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Outline

✦ Multi-User Detection With Prior Knowledge

✦ Needed for turbo multi-user detection

✦ A number of heuristic techniques

✦ Our proposal:

✦ Use variational inference as unifying design tool

✦ Several turbo MUD methods can be derived like this

✦ Can also deal with Gray-coded M-QAM in a natural 
way



Decoding in an Interference 
Channel

✦ At tx’er: Coding - Interleaving - QAM bit-to-
symbol mapping - Channelization (CDMA)
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Decoding in an Interference 
Channel

✦ Channel: Multi-access interference, unfaded.

✦ At rx’er: Iterative decoding and multi-user detection.

✦ Optimal decoding and detection too complex
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Iterative Decoding Basics
“Straightforward” iterative decoding by sum-
product algorithm requires full-blown APP updates 
in multi-user channel.

FEC Decoders

........
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Iterative Decoding Basics

✦ Need sub-optimal MUD to generate 
approximate posterior symbol probabilities.

✦ For example, use Wang/Poor’s LMMSE-based 
detector:

✦ Compute LMMSE filter output per 
iteration per user,    .

✦ Assume                     , where     is Gaussian. 
With known channels and AWGN variance, 
both     and variance of      can be found.

d̂k = µkdk + ηk

d̂k

ηk

µk ηk



Iterative Decoding Basics
✦ Then APP of symbol      can be found, assuming

✦ From symbol APP, bit APPs can be found by 
summing over 2L-1 terms, in 2L-ary modulation:

✦ Other turbo MUDs for M-ary modulation can 
be defined, using similar heuristic assumptions.

✦ E.g. interference cancellation.

dk

P (dk|r) = P (dk|d̂k)

P (b1
k = 0|r) =

∑

dk:b1k=0

P (dk|r)



Variational Inference As A 
Unified Approach

✦ Variational Inference approximates the 
posterior distribution           with a simpler one

✦ The parameters (mean, variance, etc.) of the Q 
function are chosen to minimize the KL 
divergence b/w         and          :

where     denotes the set of parameters for the Q 
function. 

p(d|r)
Q(d)

Q(d) p(d|r)

F (λ) =
∫

Q(d) log
Q(d)

p(r|d)p(d)
dd

λ



Variational Inference
✦ Good choices of Q result in major simplifications 

of the original inference problem (finding            )

✦ Mean field approximation...

✦  ...or Gaussianity

P (dk|r)

Q(d) =
K∏

k=1

Qk(dk)

Q(d) ∝ exp[(d− µ)T Σ−1(d− µ)]



Variational Inference
✦ We can also replace prior distribution        with 

postulated form, i.e.        needn’t be the true 
expression.

✦ Key: KL divergence must be in closed form; 
optimal parameters must be obtainable.

✦ Previous Results: Obtained LMMSE-based 
turbo MUD, and IC-based turbo MUD with 
suitable choices of Q function and priors.

p(d)
p(d)



Discrete SISO MUD

Make mean field assumption, and let

where     is the prior probability of           , and 

     is the posterior prob. of           .

P (b) =
K∏

k=1

ξbk
k (1− ξk)1−bk

p(r|b) = N (Hb,σ2I)

Q(b) =
K∏

k=1

γbk
k (1− γk)1−bk
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Discrete SISO MUD
✦ The parameters of the Q function that appear in 

the KL divergence are                   .

✦ KL divergence has closed form which can be 
minimized using coordinate descent.

✦ As the MUD part of a turbo MUD, one form of 
this receiver is the IC-based turbo MUD of 
Alexander, et al.

✦ But M-QAM not easy to handle -- more than 
one parameter per user!

{γ1, . . . , γK}



Gray Mapping for PAM

✦ In general, for 2L-ary PAM, we have

✦ This multi-linear transformation enables the 
extension of the variational approach to M-ary 
modulation.
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Fig. 1. The transformation from 4-PAM to 8-PAM Gray mapping.

A. Gray Mapping and Multi-Linear Transformation
Lemma 1: A mapping of Q bits to a 2Q-PAM constellation

point dQ following the equation

dQ =
Q∑

q=1

2q−1bQbQ−1 · · · bq, (6)

where bq ∈ {−1, +1}, results in a Gray mapping strategy.
Proof: We now provide a proof by induction. Note that

the {bq}Q
q=1 → dQ mapping formula may be written in a

recursive form as

dQ =
{

bQ Q = 1
bQ(2Q−1 + dQ−1) Q > 1 (7)

We need to show that given {bq}Q−1
q=1 → dQ−1 is Gray

mapping, {bq}Q
q=1 → dQ also preserves the Gray property.

It can be seen from Fig. 1 (for Q = 3) that the operation
bQ(2Q−1 + dQ−1) creates two mirror images of dQ−1 on
either side of the origin, depending on the value of bQ.
But since the additional bit bQ takes on the same value (1
or −1) in either quadrant, the Gray property is preserved
for adjacent constellation points in the same quadrant. Now
consider the two adjacent constellation points that belong
to different quadrants. Because they represent the same bits
{bq}Q−1

q=1 except for bQ, the Gray property also holds for them.
Therefore, it is shown that the transformation from dQ−1 to dQ

by adding bQ preserves the Gray property. Hence the mapping
construction governed by (6) is a Gray mapping scheme.

The proposed Gray mapping construction is not unique. It can
be shown that, in (7), if we were to change the sign before the
term 2Q−1 or dQ−1, it would remain a Gray mapping. Without
loss of generality, we shall maintain the positive signs in the
equation. (6) is a nonlinear function of b1, · · · , bQ, but is linear
w.r.t. each variable. Thus it is called a multi-linear function
[11], which has nice properties for use in variational inference.

B. Free Energy Evaluation for 2Q-PAM Modulation

To derive a VFEM-based detection scheme, we first need
to assume closed-form expressions for the prior, channel
conditional, and posterior pdf’s of the channel bits. Similar to
(4), we make the following postulates for the 2Q-PAM signals:

1) Prior Distribution: The prior distribution p(d) =∏Q
q=1 p(bq) represents the extrinsic information that comes

from the BCJR decoder about the distribution of the channel
bits. In the traditional multiuser detection viewpoint, this
information may be used for interference cancelation in the

detection stage. We will not explicitly do so, but as the
subsequent derivation shows, the interference cancelation op-
eration is naturally realized within VFEM. We may write, for
bq,k ∈ {±1}

p(d) =
∏Q

q=1 p(bq)

=
∏Q

q=1

∏K
k=1 ξ

1+bq,k
2

q,k (1 − ξq,k)
1−bq,k

2

=
∏Q

q=1

∏K
k=1(

1+µq,k

2 )
1+bq,k

2 (1−µq,k

2 )
1−bq,k

2 ,
(8)

where ξq,k is the prior probability of the q-th bit of user k’s
symbol being 1. A change of variable is made in the second
equality, such that µq,k represents the mean estimate of bq,k,
i.e. µq,k = 1 · ξq,k + (−1) · (1 − ξq,k) = 2ξq,k − 1.

2) Channel Conditional Distribution: The channel condi-
tional distribution p(r|d) = N (Sd, σ2I) is assumed to be
Gaussian with noise variance σ2 as Section II indicates. The
multi-linear bit-to-symbol mapping developed in Section IV-
A ensures that the conditional distribution may be written in
terms of the channel bits. Realizing d =

∑Q
q=1 2q−1 $

∏Q
p=q bp,

we may write the channel conditional distribution as

p(r|d) = p(r|b1, · · · ,bQ)
= N

(
S ·

∑Q
q=1 2q−1 $

∏Q
p=q bp, σ2I

)
,

(9)

where the notation $
∏

represents the Schur product (element-
wise product) between vectors, i.e. $

∏Q
p=q bp = bq ◦ bq+1 ◦

· · ·bQ. In other words, we place the q-th bit of all users
in one vector bq , and perform multiuser detection not only
among K users, but also among Q bits in each user. As such,
we may bypass the symbols and directly detect the channel
bits, avoiding the complexity associated with high dimensional
discrete distributions.

3) Posterior Distribution: The exact evaluation of the
posterior bit probability p(b1, · · · ,bQ|r) corresponds to the
jointly-optimal (JO) multiuser detector, but it in general leads
to exponential complexity (in K), even for BPSK signals.
Here we make a mean-field approximation similar to its BPSK
counterpart in (4), where the postulated posterior probability
Q(bq,k) is assumed to be independent over both q and k.
This assumption is essential in reducing the computational
complexity of the BLESD algorithm. In particular,

Q(d) = $
∏Q

q=1 Q(bq)

= $
∏Q

q=1 $
∏K

k=1 γ
1+bq,k

2
q,k (1 − γq,k)

1−bq,k
2

= $
∏Q

q=1 $
∏K

k=1(
1+mq,k

2 )
1+bq,k

2 (1−mq,k

2 )
1−bq,k

2 ,
(10)

where γq,k is the posterior probability of bq,k being 1. A
change of variable is also made here, such that mq,k represents
the mean estimate of bq,k.

The variational free energy expression may be separated
into three terms:

F =
∫
d Q(d) log Q(d)

p(r|d)p(d)dd
=

∫
d Q(d) log Q(d)dd −

∫
d Q(d) log p(r|d)dd

−
∫
d Q(d) log p(d)dd.

(11)
To evaluate F , we require two matrix identities related to the
Schur product, as summarized in Lemmas 2 and 3.

d = b(3)b(2)b(1) + 2b(3)b(2) + 4b(3)

b(q) ∈ {−1,+1}

d =
L∑

l=1

2l−1
L∏

q=l

b(q)

(q-th bit in symbol)



M-QAM Turbo MUD
✦ For K users’ symbols in a vector:

where             denotes element-wise product.

✦ Received signal is

d =
L∑

l=1

2l−1
L∏

q=l

b(q)

r = Hd + n

= H
L∑

l=1

2l−1
L∏

q=l

b(q) + n

∏

q

b(q)



M-QAM Turbo MUD
✦ So we have

which is known (except for noise variance).

✦ By the mean-field approximation, we have

which is known from the FEC decoder in a 
turbo MUD.

p(r|d) = p(r|b(1), . . . ,b(L))

p(d) =
L∏

q=1

p(b(q)) =
L∏

q=1

K∏

k=1

p(b(q)
k )



M-QAM Turbo MUD

✦ In variational inference, we want to minimize 
KL divergence b/w         and                  .

✦ For tractability, let          be factorizable i.e. 
assume all bits are conditionally independent:

✦ Then approx. marginal distribution can be 
found w/o summation or integration.

✦ Gaussian form also suitable.

Q(d) p(r|d)p(d)

Q(d)

Q(d) =
L∏

q=1

Q(b(q)) =
L∏

q=1

K∏

k=1

Q(b(q)
k )



M-QAM Turbo MUD
✦ Assuming binary distributions for            and    

we can find the KL divergence as a function of

✦ Setting the derivative of divergence w.r.t.        
to zero gives coordinate-descent updates (eq. 20 
in the paper):

p(b(q)
k ) Q(b(q)

k )

m(q)
k = EQ(b(q)

k ) b̃(q)
k = Ep(b

(q)
k )and

m(q)
k

log
1 + m(q)

k

1−m(q)
k

= log
1 + b̃(q)

k

1− b̃(q)
k

+ IC-like update



M-QAM Turbo MUD
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Unknown Noise
✦ By including      as an unknown variable to be 

estimated with variational inference, and using 
a “point distribution”, we get a variational EM 
algorithm.

✦ Other unknowns e.g. channel can also be 
incorporated

✦ But more unknowns usually means worse 
performance.

σ2



Simulation
the turbo MUD algorithm. This is analogous to the BPSK case
presented in [6], and its details will be omitted here.

V. SIMULATIONS
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Fig. 2. BER vs. SNR performance of discrete SISO BLESD algorithm for
4-PAM modulation in turbo MUD.

In this section we briefly study the performance of the
proposed MUD algorithm with iterative noise variance es-
timation. We assume a 4-PAM (L = 2) random spreading
system of spreading gain N = 64 with K = 64 users.
All users have equal power and employ the same rate 1/2
convolutional code with generators 10011 and 11101. The
variational EM algorithm is deployed to iteratively update the
estimate for σ2 in each outer iteration. In Fig. 2, the BER
performance is plotted for different numbers of outer iteration,
to show the convergence of the algorithm. We use a single
inner iteration for each outer iteration, in which the parallel
update of {m2,k}K

k=1 is followed by the parallel update of
{m1,k}K

k=1. More specifically, the update equations are:

m2,k ← tanh{ 1
σ2 [(m1,k + 2) · hT

k r
−(m1,k + 2) · βT

k (m2 ◦m1 + 2m2)]};
(22)

m1,k ← tanh{ 1
σ2 [m2,k · hT

k r− 2ρT
k 1

−m2,k · βT
k (m2 ◦m1 + 2m2)]}.

(23)

The single user performance (SUP) refers to estimating the
symbol probabilities based on the channel observation, con-
verting them to bit probabilities, and applying BCJR decoding
with soft bit priors. This obvious approach cannot be extended
to the multiuser scenario, since the complexity of estimating
symbol probabilities is exponential in K. We demonstrate that,
with the help of BLESD, a 4-PAM system with loading-factor
1 is able to perform close to SUP at high SNR, even with
unknown noise variance. Note that implementing BLESD for
K = 1 results in a BER curve almost identical to the SUP
curve after 3 iterations, revealing that the BLESD approach
also has applications in coded AWGN channels, as it performs

close to the conventional soft detection/decoding scheme,
while not requiring the noise variance information.

VI. CONCLUSIONS

In this paper, we proposed a multi-linear transformation to
formulate the non-linear bit-to-symbol mapping of M -QAM,
enabling the application of variational inference for M -QAM
turbo MUD. The generalization of turbo multiuser detectors
to M -QAM modulation through the BLESD algorithm has
implications beyond the scope of multiuser CDMA, since
this analysis can readily be carried over to a wide range of
scenarios, such as MIMO or multipath fading channels.

APPENDIX I
PROOF OF LEMMA 2 BY INDUCTION

It is easily verified that for U = 1,

E
[
bT

1 Cb1

]
= mT

1 [C− diag(C)]m1 + 1T diag(C)1. (24)

Assuming (12) is true for U = u, i.e.

E
{
($
∏u

l=1 bl)T C($
∏u

l=1 bl)
}

= ($
∏u

l=1 ml)T [C− diag(C)] ( $
∏u

l=1 ml) + 1T diag(C)1,
(25)

we need to verify it for U = u + 1. We have

E
{

($
∏u+1

l=1 bl)T C($
∏u+1

l=1 bl)
}

= E
{
($
∏u

l=1 ml)T [Bu+1CBu+1 − diag(Bu+1CBu+1)]
·( $
∏u

l=1 ml) + 1T diag(Bu+1CBu+1)1
}

= ( $
∏u+1

l=1 ml)T [C− diag(C)] ( $
∏u+1

l=1 ml) + 1T diag(C)1,
(26)

where Bl = diag(bl) and Ml = diag(ml).
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Conclusions
✦ Most Important:

✦ Traditional view of optimal MUD as too 
complex led to signal processing approaches 
e.g.  MMSE, int. cancellation, adaptive 
filters, etc.

✦ But these don’t allow obvious link to FEC 
decoder in turbo MUD.

✦ Variational approach keeps probabilistic 
inference viewpoint of optimal MUD, but 
uses distributions that are non-exact.



Conclusions
✦ Variational inference can be used as a unifying 

concept in detection

✦ Different choices of         and         can lead 
to various familiar detectors.

✦ New viewpoint can lead to improved 
detectors e.g. variational EM.

✦ M-QAM (Gray coding) can be handled 
systematically, without first finding symbol 
APP’s.

p(d) Q(d)


