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Abstract— This paper investigates the soft-in soft-out (SISO)
equalization of multilevel QAM symbols in coded inter-symbol
interference (ISI) channels. Unlike the conventional approach
of performing equalization at the symbol level, the proposed
scheme targets the channel bits directly. This solution can be
seen to belong to a family of SISO detection schemes which we
call Bit-Level Equalization and Soft Detection (BLESD), stemming
from the minimization of variational free energy given different
postulates about the prior and posterior distributions of the
channel bits. Simulation results demonstrate that the bit-level
approach outperforms the symbol-level alternative in terms of
error rate in the Porat-Friedlander channel.

I. INTRODUCTION

Efficient data detection and error control code (ECC) decod-
ing are essential in future wireless communication systems,
which require high spectral efficiency, low power consump-
tion, and variable data rates. Utilizing the turbo principle,
the seminal work of [1], [2], among others, introduced a
new philosophy for receiver design, in which the detector
and decoder exchange soft information in an iterative man-
ner, resulting in dramatically improved bit-error-rate (BER)
performance without substantial complexity increase. This
design methodology results in turbo multiuser detectors, turbo
equalizers, or turbo MIMO (multiple-input multiple-output)
receivers in various scenarios.

In this paper, we focus our attention on the turbo equaliza-
tion of inter-symbol interference (ISI) channels. The developed
algorithms may be readily extended to turbo multiuser detec-
tion and turbo MIMO equalization settings, since all three
scenarios may be described by a common Gaussian linear
channel model:

r = Hb + n, (1)

where r ∈ RN×1 is the received signal, H ∈ RN×K is the
channel matrix, b = [b1, · · · , bK ]T ∈ RK×1 represents the
transmitted channel bits, and n ∈ RN×1 is a white Gaussian
noise vector with distribution p(n) = N (0, σ2I).

A key component in the turbo receiver is a soft-in soft-out
(SISO) detector/equalizer, which computes a low-complexity
approximation to the log-likelihood ratio (LLR) of {bk}K

k=1:

ΛI(bk) = log
p(r|bk = 1)

p(r|bk = −1)
. (2)

Exact computation of (2) requires a complexity exponential in
K and thus the optimal turbo receiver does not scale well with

the number of interfering symbols. In (2), ΛI(bk) denotes the
output extrinsic information (EXT) of the Inner code (the ISI
channel), as opposed to the Outer code (the channel code).

The seminal works by Wang and Poor [2], and Tüchler,
Singer and Koetter [3] successfully used the simple minimum
mean-squared error (MMSE) principle in the design of subop-
timal SISO detectors. On the other hand, [4] and [5] proposed
powerful turbo multiuser detectors using, respectively, parallel
and successive interference cancellation schemes as the detec-
tor component.

To provide a comprehensive theory guiding the design of
practical SISO detectors mentioned above, in [6], [7] we
proposed a general framework, adopting the machine learning
concept of variational inference [8], which illuminates the
commonalities in many if not all practical turbo receivers.
This theory describes SISO detectors as special cases of the
variational inference framework obtained from minimizing the
“free energy” expressions corresponding to various postulates
about the prior and posterior distributions of the channel bits.
To understand this framework in simple terms, let us consider
the approximation of p(b|r). Since the direct search for the
maximum of p(b|r) entails exponential complexity, we seek
to obtain its closest estimate in terms of minimal Kullback-
Leibler (KL) divergence. Let Q(b) represent our estimate
of p(b|r). The variational free energy is the KL divergence
between Q(b) and p(b|r) up to an additive constant:

F(λ) =
∫

b

Q(b) log
Q(b)

p(r|b)p(b)
db, (3)

where λ = {λ1, · · · , λK} contains parameters that specify
Q(b). In (3), p(b) and Q(b) are called the postulated prior and
posterior distribution, respectively, variations of which induce
different detector types. For instance, setting p(b) and Q(b)
to continuous Gaussian distributions leads to MMSE-type
SISO detectors [2], [3] (a.k.a. Gaussian SISO detectors), and
setting p(b) and Q(b) to discrete binary distributions produces
interference-cancellation-type SISO detectors [4], [5] (a.k.a.
discrete SISO detectors) when F is minimized iteratively.

In this paper, we investigate another application of the
variational inference view for SISO detection. We will ex-
tend the commonly-assumed BPSK model to the realm of
bit-interleaved coded modulation (BICM) [9]. The proposed
solution, called Bit-Level Equalization and Soft Detection
(BLESD), was first introduced in [10] in the multiuser de-
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tection context. As its name suggests, the BLESD scheme
performs detection at the bit level, even when Gray-coded
M-ary symbols are transmitted, contrary to the conventional
procedure for handling multilevel modulation, where decisions
are first made at the symbol level. However, only the discrete
SISO detector is developed in [10], which reduces F through
successive interference cancellation. This paper derives the
Gaussian SISO version of the BLESD scheme, in order
to produce an MMSE-type detector comparable to existing
turbo equalizers. A journal paper offering a comprehensive
discussion covering the content of both [10] and this paper is
also available [11].

Prior to this work, MMSE-based symbol-level turbo equal-
ization schemes for multilevel modulation already exist. In
[12], the BPSK turbo equalizer is extended to M -PSK mod-
ulation with ease by exploiting the uniform-symbol-energy
property of M -PSK symbols. However, the same technique
does not apply to general QAM modulations. To overcome
this difficulty, Dejonghe and Vandendorpe proposed a more
general solution in [13], enabling SISO equalization at the
symbol level for arbitrary multilevel modulation schemes,
while allowing extrinsic information (EXT) to be obtained for
each channel bit. We will use [13] as the benchmark to be
compared against our proposed scheme in Section IV.

II. SIGNAL MODEL

For simplicity of notation, in the rest of the paper we will
only consider a real-valued channel model, containing pulse-
amplitude modulated (PAM) symbols. This is viable because
extensions to complex QAM symbols follow simply through
a transformation that doubles the signal dimension.

In an ISI channel with channel impulse response (CIR) h =
[h0, · · · , hM ]T of length M+1, the received signal is the linear
convolution of the CIR and the transmitted symbol sequence
{dt}Tend

t=1 . In the interest of limiting the processing delay, we
will take the sliding window approach at each time instance
t, and define

rt = [rt−N1 , · · · , rt, · · · , rt+N2 ]
T ∈ RN×1,

dt = [dt−N1−M , · · · , dt, · · · , dt+N2 ]
T ∈ RK×1,

nt = [nt−N1 , · · · , nt, · · · , nt+N2 ]
T ∈ RN×1.

(4)

We can easily show that the received signal can be written in
a matrix form rt = Hdt + nt, where

H ,




hM · · · h0 0 · · · · · · 0
0 hM · · · h0 0 · · · 0

. . . . . .
0 · · · · · · 0 hM · · · h0


 ∈ C

N×K .

(5)
In (5), N = N1+N2+1 is the equalizer length, and K = N +
M . The sliding window channel model requires the window
to be shifted once every symbol interval. Thus our goal is, for
each window rt, to estimate the n-th element of dt, where
n = N1 + M + 1. To derive the general equations to achieve
this, we may drop the subscript t and obtain:

r = Hd + n. (6)

In (6), dk is a result of Gray mapping of L information
bits {bl,k}L

l=1. It is proven in [10] that the nonlinear Gray
mapping between dk and {bl,k}L

l=1 can be written analytically
as a multi-linear function:

dk =
∑L

l=1 2l−1bL,kbL−1,k · · · bl,k =
∑L

l=1 2l−1
∏L

p=l bp,k,
(7)

where bl,k ∈ {−1, +1}. For instance, consider a 4-PAM
symbol dk that consists of two information bits, b1,k, b2,k ∈
{1,−1}. If the value of dk is determined by the equation
dk = b2,k(2 + b1,k) = b2,kb1,k + 2b2,k, then such a bit-to-
symbol mapping is a Gray mapping, because the four values
that dk takes on, −3, −1, 1 and 3, correspond to (b2,k, b1,k)
pairs (−1, 1), (−1,−1), (1,−1) and (1, 1). This implies that
our channel models may now be written in terms of bl,k,
instead of dk. It is then possible to design equalizers for bl,k

directly, rather than dk.

III. GAUSSIAN SISO EQUALIZER FOR 2L-PAM

As emphasized in [7], the most important steps in deriving
variational-inference-based SISO detectors may be summa-
rized as the following variational free energy minimization
(VFEM) routine:

1) Postulate distributions for p(d), p(r|d) and Q(d);
2) Derive an analytical expression for F(λ1, · · · , λK);
3) Minimize F(λ1, · · · , λK) over {λk}K

k=1.
Since d is a known function of b through the multi-linear
function (7), we can also view the distributions in step (1) as
functions of b, which means that in principle we can infer b
without first inferring d. This bit-inference idea is central to
this paper, and will be explained presently.

A. Variational Free Energy Minimization

1) Postulated Distributions: Similar to the BPSK case [6],
we make the following postulates for the 2L-PAM signals:

Prior Distribution: Because of interleaving, we may assume
the L bits that make up each symbol to be independent.
Therefore,

p(d) =
∏L

l=1 p(bl)
=

∏L
l=1N (b̃l,Wl),

(8)

where b̃l = [b̃l,1, · · · , b̃l,K ]T represents the mean estimates
from the APP decoder of the l-th channel bits of all users.
Wl = diag([1− b̃2

l,1, · · · , 1− b̃2
l,K ]T ) is the covariance matrix.

Channel Transition Distribution: The channel transition
distribution or likelihood function is p(r|d) = N (Hd, σ2I).
The multi-linear bit-to-symbol mapping in (7) ensures that the
transition distribution may be written in terms of the channel
bits. Recognizing d =

∑L
l=1 2l−1 6∏L

p=l bp, then

p(r|d) = p(r|b1, · · · ,bL)
= N

(
H ·∑L

l=1 2l−1 6∏L
p=l bp, σ

2I
)

,
(9)

where the notation 6∏ represents a series of Schur (element-
wise) products, i.e. 6∏L

p=l bp = bl ◦ bl+1 ◦ · · · ◦ bL. In other
words, we place the l-th bit of all symbols in one vector bl,
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F(µ1, · · · , µL,Σ1, · · · ,ΣL)

=
PL

l=1

h
− 1

2

PL
l=1 log |Σl|+ 1

2
tr(W−1

l Σl) + 1
2
µT

l W−1
l µl − b̃T

l W−1
l µl

i
+ 1

2σ2

nPL
l=1 2l−1tr

h
6QL

p=l(Σp + µpµT
p ) · (HT H)

i

+
P

1≤i<j≤L 2i+j−1tr
h
6QL

p=j(Σp + µpµT
p ) ·HT H · diag(6Qj−1

p=i µp)
io
− 1

2σ2

n
2rT H(

PL
l=1 2l−1 6QL

p=l µp)
o (12)

8
>>>>>>>><
>>>>>>>>:

φl =
P

1≤i≤l<j≤L 2i+j−2
n

diag(6Qj−1
p=i,p6=l µp)

h
(HT H)◦ 6QL

p=j(Σp + µpµT
p )
i
1 + I(i = l = j − 1)

h
(HT H)◦ 6QL

p=j(Σp + µpµT
p )
i
1
o

Ψl =
Pl

i=1

n
22i−2

h
(HT H)◦ 6QL

p=i,p6=l(Σp + µpµT
p )
io

+ I(l = L) · 22l−2HT H

Ξl =
P

1≤i<j≤l,i6=j 2i+j−2


I(j = L) ·

h
HT H · diag(6Qj−1

p=i µp)
i

+ I(j = L) ·
h
HT H · diag(6Qj−1

p=i µp)
iT

+
h
HT H · diag(6Qj−1

p=i µp)◦ 6QL
p=j,p6=l(Σp + µpµT

p )
i

+
h
HT H · diag(6Qj−1

p=i µp)◦ 6QL
p=j,p6=l(Σp + µpµT

p )
iT
ff

Ωl =
Pl

i=1

n
2i−1diag(6QL

p=i,p6=l µp)
o

+ I(l = L) · 2l−1I (14)

and eventually perform joint equalization not only among K
symbols, but also among the L bits in each symbol.

Posterior Distribution: We restrict each vector bl to have a
Gaussian posterior distribution. Here we adopt the mean-field
approximation and assume the independence of {bl}L

l=1 given
channel observations. We thus have

Q(d) =
∏L

l=1 Q(bl)
=

∏L
l=1N (µl,Σl).

(10)

2) Free Energy Evaluation: The variational free energy
expression for channel symbols {dk}K

k=1 may be written as:

F =
∫
d

Q(d) log Q(d)dd− ∫
d

Q(d) log p(r|d)dd
− ∫

d
Q(d) log p(d)dd

= E [log Q(d)]− E [log p(r|d)]− E [log p(d)] .
(11)

The task of free energy evaluation then condenses to the
computation of the integral expressions in (11) given p(d),
p(r|d) and Q(d) defined in (8), (9) and (10), respectively. This
is mathematically involved because the multi-linear transfor-
mation connecting the channel bits to Gray-mapped symbols
necessitates the development of a new set of matrix algebra
relations involving the Schur product. To preserve the clarity of
the subsequent presentation, we move the complete derivation
to Appendix I. The final free energy expression for Gaussian
SISO BLESD is assembled in (12). While it is sufficient to
work with (12) directly to arrive at desired Gaussian SISO
equalizers, readers are encouraged to refer to Appendix I for
additional insights.

3) Free Energy Minimization: Taking the derivative of
F({µl}L

l=1, {Σl}L
l=1) w.r.t. µl and Σ−1

l , 1 ≤ l ≤ L, and
equating to zero yields:

µl = b̃l +
`
Ψl + Ξl + σ2W−1

l

´−1
h
ΩlH

T r− φl − (Ψl + Ξl)b̃l

i

Σl =
`
σ−2Ψl + σ−2Ξl + W−1

l

´−1

(13)
In (13), φl, Ψl, Ξl, and Ωl are constants specified in (14),

where I(A) is an indicator function which equals 1 if A is true
and 0 otherwise. Also, we define 6∏n∈S Xn = 0 for S = ∅. In
other words, the Schur product over an empty set of matrices
equals zero. In the subsequent section, we will focus on the
BPSK (L = 1) and 4-PAM (L = 2) cases.

B. Examples: BPSK and 4-PAM

We will now show how to obtain Gaussian SISO equalizers
for BPSK and 4-PAM modulations. Table I contains a list of
parameters resulting from evaluating Ψl, Ξl, Ωl and φl for
L = 1 and L = 2. Substituting the parameters corresponding
to L = 1 into (13), we have

µ = b̃ + (HT H + σ2W−1)−1(HT r−HT Hb̃)
Σ = (σ−2HT H + W−1)−1.

(15)

The expression for µ found above corresponds to the MMSE
filter output derived in [2] and [12].

For L = 2, substituting the parameters in Table I into (13)
yields expressions corresponding to Q(b1) and Q(b2):

µ1 = b̃1 + [R1 + σ2W−1
1 ]−1[HT

1 r−R1(b̃1 + 21)]
Σ1 = (σ−2R1 + W−1

1 )−1

µ2 = b̃2 + [R2 + σ2W−1
2 ]−1[HT

2 r−R2b̃2]
Σ2 = (σ−2R2 + W−1

2 )−1

(16)
where

H1 = diag(µ2)H;
R1 = (Σ2 + µ2µ

T
2 ) ◦ (HT H);

H2 = diag(µ1 + 21)H;
R2 = [Σ1 + (µ1 + 21)(µ1 + 21)T ] ◦ (HT H).

(17)

Notice the clear similarity between the equations for 4-PAM
and those of BPSK. An interesting intuitive interpretation may
be drawn. For instance, in 4-PAM, bit 1 of all users, b1,
sees an effective channel diag(µ2)H and effective channel
correlation matrix (Σ2 + µ2µ

T
2 ) ◦ (HT H). Similarly, b2 sees

diag(µ1 + 21)H and [Σ1 + (µ1 + 21)(µ1 + 21)T ] ◦ (HT H).
Such a similarity implies that techniques for reducing the
computational cost of SISO equalization for BPSK, which are
discussed in [2] and [12], also apply to the Gaussian SISO
BLESD approach.

C. Practical Gaussian SISO Algorithm for 4-PAM

In this section we will resolve some practical challenges
in converting the generic equations developed above to an
equalization algorithm. Taking Q(b2) for example:

µ2 = b̃2 + [R2 + σ2W−1
2 ]−1[HT

2 r−R2b̃2] (18)
Σ2 = [σ−2R2 + W−1

2 ]−1. (19)
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TABLE I
PARAMETERS FOR BPSK AND 4-PAM GAUSSIAN SISO BLESD EQUALIZER.

BPSK (L = 1)
Ψ1 = HT H
Ξ1 = 0
Ω1 = I
φ1 = 0

4-PAM: (L = 2)
Ψ1 = (Σ2 + µ2µ

T
2 ) ◦ (HT H) Ψ2 = (Σ1 + µ1µ

T
1 ) ◦ (HT H) + 4HT H

Ξ1 = 0 Ξ2 = 2(µ11
T + 1µT

1 ) ◦ (HT H)
Ω1 = diag(µ2) Ω2 = diag(µ1 + 21)
φ1 = 2 · [(Σ2 + µ2µ

T
2 ) ◦ (HT H)]1 φ2 = 0

These equations cannot be used directly, since W2 =
diag([1− b̃2

2,1, · · · , 1− b̃2
2,K ]T ) may become rank-deficient as

the turbo iterations converge (b̃2,k → ±1). Thus (18) and (19)
need to be converted to a different form.

To proceed, we first notice that Σ1 can be approximated as
a diagonal matrix. This is true under the mean-field approxi-
mation assuming the independence of {Q(b1,k)}K

k=1. Writing
Σ1 = diag([σ2

b1,1
, · · · , σ2

b1,K
]T ), we have

R2 + σ2W−1
2

= [Σ1 + (µ1 + 21)(µ1 + 21)T ] ◦ (HT H) + σ2W−1
2

= HT
2 H2 + Σ1 ◦ (HT H) + σ2W−1

2

= HT
2 H2 + σ2W̃−1

2 ,
(20)

where W̃2 = (I+ σ−2W2[Σ1 ◦ (HT H)])−1W2. The deriva-
tion makes use of the fact that Σ1 and W̃2 are diagonal
matrices, as well as the identity [(µ1 + 21)(µ1 + 21)T ] ◦
(HT H) = HT

2 H2.
Now, (18) and (19) can be rewritten as

µ2 = b̃2 + [HT
2 H2 + σ2W̃−1

2 ]−1[HT
2 r−R2b̃2]

Σ2 = [σ−2HT
2 H2 + W̃−1

2 ]−1.
(21)

Having evaluated the posterior distribution Q(b2), we rec-
ognize that L(b2,n) = Q(b2,n)/p(b2,n) approximates the
likelihood function p(r|b2,n) (The n-th symbol is the symbol
of interest for every window position). It can be subsequently
shown that the LLR of b2,n is

ΛI(b2,n) = log
L(b2,n = 1)
L(b2,n = −1)

=
2µ̌2,n

1− α̌2,n
, (22)

where

µ̌2,n = σ−2eT
n [I−HT

2 (H2W̃2HT
2 + σ2I)−1H2W̃2]

·[HT
2 r−R2b̃2,n]

α̌2,n = [HT
2 (H2W̃2HT

2 + σ2I)−1H2W̃2]n,n.

(23)

In (23), b̃2,n = [b̃2,1, · · · , b̃2,n−1, 0, b̃2,n+1, · · · , b̃2,K ]T . The
LLR of b1,n, ΛI(b1,n) = 2µ̌1,n

1−α̌1,n
may be computed similarly.

IV. NUMERICAL RESULTS

Multiple iterations are required to evaluate (21) and the
correction expressions for µ1 and Σ1, since (µ1,Σ1) and
(µ2,Σ2) are coupled due to Gray encoding. We call this
the inner iteration, as opposed to the outer (turbo) iterations.
Usually, only a small number of inner iterations are needed in
each outer iteration.

In Fig. 1, we compare the performance of the proposed
BLESD equalizer with the symbol-level equalizer [13]. We

2 3 4 5 6 7

10
−3

10
−2

10
−1

SNR (Eb/No)

B
E

R
Performance Lower Bound with Zero ISI
Symbol−Based Turbo Equalization
Gaussian SISO BLESD Equalization

Iteration 1

Iteration 15

Fig. 1. BER performance of Gaussian-SISO BLESD and symbol-based turbo
equalization for 16-QAM modulation.

assume a system employing 16-QAM modulation, with each
packet containing 2048 information bits encoded by a rate
1/2 convolutional code with generator 111 and 101. Similar
to [12], the Porat-Friedlander channel [14] is chosen, which
has M + 1 = 5 complex taps, with CIR h = [2− 0.4j, 1.5 +
1.8j, 1, 1.2 − 1.3j, 0.8 + 1.6j]T . We fix the detector window
size to be N1 = 0 and N2 = 9. In the BLESD equalizer,
G = 4 inner iterations are used for each outer iteration. Under
this severe ISI channel, the symbol-based equalizer fails (no
improvement after three iterations). In contrast, the Gaussian
SISO BLESD equalizer remains effective even in this channel
condition. The performance of the symbol-based equalizer
after three iterations is also plotted for comparison.

It is worth mentioning that the symbol-based schemes are
also capable of equalizing the Porat-Friedlander channel, as
demonstrated in [15] and [16]. However, they require a much
stronger code, a longer interleaver, and a larger window
size. The proposed BLESD equalizer achieves a significant
advantage in these aspects over the symbol-based alternatives
at the cost of increased detector complexity, as multiple inner
iterations are required to minimize the free energy.

V. CONCLUSIONS

The Gaussian SISO BLESD equalization of multilevel
QAM symbols points to a new way for an iterative receiver to
handle the mapping between bits and symbols. The resulting
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algorithms perform equalization on the bit level, even when
the transmitted bits are mapped onto Gray-coded symbols
(as in BICM). The performance of the turbo receiver is thus
improved as the conversion between symbol EXT and bit EXT
in symbol-based equalization schemes is avoided.

APPENDIX I
FREE ENERGY EVALUATION

We first develop a few identities involving the Schur product:
Lemma 1:

tr[diag(x) ·A · diag(y) ·BT ] = xT (A ◦B)y (24)

for square matrices A, B ∈ RN×N , and vectors x, y ∈ RN×1.
Proof: Writing A = [Aij ] and B = [Bij ], it is

easily verified that both sides of the equation are equal to∑
i,j xiAijBijyj .
Lemma 2:

tr[A · (B ◦C)T ] = tr[(A ◦B) ·CT ] (25)

for square matrices A, B and C ∈ RN×N .
Proof: Writing A = [Aij ], B = [Bij ] and C = [Cij ], it

is easily verified that both sides of the equation are equal to∑
i,j AijBijCij .
Now we are ready to derive some quadratic expectation

properties for Schur products of Gaussian random vectors.
Lemma 3: Consider independent Gaussian random vec-

tors b1, · · · ,bU ∈ RK×1, each with a distribution bl ∼
N (µl,Σl), l = 1, · · · , U . Then, for a real symmetric matrix
C,

E
[
(6∏U

l=1 bl)T C(6∏U
l=1 bl)

]
= tr

[
6∏U

l=1(Σl + µlµ
T
l ) ·C

]
.

(26)
Proof: This identity may be proven by induction. It is

easily verified that for U = 1,

E
[
bT

1 Cb1

]
= µT

1 Cµ1 + tr[CΣ1]
= tr

[
(Σ1 + µ1µ

T
1 ) ·C]

.
(27)

Assuming (26) is true for U = u, i.e.

E
{
(6∏u

l=1 bl)T C(6∏u
l=1 bl)

}
= tr

[6∏u
l=1(Σl + µlµ

T
l ) ·C]

,
(28)

then for U = u + 1, we have

E
{

( 6∏u+1
l=1 bl)T C(6∏u+1

l=1 bl)
}

= E
{
( 6∏u

l=1 bl)T [Bu+1CBu+1] ( 6
∏u

l=1 bl)
}

= E
{

tr
[6∏u

l=1(Σl + µlµ
T
l ) ·BuCBu

]}
L.1= E

{
bT

u

[6∏u
l=1(Σl + µlµ

T
l ) ◦C

]
bu

}
= tr

{[6∏u
l=1(Σl + µlµ

T
l ) ◦C

] ·Σu+1

}
+µT

u+1

[6∏u
l=1(Σl + µlµ

T
l ) ◦C

]
µu+1

= tr
{
(Σu+1 + µu+1µ

T
u+1) ·

[6∏u
l=1(Σl + µlµ

T
l ) ◦C

]}
L.2= tr

{
6∏u+1

l=1 (Σl + µlµ
T
l ) ·C

}

(29)
where Bl = diag(bl).

Lemma 4: Consider independent Gaussian random vec-
tors b1, · · · ,bV ∈ RK×1, each with a distribution bl ∼

N (µl,Σl), l = 1, · · · , V . Then, for a real symmetric matrix
C and U < V ,

E
[
( 6∏U

l=1 bl)T C(6∏V
l=1 bl)

]

= tr
[
6∏U

l=1(Σl + µlµ
T
l ) · [Cdiag( 6∏V

l=u+1 ul)]
]

= 1T
[
6∏U

l=1(Σl + µlµ
T
l ) ◦C

]
6∏V

l=u+1 µl.

(30)

Proof: Utilizing Lemma 3 yields

E
{

(6∏U
l=1 bl)T C 6∏V

l=1 bl

}

L.3= E
{

tr
[
6∏U

l=1(Σl + µlµ
T
l ) ·C · diag(6∏V

l=u+1 bl)
]}

= tr
[
6∏U

l=1(Σl + µlµ
T
l ) · I ·C · diag(6∏V

l=u+1 µl)
]

L.1= 1T
[
6∏U

l=1(Σl + µlµ
T
l ) ◦C

]
6∏V

l=u+1 µl.

(31)

The three integrals in (11) can now be evaluated, yielding
the complete free energy expression in (12).
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