DFT matrix;
– d ∈ CN×1: vector of constant-modulus training symbols;
– n ∈ C

N×1: complex white Gaussian noise with variance σ2 per
dimension.

• The objective is to, based on received r, estimate three unknowns:

– (1)ǫ, (2)θ = [θ0, · · · , θN−1]
T , (3)g = [g0, · · · , gL−1]

T .
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II. Prior Statistics of Phase Noise

• Two different models of PHN are available:

– For free-running oscillator at the receiver, we assume a non-stationary
Gaussian process, called Wiener PHN.

– For oscillator controlled by a phase-locked loop (PLL), we assume a
zero-mean coloured Gaussian process, called Gaussian PHN.

• The prior statistics of both types of PHN can be modeled as a
multivariate Gaussian distribution:

p(θ) = N (0,Φ), (2)

where the covariance matrix Φ can be determined from the power
spectral density (PSD) of the VCO output.
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II. Prior Statistics of Phase Noise
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III. The Complete Likelihood Function

• The optimal estimator requires joint estimation of three unknowns, ǫ,θ
and g, in (3), where F = [W|V] and g is the CIR.

r = EPFHDWg + n. (3)

• We first write the “complete likelihood function”

p(r, ǫ,θ,g) = p(r|ǫ,θ,g)p(ǫ)p(θ)p(g), (4)

which is proportional to the a posteriori distribution of the unknowns,
p(ǫ,θ,g|r).

• Since we assume no prior knowledge of ǫ and g, p(ǫ) and p(g) are
constants and can be omitted. The prior of θ is available, which is
p(θ) = N (0,Φ) as discussed before.
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III. Target of Optimization

• Taking the logarithm, the “complete negative log-likehood function”
can be written as

L(ǫ,θ,g) = − log p(r|ǫ,θ,g) − log p(θ)

= 1
2σ2(r − EPFHDWg)H(r− EPFHDWg) + 1

2θ
TΦ−1θ.

(5)

• The objective is to find the jointly optimal estimates

(ǫ̂, θ̂, ĝ) = arg min
ǫ,θ,g

L(ǫ,θ,g). (6)

• The estimator proposed here is “optimal” in the sense of maximizing
the “complete likelihood function”. It can be derived in 3 optimization
steps.

Darryl Dexu Lin, Univ. of Toronto 10



III. The Optimal Estimator: CIR and PHN Estimation

1. CIR Estimation: Solve ∂L(ǫ,θ,g)/∂g∗ = 0, we obtain

ĝ = (2ρ2)−1WHDHFPHEHr. (7)

– Substituting g = ĝ back into L(ǫ,θ,g) produces L(ǫ,θ).

2. PHN Estimation: Solve ∂L(ǫ,θ)/∂θ = 0, we obtain

θ̂ = [Re(ECCHEH) + 2σ2ρ2Φ−1]−1Im(ECCHEH)1, (8)

where C = RHFHDV and R = diag(r).

– Substituting θ = θ̂ back into L(ǫ,θ) produces L(ǫ)
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III. The Optimal Estimator: CFO Estimation

3. CFO Estimation: To minimize L(ǫ), we require searching over the range
−0.5 < ǫ < 0.5:

ǫ̂ = arg minǫ 1
TECCHEH1− 1T Im(ECCHEH)T

×[Re(ECCHEH) + 2σ2ρ2Φ−1]−1Im(ECCHEH)1.
(9)

• Combining the 3 optimization steps leads to the complete Joint
CFO/PHN/CIR Estimation (JCPCE) algorithm (Proc. WCNC’06):

Step 1: ǫ̂ = arg minǫ 1T ECCHEH1 − 1T Im(ECCHEH)T

×[Re(ECCHEH) + 2σ2ρ2Φ−1]−1Im(ECCHEH)1;

Ê = diag([1, ej2πǫ̂/N , · · · , ej2π(N−1)ǫ̂/N ]T );

Step 2: θ̂ = [Re(ÊCCHÊH) + 2σ2ρ2Φ−1]−1Im(ÊCCHÊH)1;

P̂ = diag([ejθ̂0 , · · · , ejθ̂N−1 ]T );

Step 3: ĝ = (2ρ2)−1WHDHFP̂HÊHr.
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IV. Preliminary: Moose’s CFO Estimator

• Assuming only CFO and no PHN, what is the simple way to estimate
the CFO without searching over all possible values of ǫ?

• The Moose’s method proposes to transmit a training sequence with two
identical halves in the time domain, of length N/2. Thus, the received
vector r = [rT

1 , rT
2 ]T , where

r1 = x + n1; r2 = ejπǫx + n2 (10)

in which x = EGFHd ∈ C
N
2 ×1.

• The maximum-likelihood estimate of ǫ is

ǫ̂ = arg max
ǫ

p(r1, r2|ǫ) = arg max
ǫ

p(r2|ǫ, r1)p(r1|ǫ). (11)
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IV. Preliminary: Moose’s CFO Estimator (Cont.)

• If we assume the independence between r1 and ǫ, i.e. p(r1|ǫ) = p(r1),
we simply have ǫ̂ = arg maxǫ p(r2|ǫ, r1).

• Notice that r2 = ejπǫr1 − ejπǫn1 + n2 = ejπǫr1 + z.

• Since n1,n2 ∼ CN (0, 2σ2I) ⇒ z ∼ CN (0, 4σ2I), we have

− log p(r2|ǫ, r1) =
1

4σ2
(r2 − ejπǫr1)

H(r2 − ejπǫr1). (12)

• Thus ǫ̂ = arg maxǫ p(r2|ǫ, r1) leads to the near-ML estimate of ǫ

ǫ̂ =
1

π
∡rH

1 r2. (13)
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IV. Near Optimal Estimator: The New Approach

• How do we make use of the convenience offered by repeating training
sequence to efficiently estimate CIR and PHN together with CFO?

• We propose a two stage process:

1. Estimate ǫ̂ = arg maxǫ p(r1, r2|ǫ), motivated by Moose’s method.

2. Estimate (θ̂, ĝ) = arg minθ,g L(ǫ̂,θ,g), similar to the optimal
algorithm proposed earlier, except with ǫ̂ already estimated, where

L(ǫ,θ,g)
= − log p(r|ǫ,θ,g) − log p(θ)

= 1
2σ2(r − EPFHDWg)H(r − EPFHDWg) + 1

2θ
TΦ−1θ.

(14)

Darryl Dexu Lin, Univ. of Toronto 16



IV. Near Optimal Estimator: CFO Estimation

• CFO Estimation: In the presence of PHN, CFO estimation using the
Moose’s method needs to be modified, since

r1 = P1x + n1; r2 = ejπǫP2x + n2, (15)

where P1 and P2 contain consequtive PHN sequences θ1 and θ2.

• The optimal estimate ǫ̂ is then

arg max
ǫ

p(r1, r2|ǫ) = arg max
ǫ

∫

θ2

∫

θ1

p(r1, r2,θ1, θ2|ǫ)dθ1dθ2 (16)

• Writing R1 = diag(r1) and Φ∆ as the covariance matrix of θ2 − θ1, it
can be shown that this is equivalent to maximizing

p(r2|r1, ǫ) = CN (ejπǫr1,R1Φ∆RH
1 + 4σ2I). (17)
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IV. Near Optimal Estimator: CIR Estimation

• Therefore,

ǫ̂ =
1

π
∡ rH

1 (R1Φ∆RH
1 + 4σ2I)−1r2. (18)

• Substituting ǫ̂ into L(ǫ, θ,g), we get

L(ǫ̂, θ,g) =
1

2σ2
(r − ÊPF̌HDWg)H(r − ÊPF̌HDWg) +

1

2
θTΦ−1θ.

(19)

• CIR Estimation: Solve ∂L(ǫ̂, θ,g)/∂g∗ = 0, we obtain

ĝ = (4ρ2)−1WHDHF̌PHÊHr. (20)

– Substituting g = ĝ back into L(ǫ̂,θ,g) produces L(ǫ̂,θ).
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IV. Near Optimal Estimator: PHN Estimation

• PHN Estimation: Solve ∂L(ǫ̂, θ)/∂θ = 0, we obtain

θ̂ = [Re(ÊAÊH) + 4σ2ρ2Φ−1]−1Im(ÊAÊH)1. (21)

• Combining the above steps leads to the Modified Joint CFO/PHN/CIR
Estimation (Modified JCPCE) algorithm with closed-form CFO
estimation:

Step 1: ǫ̂ = 1
π∡ rH

1 (R1Φ∆RH
1 + 4σ2I)−1r2;

Ê = diag([1, ej2πǫ̂/N , · · · , ej2π(N−1)ǫ̂/N ]T );

Step 2: θ̂ = [Re(ÊAÊH) + 4σ2ρ2Φ−1]−1Im(ÊAÊH)1;

P̂ = diag([ejθ̂0 , · · · , ejθ̂N−1]T );

Step 3: ĝ = (4ρ2)−1WHDH F̌P̂HÊHr.
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V. Complexity Reduction: Special Structure of Ψ

• Letting Ψ = 1
4σ2ρ2Φ, the dominant complexity of the previous algorithm

is associated with the evaluation of [Re(EAEH) + Ψ−1]−1, which in
general has complexity O(N3).

• Fortunately, complexity reduction is available by noticing the following:

– For Wiener PHN, Ψ−1 is a tridiagonal matrix:

Ψ−1 =
4σ2ρ2

α2
φ
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









2 −1 0
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−1 2 −1
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











. (22)

– For Gaussian PHN, Ψ is a Toeplitz matrix, but can be closely
approximated as a circulant matrix Ψ̃ = FΛFH. Therefore, its
inverse is easy to evaluate, Ψ̃−1 = FΛ−1FH
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V. Complexity Reduction: Conjugate Gradient Method

• Letting q = Im(ÊAÊH)1, the evaluation of [Re(EAEH) + Ψ−1]−1q

can be accomplished by the conjugate gradient method as follows:

Initialization:
θ0 = 0

γ0 = [Re(EAEH) + Ψ̃−1]θ0 − q = −q

ν0 = −γ0 = q

For k = 0 : i − 1

αk = γH
k γk/(νH

k [Re(EAEH) + Ψ̃−1]νk)
θk+1 = θk + αkνk

γk+1 = γk + αk[Re(EAEH) + Ψ̃−1]νk

βk+1 =
γH

k+1γ
k+1

γH

k
γ

k

νk+1 = −γk+1 + βk+1νk

End
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V. Complexity Reduction: Overall Complexity

• By utilizing the special structure of Ψ, we can reduce the complexity
from O(N3) to O(N2 log N).

• Using the Conjugate Gradient algorithm, we have control over the
number of iteration i. Exact matrix inversion corresponds to i = N .

• In practice, i ≪ N . In this case, the complexity becomes
O(i × N log N).

• Simulations demonstrate that even for i = 5, no significant performance
degradation results.
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VI. Residual Phase Rotation

• Unresolvable residual common phase rotation: A residual phase rotation
δ cannot be estimated for Gaussian PHN. δ ∼ N (0,1TΦ1/N2).
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VI. Simulation Settings

• The effect of residual phase rotation is that the channel estimate ĝ is
off by a small unknown phase δ, which does not introduce ICI.

• We assume that δ can be perfectly corrected to facilitate easy
assessment of channel estimation mean-squared error (MSE).

• The following system parameters are used in simulations:

– A Rayleigh multipath fading channel with a delay of L = 10 taps;
– An OFDM training symbol size of N = 64 subcarriers with each

subcarrier modulated in QPSK;
– Baseband sampling rate fs = 20 MHz;
– The Wiener PHN is generated as a random-walk process with

incremental PHN of αφ = 1 deg.
– The Gaussian PHN has a standard deviation of θrms = 4 deg. It is

generated as i.i.d. Gaussian samples passed through a single pole
Butterworth filter of 3dB bandwidth Ωo = 100 KHz.
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VI. Simulation Results

• Performance of modified JCPCE in Wiener PHN:
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VI. Simulation Results

• Performance of modified JCPCE in Gaussian PHN:
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Summary

• Challenge: How do we optimally estimate the CIR and CFO of an
OFDM channel in the presence of unknown PHN?

• Solution 1 : In a previous work, we derived a Joint CFO/PHN/CIR
Estimation (JCPCE) algorithm that optimizes the “complete likelihood
function”.

• Solution 2 : Here we proposed a suboptimal algorithm, called Modified
JCPCE, to obtain closed-form estimate of CFO, lowering the
computational complexity.

• We may reduce the complexity even further using the Conjugate
Gradient method.
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Thank You!
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