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Abstract— Building upon a unified framework for CDMA
multiuser detection proposed in our prior work, we investigate
the detection of M -QAM symbols in a multiuser CDMA channel.
The solution proposed may be summarized as a generic iterative
detection scheme for coded interference channels called Bit-Level
Equalization and Soft Detection (BLESD). It is shown that this
novel approach avoids the exponential complexity of a posteriori
probability (APP) detection by optimizing a closely-related, but
much more manageable, objective function called variational
free energy. It also fundamentally differs from the conventional
symbol detector, in that data symbols are transparent to the
new detector. Instead, soft estimates of the bits that make
up the symbols are directly and naturally obtained at the
detector output, in terms of posterior probabilities given the
channel observation, facilitating efficient message-passing in joint
detection and decoding.

I. INTRODUCTION

The evolution of multiuser detection (MUD) research

has seen detectors being derived through many different

approaches, such as minimizing the mean-squared error

(MMSE), or multistage interference cancelation (IC). Within

the past decade, there has been a growing interest in coded

CDMA systems, where the need for joint detection and de-

coding leads to a different class of multiuser detectors, namely

turbo multiuser detectors. Practical turbo multiuser detectors

proposed in [1] and [2] are among the most celebrated ones,

due to their simplicity and remarkable performance.
Recent attempts to provide a unified approach to study

the wide range of multiuser detectors include [3], [4] and

[5]. [3] generalizes iterative multiuser joint decoding as an

approximate sum-product algorithm in a factor graph contain-

ing both the multiuser channel and code constraints. Such a

generalization leads to elegant performance analysis through

density evolution. [4] and [5] view the uncoded linear and

optimal multiuser detectors as posterior mean estimators of

the Bayes retrochannel such that the bit error rate (BER) may

be evaluated through techniques from statistical mechanics.

In a recent work of ours [6], a new framework for studying

MUD algorithms was proposed, utilizing the concept of varia-
tional free energy minimization (VFEM) [7]. This framework

allows us to rigorously address the design challenge of the

MUD component within the iterative multiuser joint decoding

problem highlighted in [3]. It also complements [4] and [5] by

including non-linear (and iterative) detectors as special cases.
Most important among the contributions of [6], we showed

that the detector section of the turbo multiuser detectors

proposed in [1] and [2] can both be rigorously justified

with the same VFEM routine (as summarized in Section

III). Furthermore, because the minimization of variational free

energy naturally incorporates the generalized EM algorithm [8]

in its formulation, it was shown that a joint data detection and

parameter estimation algorithm may be easily formulated as a

variational EM algorithm.

With the theory developed in [6], this paper will focus on

the application of the VFEM framework in MUD, in particular,

on generalizing turbo multiuser detectors from BPSK sig-

nalling to M -QAM modulation. Though heuristic approaches

to turbo MUD with M-QAM modulation can be formulated

using traditional concepts such as interference cancelation and

MMSE detection, by approximately obtaining symbol APPs

(under some convenient assumptions) and then converting

these to bit APPs, they are mostly not theoretically justifiable.

Our approach yields a novel and low-complexity scheme that

is based on the theory of VFEM, that is applicable to all

interference channels with square QAM modulation.

II. SIGNAL MODEL

We consider a flat-fading synchronous DS-CDMA wireless

link with K users. After sampling the chip matched filter

output at chip rate, the received signal can be written in the

well-known vector form:

r = Hd + n, (1)

In (1), the channel matrix H = SA = [A1s1, · · · , AKsK ],
where S = [s1, s2, · · · , sK ] is the normalized spreading code

matrix, and A = diag([A1, · · · , Ak]T ) contains channel gains

of K active users. In contrast to the conventional assump-

tion of BPSK modulation, we assume the general M -QAM

modulated symbols d = [d1, d2, · · · , dK ]T . Each symbol dk,

k = 1, · · · , K, is a result of Gray mapping of 2L information

bits {bl,k}2L
l=1. n is a circularly symmetric complex white

Gaussian noise vector with distribution p(n) = CN (0, 2σ2I).
To simplify expressions, in the subsequent derivation we

will consider only one-dimensional pulse-amplitude modu-

lated (PAM) symbols {dk}K
k=1. The analysis for complex

QAM modulation follows straightforwardly through a simple

transformation that doubles the dimension of the signal model,

and will be omitted. Therefore, only real signal and noise

vectors will be considered in the rest of the paper, i.e. p(n) =
N (0, σ2I).
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III. MULTIUSER DETECTION VIA VARIATIONAL FREE

ENERGY MINIMIZATION

This section summarizes the key results of [6] to pave the

way for the main discussion that will follow.

A. Variational Inference and Free Energy Minimization

It is well-known that the optimal multiuser detector corre-

sponds to Bayesian inference (exact inference) performed on

the channel observation. Taking the channel model in (1) for

example, the jointly optimal estimate of d maximizes

p(d|r) =
p(r|d)p(d)∑
d p(r|d)p(d)

, (2)

where p(d) is the prior distribution of d, and p(r|d) is

determined by the channel model. In joint detection and

decoding of coded CDMA using turbo message passing, p(d)
may be in the form of extrinsic information from the BCJR

decoder, and p(r|d) = N (Hd, σ2I). Unfortunately, exact

inference entails exponential complexity due to the summation

over d in the denominator of (2).

Variational inference offers a low-complexity but sub-

optimal alternative. It simplifies the solution by postulating

a distribution Q(d) that resembles p(d|r) but with a more

convenient form. Our goal then becomes minimizing the

Kullback-Leibler (KL) divergence between Q(d) and p(d|r),
also known as the variational free energy, up to an additive

constant:

F(λ) =
∫
d

Q(d) log
Q(d)

p(r|d)p(d)
dd, (3)

where λ contains parameters that specify Q(d). The following

is the general procedure for VFEM-based MUD:

1) Postulate distributions for p(d), p(r|d) and Q(d);
2) Evaluate closed-form expression for F(λ);
3) Minimize F(λ) (exactly or iteratively) over λ.

B. Relation to Existing Turbo Multiuser Detectors

The procedure above bears close resemblance to the rou-

tine of deriving thermodynamic state equations in statistical

mechanics, with the second step being the most challenging.

Well-selected (and reasonable) postulates for p(d), p(r|d) and

Q(d) may lead to simplifications. [1] and [2] are examples of

good selections, although they were originally not viewed from

this perspective. Here we provide a brief summary of [1] and

[2] in the context of variational inference. Details pertaining to

the derivation may be found in [6]. Since BPSK modulation is

assumed, the binary signal vector b = [b1, · · · , bK ]T replaces

d in the postulated distributions.

• Discrete SISO Multiuser Detector [1]:⎧⎪⎨
⎪⎩

p(b) =
∏K

k=1 ξ
1+bk

2
k (1 − ξk)

1−bk
2 , bk ∈ {±1}

p(r|b) = N (Hb, σ2I)

Q(b) =
∏K

k=1 γ
1+bk

2
k (1 − γk)

1−bk
2 , bk ∈ {±1}

(4)

ξk and γk are the prior and posterior probabilities of bk

being 1. The advantage of this approach is that the binary

nature of bk is retained, but an approximation on the

independence of {bk}K
k=1 conditioned on r (mean-field

approximation) has to be made. The parameters in the

free energy expression, λ, correspond to {γk}K
k=1.

• Gaussian SISO Multiuser Detector [2]:⎧⎨
⎩

p(b) = N (b̃,W), bk ∈ R

p(r|b) = N (Hb, σ2I)
Q(b) = N (µ,Σ), bk ∈ R

(5)

b̃ = [b̃1, · · · , b̃K ]T are the soft bit estimates from the

BCJR decoder, and W = diag([1 − b̃2
1, · · · , 1 − b̃2

K ]T ),
where diag(x) is a diagonal matrix with the vector x
on its diagonal. The advantage of this approach is that

it resembles the familiar MMSE detector, but allows soft

prior information. The assumption bk ∈ R requires an ad-

ditional step of converting a continuous distribution Q(b)
into a discrete distribution over {−1, +1}K , in contrast

to the discrete SISO MUD in which Q(b) already has

the right sample space. The free energy parameters in

this formulation are µ and Σ.

These two multiuser detectors are used in the MUD section

of a turbo MUD receiver, and both may be designed through

the variational inference routine outlined in Section III-A. It is

worth noting that uncoded MUD can also be derived similarly,

but with uniform prior distributions, rather than biased ones.

IV. BIT-LEVEL EQUALIZATION AND SOFT DETECTION

Heuristics for uncoded MUD schemes with higher order

modulation may be derived with ease. For instance, MMSE

multiuser detection for QAM symbols only requires simple

modifications to the slicer after MMSE filtering. However, in a

coded system, i.e. when the bit/symbol priors are non-uniform,

a rigorous extension from BPSK to other modulation schemes

is complex, partially due to the unpleasant non-linear bit-to-

symbol mapping. In [9] and [10], the Gaussian SISO multiuser

detector [2] is extended to M -PSK modulation with some loss

of optimality, but good simulation results are reported. The

same technique does not apply to general QAM modulations,

however, due to the unequal symbol energy.

In this paper, we will tackle the problems with M -QAM.

The approach to be taken applies to both discrete SISO MUD

as well as Gaussian SISO MUD, although we only present the

discrete SISO MUD due to space limitations. In contrast to [9]

and [10], this extension follows strictly within the unifying

framework of VFEM, and may in general be referred to as

Bit-Level Equalization and Soft Detection (BLESD).

This section is organized as follows: Section IV-A proposes

a mapping from b to d for Gray-mapped PAM symbols, facil-

itating expressing p(r|d) as p(r|b1, · · · ,bL) in a manageable

closed form; Section IV-B evaluates F given the postulated

prior, channel conditional and posterior distributions; Section

IV-C demonstrates how a practical MUD algorithm is drawn

from the free energy expression; Section IV-D outlines a

further extension, also within the free energy minimization

framework, on iteratively estimating noise variance jointly

with data detection using the variational EM algorithm.
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Fig. 1. The transformation from 4-PAM to 8-PAM Gray mapping.

A. Gray Mapping and Multi-Linear Transformation

Lemma 1: A mapping of L bits to a 2L-PAM constellation

point dL following the equation

dL =
L∑

l=1

2l−1bLbL−1 · · · bl, (6)

where bl ∈ {−1, +1}, results in a Gray mapping strategy.

Proof: We now provide a proof by induction. Note that

the {bl}L
l=1 → dL mapping formula may be written in a

recursive form as

dL =
{

bL L = 1
bL(2L−1 + dL−1) L > 1 (7)

We need to show that given {bl}L−1
l=1 → dL−1 is Gray

mapping, {bl}L
l=1 → dL also preserves the Gray property.

It can be seen from Fig. 1 (for L = 3) that the operation

bL(2L−1 + dL−1) creates two mirror images of dL−1 on

either side of the origin, depending on the value of bL.

But since the additional bit bL takes on the same value (1
or −1) in either quadrant, the Gray property is preserved

for adjacent constellation points in the same quadrant. Now

consider the two adjacent constellation points that belong

to different quadrants. Because they represent the same bits

{bl}L−1
l=1 except for bL, the Gray property also holds for them.

Therefore, it is shown that the transformation from dL−1 to dL

by adding bL preserves the Gray property. Hence the mapping

construction governed by (6) is a Gray mapping scheme.

The proposed Gray mapping construction is not unique. It can

be shown that, in (7), if we were to change the sign before the

term 2L−1 or dL−1, it would remain a Gray mapping. Without

loss of generality, we shall maintain the positive signs in the

equation. (6) is a nonlinear function of b1, · · · , bL, but is linear

w.r.t. each variable individually. Thus it is called a multi-linear
function [11], which is well-suited to variational inference.

B. Free Energy Evaluation for 2L-PAM Modulation

Similar to (4), we make the following postulates for the

2L-PAM signals:

1) Prior Distribution: The prior distribution p(d) =∏L
l=1 p(bl) represents the extrinsic information that comes

from the BCJR decoder about the distribution of the channel

bits. In the traditional multiuser detection viewpoint, this

information may be used for interference cancelation in the

detection stage. We will not explicitly do so, but as the subse-

quent derivation shows, the interference cancelation operation

is naturally realized within VFEM. We may thus write

p(d) =
∏L

l=1 p(bl)

=
∏L

l=1

∏K
k=1 ξ

1+bl,k
2

l,k (1 − ξl,k)
1−bl,k

2

=
∏L

l=1

∏K
k=1(

1+b̃l,k

2 )
1+bl,k

2 ( 1−b̃l,k

2 )
1−bl,k

2 ,

(8)

where ξl,k is the prior probability of the l-th bit of user k’s

symbol being 1. A change of variable is made in the second

equality, such that b̃l,k represents the mean estimate of bl,k,

i.e. b̃l,k = 1 · ξl,k + (−1) · (1 − ξl,k) = 2ξl,k − 1.

2) Channel Conditional Distribution: The channel condi-

tional distribution p(r|d) = N (Hd, σ2I) is assumed to be

Gaussian with noise variance σ2 as Section II indicates. The

multi-linear bit-to-symbol mapping developed in Section IV-

A ensures that the conditional distribution may be written in

terms of the channel bits. Realizing d =
∑L

l=1 2l−1 �∏L
p=l bp,

we may write the channel conditional distribution as

p(r|d) = p(r|b1, · · · ,bL)
= N

(
H · ∑L

l=1 2l−1 �∏L
p=l bp, σ

2I
)

,
(9)

where the notation �∏ represents the Schur product (element-

wise product) between vectors: �∏L
p=l bp = bl ◦bl+1 ◦ · · ·bL.

In other words, we place the l-th bit of all users in one vector

bl, and perform multiuser detection not only among K users,

but also among L bits in each user.

3) Posterior Distribution: The exact evaluation of the

posterior bit probability p(b1, · · · ,bL|r) corresponds to the

jointly-optimal (JO) multiuser detector, but in general leads

to exponential complexity (in K), even for BPSK signals.

Here we make a mean-field approximation similar to its BPSK

counterpart in (4), where the postulated posterior probability

Q(bl,k) is assumed to be independent over both l and k.

This assumption is essential in reducing the computational

complexity of the BLESD algorithm. In particular,

Q(d) =
∏L

l=1 Q(bl)

=
∏L

l=1

∏K
k=1 γ

1+bl,k
2

l,k (1 − γl,k)
1−bl,k

2

=
∏L

l=1

∏K
k=1(

1+ml,k

2 )
1+bl,k

2 ( 1−ml,k

2 )
1−bl,k

2 ,
(10)

where γl,k is the posterior probability of bl,k being 1. A

change of variable is also made here, such that ml,k represents

the mean estimate of bl,k. The formulations in (8), (9) and

(10) enable us to perform inference on the bit level through

Q(bl,k), which has only one parameter ml,k. On the other

hand, inference on the symbol level requires updates of Q(dk),
which has L − 1 parameters, making the optimization of the

resulting free energy difficult.

The variational free energy expression may be separated

into three terms:

F =
∫
d

Q(d) log Q(d)
p(r|d)p(d)dd

=
∫
d

Q(d) log Q(d)dd − ∫
d

Q(d) log p(r|d)dd
− ∫

d
Q(d) log p(d)dd.

(11)
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R
d

Q(d) log p(r|d)dd

= − 1
2σ2

n
E

h
(
PL

l=1 2l−1 �QL
p=l bp)T HT H(

PL
l=1 2l−1 �QL

p=l bp)
i
− E

h
2rT H(

PL
l=1 2l−1 �QL

p=l bp)
io

= − 1
2σ2

n
(
PL

l=1 2l−1 �QL
p=l mp)T [HT H − diag(HT H)](

PL
l=1 2l−1 �QL

p=l mp) + 1T diag(HT H)(
P

0<i≤j<L 2i+j �Qj
p=i mp)

o

+ 1
2σ2

n
2rT H(

PL
l=1 2l−1 �QL

p=l mp)
o

(16)

F(m1, · · · ,mL)

=
PL

l=1

PK
k=1

1+ml,k

2
log

1+b̃l,k

1+ml,k
+

1−ml,k

2
log

1−b̃l,k

1−ml,k
− 1

2σ2

n
2rT H(

PL
l=1 2l−1 �QL

p=l mp)
o

+ 1
2σ2

n
(
PL

l=1 2l−1 �QL
p=l mp)T [HT H − diag(HT H)](

PL
l=1 2l−1 �QL

p=l mp) + 1T diag(HT H)(
P

0<i≤j<L 2i+j �Qj
p=i mp)

o (17)

2
664

log
1+ml,1
1−ml,1

...

log
1+ml,K

1−ml,K

3
775 =

2
6664

log
1+b̃l,1

1−b̃l,1

...

log
1+b̃l,K

1−b̃l,K

3
7775 + 1

σ2

˘
2∆T

l HT r − Eldiag(HT H)1 − 2∆T
l [HT H − diag(HT H)](∆lml + ζl)

¯
(18)

To evaluate F , we require two matrix identities related to the

Schur product, as summarized in Lemmas 2 and 3.

Lemma 2: Consider independent binary random vectors

b1, · · · ,bU ∈ {±1}K×1 with independently distributed el-

ements. Let the means of these vectors be {ml}U
l=1, −1 �

ml � 1. Then, for a symmetric matrix C,

E
[
(�∏U

l=1 bl)T C(�∏U
l=1 bl)

]
=

(�∏U
l=1 ml)T [C − diag(C)] ( �∏U

l=1 ml) + 1T diag(C)1.
(12)

Proof: See Appendix I.

Lemma 3: Consider independent binary random vectors
b1, · · · ,bV ∈ {±1}K×1 with independently distributed el-
ements. Let the means of these vectors be {ml}V

l=1, −1 �
ml � 1. Then, for a symmetric matrix C and 1 ≤ U < V ,

E
h
(�QU

l=1 bl)
T C �QV

l=1 bl

i
=

(�QU
l=1 ml)

T [C − diag(C)] �QV
l=1 ml + 1T diag(C) �QV

l=U+1 ml.
(13)

Proof: The proof follows from applying Lemma 2, but

its details will be omitted due to lack of space.

The three integrals in (11) can now be evaluated in closed

form. The derivations are shown in equations (14), (15) and

(16):∫
d

Q(d) log Q(d)dd
=

∑L
l=1

∫
bl

Q(bl) log Q(bl)dbl

=
∑L

l=1

∑K
k=1

1+ml,k

2 log 1+ml,k

2 + 1−ml,k

2 log 1−ml,k

2

(14)

∫
d

Q(d) log p(d)dd
=

∑L
l=1

∫
bl

Q(bl) log p(bl)dbl

=
∑L

l=1

∑K
k=1

1+ml,k

2 log 1+b̃l,k

2 + 1−ml,k

2 log 1−b̃l,k

2

(15)

The complete free energy expression is assembled in (17).

C. BLESD via Free Energy Minimization

Taking the derivative of F(m1, · · · ,mL) w.r.t. ml, 1 ≤ l ≤
L, and equating to zero yields an equation of the form of (18).

In (18), ∆l = diag(δl), El = diag(εl) and⎧⎪⎨
⎪⎩

δl =
∑l

i=1 2i−1 �∏L
n=i,n �=l mn + I(l = L) · 2l−11

εl =
∑

0<i≤l≤j<L,i �=j �∏j
n=i,n �=l mn + I(0 < l < L) · 22l1

ζl =
∑L

i=l+1 2i−1 �∏L
n=i mn

(19)

where I(A) is an indicator function which equals 1 if A is true

and 0 otherwise. Similar to the BPSK case, F(m1, · · · ,mL)
cannot be minimized over {ml}L

l=1 in one step, but iterative

schemes, such as the coordinate descent method, are available

to decrease the free energy iteratively.

From (18) it is seen that setting ∂F/∂ml,k = 0 leads to

log 1+ml,k

1−ml,k
= log 1+b̃l,k

1−b̃l,k
+ 1

σ2

{
2δl,k · hT

k r − εl,k · ρT
k 1

−2δl,k · βT
k (δl ◦ ml + ζl)}, (20)

where hk, ρk, and βk are the kth column of H, diag(HT H),
and HT H− diag(HT H), respectively. Noticing that the right

hand side of the equation is independent of ml,k, a closed-

form update for ml,k may be found by letting b̃l,k = 0:

ml,k ← tanh
{

1
2σ2 [2δl,k · hT

k r − εl,k · ρT
k 1

−2δl,k · βT
k (δl ◦ ml + ζl)]}.

(21)

The variational free energy is then iteratively decreased by

updating ml,k for each l and k. We call this the inner iterations

(iterations within the detector section), as opposed to the outer

(turbo) iterations that alternates between the detector section

and decoder section. In each inner iteration (indexed by i),
serial or parallel updates of ml,k is possible. It is easily verified

that a parallel update scheme with L = 1 converges to the

original discrete SISO MUD for BPSK [1].

D. Variational EM and Joint Parameter Estimation
As described in [6], the variational EM algorithm for

parameter estimation may be incorporated in VFEM with

the unknown system parameter θ included as an additional

unknown in F , i.e. we write the free energy as F(θ, λ). The

E step then solves for λ̂ = arg minλ F(θ̂, λ), while the M

step solves for θ̂ = arg minθ F(θ, λ̂). Suppose the unknown

parameter θ is the noise variance σ2. We then obtain an

iterative noise variance estimation algorithm embedded within
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the turbo MUD algorithm. This is analogous to the BPSK case

presented in [6], and its details will be omitted here.

V. SIMULATIONS

1 2 3 4 5 6 7 8 9

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No(dB)

B
E

R

SUP: Soft detection/decoding (known σ2)
BLESD (K=1), after 3 iterations (unknown σ2)
BLESD (K=64), 11 iterations (unknown σ2)

K = 64 

K = 1

Iteration 1 

Iteration 11 

Fig. 2. BER vs. SNR performance of discrete SISO BLESD algorithm for
4-PAM modulation in turbo MUD.

In this section we briefly study the performance of the

proposed MUD algorithm with iterative noise variance es-

timation. We assume a 4-PAM (L = 2) random spreading

system of spreading gain N = 64 with K = 64 users.

All users have equal power and employ the same rate 1/2
convolutional code with generators 10011 and 11101. The

variational EM algorithm is deployed to iteratively update the

estimate for σ2 in each outer iteration. In Fig. 2, the BER

performance is plotted for different numbers of outer iteration,

to show the convergence of the algorithm. We use a single

inner iteration for each outer iteration, in which the parallel

update of {m2,k}K
k=1 is followed by the parallel update of

{m1,k}K
k=1. More specifically, the update equations are:

m2,k ← tanh{ 1
σ2 [(m1,k + 2) · hT

k r
−(m1,k + 2) · βT

k (m2 ◦ m1 + 2m2)]}; (22)

m1,k ← tanh{ 1
σ2 [m2,k · hT

k r − 2ρT
k 1

−m2,k · βT
k (m2 ◦ m1 + 2m2)]}. (23)

The single user performance (SUP) refers to estimating the

symbol probabilities based on the channel observation, con-

verting them to bit probabilities, and applying BCJR decoding

with soft bit priors. This obvious approach cannot be extended

to the multiuser scenario, since the complexity of estimating

symbol probabilities is exponential in K. We demonstrate that,

with the help of BLESD, a 4-PAM system with loading-factor

1 is able to perform close to SUP at high SNR, even with

unknown noise variance. Note that implementing BLESD for

K = 1 results in a BER curve almost identical to the SUP

curve after 3 iterations, revealing that the BLESD approach

also has applications in coded AWGN channels, as it performs

close to the conventional soft detection/decoding scheme,

while not requiring the noise variance information.

VI. CONCLUSIONS

In this paper, we proposed a multi-linear transformation to

formulate the non-linear bit-to-symbol mapping of M -QAM,

enabling the application of variational inference to M -QAM

turbo MUD. The generalization of turbo multiuser detectors

to M -QAM modulation through the BLESD algorithm has

implications beyond the scope of multiuser CDMA, since

this analysis can readily be carried over to a wide range of

scenarios, such as MIMO or multipath fading channels.

APPENDIX I

PROOF OF LEMMA 2 BY INDUCTION

It is easily verified that for U = 1,

E
[
bT

1 Cb1

]
= mT

1 [C − diag(C)]m1 + 1T diag(C)1. (24)

Assuming (12) is true for U = u, i.e.

E
{
(�∏u

l=1 bl)T C(�∏u
l=1 bl)

}
= (�∏u

l=1 ml)T [C − diag(C)] (�∏u
l=1 ml) + 1T diag(C)1,

(25)

we need to verify it for U = u + 1. We have

E
{

(�∏u+1
l=1 bl)T C(�∏u+1

l=1 bl)
}

= E
{
(�∏u

l=1 ml)T [Bu+1CBu+1 − diag(Bu+1CBu+1)]
·( �∏u

l=1 ml) + 1T diag(Bu+1CBu+1)1
}

= ( �∏u+1
l=1 ml)T [C − diag(C)] (�∏u+1

l=1 ml) + 1T diag(C)1,
(26)

where Bl = diag(bl) and Ml = diag(ml).
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