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Abstract

This paper investigates iterative soft-in soft-out (SISO) detection in coded multiple access channels,

with Gray-coded M-ary quadrature amplitude modulation (QAM) for the channel symbols. The proposed

solution may be summarized as a generic iterative detection scheme called Bit-Level Equalization and

Soft Detection (BLESD), which is an extension of a unified variational inference framework for binary

SISO detection proposed in our prior work. This new strategy fundamentally differs from the conventional

symbol detector, in that data symbols are transparent to the new detector. Rather, soft estimates of the

bits that make up the symbols are directly and naturally obtained by the detector in terms of posterior

probabilities given the channel observation, facilitating efficient message-passing in joint detection and

decoding. Case studies that illustrate the applications of the proposed scheme are presented for turbo

multiuser detection (MUD) for multiple-access interference (MAI) channels and turbo equalization for

inter-symbol interference (ISI) channels.

Index Terms

Free Energy, Gray Encoding, M -ary Modulation, Soft-In Soft-Out (SISO) Detection, Turbo

Equalization, Turbo Multiuser Detection, Variational Inference.

I. INTRODUCTION

At the centre of physical layer wireless receiver design are the challenges of data detection and error

control code (ECC) decoding. While traditionally these two tasks were treated separately, the discovery

of the turbo principle enables the detector and decoder to exchange soft information in an iterative

manner [1], resulting in dramatically improved bit-error-rate (BER) performance without any substantial

complexity increase. Such a turbo receiver structure, depending on the areas of application, is called
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turbo multiuser detector [2], [3], turbo equalizer [4], [5], or turbo MIMO (multiple-input multiple-

output) equalizer [6], [7]. A key component in the turbo receiver is a practical soft-in soft-out (SISO)

detector/equalizer, which has to be able to receive and generate soft estimates with small computational

overhead.

To provide a comprehensive theory guiding the design of practical SISO detectors [2], [3], [5], [8],

in [9], [10] we proposed a general framework, adopting the machine learning concept of variational

inference [11], which illuminates the commonalities in many if not all practical turbo receivers. In [12],

Nissilä and Pasupathy independently established a similar theory that interprets turbo MIMO equalizers

as outcomes of variational optimization. These works describe SISO detectors as special cases of the

variational inference framework simply by minimizing the “free energy” expressions corresponding to

various postulates. With the help of new insights provided by probabilistic modelling, existing schemes

may be improved systematically with clear and unified optimality objectives, while new schemes can

also be found, and out-perform existing ones in certain applications.

In this paper, we investigate another application of the variational inference view for SISO detection,

where we will extend the commonly-assumed binary phase shift keying (BPSK) model to the more

challenging (and useful) realm of multilevel modulation. The proposed solution is called Bit-Level

Equalization and Soft Detection (BLESD). As its name suggests, the BLESD scheme performs detection

at the bit level, even when M-ary symbols are transmitted, contrary to the conventional procedure for

handling multilevel modulation, where decisions are first made at the symbol level. In [13] and [14],

the BPSK assumption of turbo multiuser detection (MUD) and equalization is extended to M-ary phase

shift keying (M -PSK) with ease by exploiting the uniform-symbol-energy property of M -PSK symbols.

However, the same technique does not apply to general quadrature amplitude modulation (QAM). To

overcome this difficulty, Dejonghe and Vandendorpe proposed a more general solution in [15], enabling

SISO detection at the symbol level for arbitrary multilevel modulation schemes, while allowing extrinsic

information (EXT) to be obtained for each channel bit.

Our proposed BLESD approach is different, in that channel symbols are bypassed, thus directly

generating bit EXT at the detector output. Detection algorithms for Gray-coded M-ary QAM will be

systematically formulated and optimized. We focus our attention on Gray-coded QAM modulation for

its simplicity and importance in wireless communications, which amounts to the bit-interleaved coded

modulation (BICM) [16] scheme when combined with joint decoding.

The rest of the paper will be organized as follows. Section II presents the general signal model

encapsulating both the multi-access interference (MAI) and inter-symbol interference (ISI) channels.

Section III provides an overview for the variational inference framework for BPSK-based SISO detection.

Section IV contains the contributions of this paper. A multi-linear transformation that describes the
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nonlinear bit-to-symbol Gray mapping in closed form is first introduced, followed by the derivation of a set

of BLESD schemes based on variational free energy minimization. Section V addresses implementation

challenges specific to turbo MUD and equalization, and presents simulation examples for both cases.

Finally, Section VI concludes the paper. The mathematical notation in this paper follows that of [10].

II. SIGNAL MODEL

We consider a real-valued linear vector channel, over which pulse-amplitude modulated (PAM) data

symbols dk, k = 1, · · · ,K, are transmitted:

r = Hd + n ∈ RN×1, (1)

where H ∈ RN×K is the channel matrix. Each data symbol dk in d = [d1, d2, · · · , dK ]T is a result

of a Gray mapping of log2 M = L information bits {bl,k}L
l=1. n is a white Gaussian noise vector with

distribution p(n) = N (0, σ2I). Since the complex-valued signal model for QAM signalling can be readily

transformed to a real-valued model by concatenating the real and imaginary parts of the signal, (1) is

sufficient for the study of QAM signalling as well.

The channel matrix H has different definitions in MAI and ISI channels:

1) Multiuser CDMA: In the context of synchronous CDMA in a flat-fading channel,

H , SA = [A1 s1, · · · , AK sK ] ∈ RN×K , (2)

where S = [s1, s2, · · · , sK ] is the normalized spreading code matrix, and A = diag([A1, · · · , AK ]T )

contains channel gains of K active users. Typically, K < N , since the number of users is usually

assumed to be smaller than the spreading gain.

2) Multipath Channel: In an ISI channel with channel impulse response (CIR) h = [h0, · · · , hM ]T of

length M + 1, the received signal is the linear convolution of the CIR and the transmitted symbol

sequence. In the interest of limiting the processing delay, we will take the sliding window approach

at each time instance, and let H be the channel convolution matrix:

H ,




hM · · · h0 0 · · · · · · 0

0 hM · · · h0 0 · · · 0
. . . . . .

0 · · · · · · 0 hM · · · h0



∈ RN×K . (3)

where K = N + M > N .

It is important to note, however, that despite sharing the vector channel model of (1), the MUD and

equalization problems require slightly different mathematical treatments due to the different dimension-

June 26, 2008 DRAFT



4

alities of H in the two cases. This should not detract from the common foundation underlying the

multiple-access-channel problems that we are trying to establish.

III. BINARY SISO DETECTION VIA VARIATIONAL INFERENCE

The general layout of a turbo receiver is well-known [3]. It consists of a decoder component and a

detector component that exchange soft estimates about the channel bits. The decoder is used to resolve

the ECC (outer code), and the detector is responsible for the channel distortion (inner code). In the case

of a convolutional code being used as the outer code, the optimal design of the decoder component is

an BCJR decoder[17].

The design of the detector component is more challenging, since the optimal a posteriori probability

(APP) detector is known to be NP complete. Consequently, as summarized in Section I, much research

has been devoted to searching for suboptimal SISO detectors that are able to accept prior information

and generate soft EXT in terms of log-likelihood ratios (LLR) of channel bits.

Writing the BPSK channel model as r = Hb+ n, where b ∈ {±1}K are the channel bits, the role of

a SISO detector is to approximate the LLR, for {bk}K
k=1, of the form

ΛI(bk) = log
p(r|bk = 1)

p(r|bk = −1)
, (4)

where ΛI(bk) denotes the output EXT of the Inner code, and

p(r|bk) =
∑

{bi}i 6=k

p(r|b)
K∏

i=1,i 6=k

p(bi) ∝ p(bk|r)
p(bk)

. (5)

In (5), p(bi) denotes the prior probability of bi, which, in the turbo receiver context, comes from the

output EXT of the Outer code decoder.

To avoid the exponential complexity of evaluating p(bk|r), the VFEM framework [9], [10] simplifies

the problem by postulating a distribution Q(b) that resembles p(b|r) but with a more convenient form.

Our goal then becomes minimizing the Kullback-Leibler (KL) divergence between Q(b) and p(b|r), also

known as the variational free energy, up to an additive constant:

F(λ) =
∫

b
Q(b; λ) log

Q(b; λ)
p(r|b)p(b)

db. (6)

In (6), Q(b) is written as Q(b;λ) to denote the dependence of Q(b) on λ explicitly, where λ contains

a set of parameters that specify Q(b). In the rest of the paper, we will however drop the dependence of

the Q function on λ in accordance with the usual convention for writing probability distributions.

The distributions p(b) and Q(b) are called the postulated prior and posterior distribution, respectively,

variations of which induce different detector types. For instance, setting p(b) and Q(b) to continuous
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Gaussian distributions leads to MMSE-type SISO detectors [3], [5] (a.k.a. Gaussian SISO detectors),

and setting p(b) and Q(b) to discrete binary distributions produces interference-cancellation-type SISO

detectors [2], [8] (a.k.a. discrete SISO detectors) when F is minimized iteratively. In what follows, we

will briefly review the derivation of these two detector types.

A. Gaussian SISO Detector

The Gaussian SISO detectors are induced by the following set of postulated distributions1 :




p(b) = N (b̃,W), bk ∈ R
p(r|b) = N (Hb, σ2I)

Q(b) = N (µ,Σ), bk ∈ R
(7)

where b̃ = [b̃1, · · · , b̃K ]T are the average bit estimates from the BCJR decoder (b̃k = E[bk]), and

W = diag([1− b̃2
1, · · · , 1− b̃2

K ]T ) (since V[bk] = 1− b̃2
k). In particular, µ and Σ are the parameters of

the variational free energy. Minizing the varitional free energy we have,

µ = b̃ + (HTH + σ2W−1)−1HT (r−Hb̃) (8)

Σ = (σ−2HTH + W−1)−1. (9)

Since Q(bk) by definition is an approximation to p(bk|r), the output EXT of the SISO detector may

be computed via (4) and (5), yielding

ΛI(bk) =
eT

k (W + σ2(HTH)−1)−1((HTH)−1HT r− b̃k)
1− [W(W + σ2(HTH)−1)−1]k,k

. (10)

B. Discrete SISO Detector

The discrete SISO detectors, on the other hand, are induced by the following set of postulated

distributions: 



p(b) =
∏K

k=1 ξ
1+bk

2
k (1− ξk)

1−bk
2 , bk ∈ {±1}

p(r|b) = N (Hb, σ2I)

Q(b) =
∏K

k=1 γ
1+bk

2
k (1− γk)

1−bk
2 , bk ∈ {±1}

(11)

where ξk and γk are the prior and posterior probabilities of bk being 1. The advantage of this approach is

that the binary nature of bk is retained, but an approximation on the independence of {bk}K
k=1 conditioned

1In [10], we showed that in addition to different choices of postulated distributions, the scheduling scheme for message passing
is also an important factor in SISO detector design. Without loss of generality, we will assume the so-called flooding schedule in
the paper. It is worth noting that other scheduling schemes lead to equally valid, though slightly different, detector expressions.
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on r (mean-field approximation) has to be made. The unknown parameter in (6), λ, corresponds to

{γk}K
k=1.

As demonstrated in [10], postulated probabilities of this type lead to a SISO detector resembling the

successive interference cancellation (SIC) detector. Solving Q(b) yields two recursive equations:

ΛI(bk) =
2
σ2

[
hT

k r− βT
k m

]
(12)

mk = tanh
[
ΛI(bk) + ΛO(bk)

2

]
, (13)

where m = [m1, · · · ,mK ]T is the posterior mean of b, i.e., mk = 2γk − 1, and hk and βk are the

k-th column vectors of H and HTH− diag(HTH), respectively. ΛO(bk) is the LLR obtained from the

BCJR decoder, representing the prior probability of bk. This recursive relation leads to SIC-like nonlinear

iterations, where ΛI(bk) is found upon convergence.

IV. BIT-LEVEL EQUALIZATION AND SOFT DETECTION FOR M -QAM

Having revisited the variational inference interpretation of SISO detection for BPSK modulation, in

this section, we will investigate new detection methods for Gray-coded M -ary modulation utilizing the

same theoretical framework.

Various turbo receiver designs for multilevel modulation have been reported in the past. For instance,

[13], [14] proposed SISO detector formulations for M -PSK, and [15] investigated the solution for

arbitrary modulation schemes. These approaches share the commonality that they all amount to computing

the symbol likelihoods using some form of MMSE filtering and converting symbol likelihoods to bit

likelihoods.

This paper proposes an unconventional approach, in which bits modulated within channel symbols are

detected directly, thus eliminating the need for soft symbol/bit mapping and demapping. The change of

paradigm is made possible by treating the nonlinear bit-to-symbol mapping as part of the channel, and

by using the variational inference framework (which subsumes the MMSE filtering approach).

This section progresses in the following manner: Section IV-A proposes a mapping from b to d for

Gray-coded PAM symbols, facilitating expressing p(r|d) as p(r|b1, · · · ,bL) in a manageable closed form.

Here bl = [bl,1, · · · , bl,K ]T is a vector containing the l-th bits of {dk}K
k=1, where the channel symbol dk

is made up of the Gray mapping of L channel bits b1,k, · · · , bL,k. Section IV-B and Section IV-C, from

the Gaussian SISO and discrete SISO perspectives, respectively, optimize F given the postulated prior,

channel transition and posterior distributions, and reveal how practical SISO detection algorithms can be

extracted as a result.
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A. Gray Mapping and Multi-Linear Transformation

Consider a 4-PAM symbol d[2] that consists of two information bits, b1, b2 ∈ {1,−1} (The subscript

of d[2] indicates that each symbol contains two bits). If the value of d[2] is determined by the equation

d[2] = b2(2 + b1) = b2b1 + 2b2, then such a bit-to-symbol mapping is a Gray mapping, because the four

values that d[2] takes on, −3, −1, 1 and 3, correspond to (b2, b1) pairs (−1, 1), (−1,−1), (1,−1) and

(1, 1). In fact, this simple Gray mapping strategy may be generalized to arbitrary 2L-PAM constellations:

Definition 1: A mapping of L bits to a 2L-PAM constellation point d[L] following the equation

d[L] =
L∑

l=1

2l−1bLbL−1 · · · bl =
L∑

l=1

2l−1
L∏

p=l

bp, (14)

where bl ∈ {−1,+1}, results in a Gray mapping strategy.

Note that the {bl}L
l=1 → d[L] mapping formula may also be written in a recursive form as

d[L] =





bL L = 1

bL(2L−1 + d[L−1]) L > 1
(15)

Using (15), the Gray mapping property of the above labeling scheme can be proven by induction [18].

However, the construction is not unique. It can be shown that, in (15), if we were to change the sign

before the term 2L−1 or d[L−1], it would remain a Gray mapping. In particular, a sign-inverted mapping

of the form d[L] = −∑L
l=1 2l−1bLbL−1 · · · bl corresponds to the conventional Gray mapping found in

the literature. Without loss of generality, we shall use (14) for convenience. Note that d[L] is a nonlinear

function of b1, · · · , bL, but is linear w.r.t. each variable individually. Thus it is called a multi-linear

function [19], which has useful properties for use in variational inference.

Now that a simple closed-form expression that describes the Gray bit-to-symbol mapping is available to

us, this implies that our channel models may be written in terms of bl,k, instead of dk. It is then possible

to design detectors for bl,k, rather than dk. Since bl,k is a binary random variable, the objective function

associated with it should be much easier to handle. We will now derive SISO detection algorithms for

M -ary symbols, making use of the variational inference framework outlined in Section III.

B. Gaussian SISO Detector for 2L-PAM Modulation

1) Postulated Distributions: Prior Distribution: Because of interleaving, we may assume the L code

bits that make up each symbol to be independent. Therefore,

p(d) =
∏L

l=1 p(bl)

=
∏L

l=1N (b̃l,Wl),
(16)
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where b̃l = [b̃l,1, · · · , b̃l,K ]T represents the mean estimates from the BCJR decoder of the l-th channel

bits of all users.

Channel Transition Distribution: The channel transition distribution or likelihood function is p(r|d) =

N (Hd, σ2I). The multi-linear bit-to-symbol mapping developed in Section IV-A ensures that the con-

ditional distribution may be written in terms of the channel bits. Recognizing d =
∑L

l=1 2l−1 6∏L
p=l bp

from (14), then
p(r|d) = p(r|b1, · · · ,bL)

= N
(
H ·∑L

l=1 2l−1 6∏L
p=l bp, σ

2I
)

,
(17)

where the notation 6∏ represents a series of Schur (element-wise) products, i.e.,

6∏L
p=l bp = bl ◦ bl+1 ◦ · · · ◦ bL. (18)

In the context of MUD, we place the l-th bit of all users in one vector bl, and eventually perform joint

detection not only among K users, but also among the L bits in each user’s symbol.

Posterior Distribution: Following the methodology for Gaussian SISO detector design, we restrict

each vector bl to have a Gaussian posterior distribution. Here we adopt the mean-field approximation

and assume the independence of {bl}L
l=1. This assumption is critical to reducing the computational

complexity of the BLESD algorithm. We thus have

Q(d) =
∏L

l=1 Q(bl)

=
∏L

l=1N (µl,Σl).
(19)

2) Free Energy Evaluation: The variational free energy expression for channel symbols {dk}K
k=1 may

be written as:

F =
∫
d Q(d) log Q(d)

p(r|d)p(d)dd

=
∫
d Q(d) log Q(d)dd− ∫

d Q(d) log p(r|d)dd− ∫
d Q(d) log p(d)dd.

(20)

The task of free energy evaluation then condenses to the computation of the integral expressions in

(20) given p(d), p(r|d) and Q(d) defined in (16), (17) and (19), respectively. This is mathematically

involved because the multi-linear transformation connecting the channel bits to Gray-mapped symbols

necessitates the development of a new set of matrix algebra relations involving the Schur product. To

preserve the clarity of the subsequent presentation, we move the complete derivation to Appendix A.

While it is sufficient to work with the final F expression in (21) directly to arrive at desired Gaussian

SISO detectors, readers are encouraged to refer to Appendix A for additional insights.

The complete free energy expression for Gaussian SISO detection is assembled as follows:
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TABLE I
PARAMETERS FOR BPSK AND 4-PAM GAUSSIAN SISO BLESD DETECTOR.

BPSK (L = 1)
Ψ1 = HT H
Ξ1 = 0
Ω1 = I
φ1 = 0

4-PAM: (L = 2)
Ψ1 = (Σ2 + µ2µ

T
2 ) ◦ (HT H) Ψ2 = (Σ1 + µ1µ

T
1 ) ◦ (HT H) + 4HT H

Ξ1 = 0 Ξ2 = 2(µ11
T + 1µT

1 ) ◦ (HT H)
Ω1 = diag(µ2) Ω2 = diag(µ1 + 21)
φ1 = 2 · [(Σ2 + µ2µ

T
2 ) ◦ (HT H)]1 φ2 = 0

F(µ1, · · · , µL,Σ1, · · · ,ΣL)

=
∑L

l=1

[
− 1

2

∑L
l=1 log |Σl|+ 1

2 tr(W−1
l Σl) + 1

2µT
l W−1

l µl − b̃T
l W−1

l µl

]
+ 1

2σ2

{∑L
l=1 2l−1 tr

[
6∏L

p=l(Σp + µpµ
T
p )(HT H)

]

+
∑

1≤i<j≤L 2i+j−1 tr
[
6∏L

p=j(Σp + µpµ
T
p ) ·HT H · diag( 6∏j−1

p=i µp)
]}
− 1

2σ2

{
2rT H(

∑L
l=1 2l−1 6∏L

p=l µp)
}

(21)

3) Free Energy Minimization: Taking the derivative of F({µl}L
l=1, {Σl}L

l=1) w.r.t. µl and Σl, 1 ≤ l ≤
L, and equating to zero yields:

µl = b̃l +
(
Ψl + Ξl + σ2W−1

l

)−1
[
ΩlHT r− φl − (Ψl + Ξl)b̃l

]
, (22)

Σl =
(
σ−2Ψl + σ−2Ξl + W−1

l

)−1 (23)

where




Ψl =
∑l

i=1

{
22i−2

[
(HT H)◦ 6∏L

p=i,p 6=l(Σp + µpµ
T
p )

]}
+ I(l = L) · 22l−2HT H

Ξl =
∑

1≤i<j≤l,i 6=j 2i+j−2

{
I(j = L) ·

[
HT H · diag(6∏j−1

p=i µp)
]

+ I(j = L) ·
[
HT H · diag(6∏j−1

p=i µp)
]T

+
[
HT H · diag( 6∏j−1

p=i µp)◦ 6
∏L

p=j,p 6=l(Σp + µpµ
T
p )

]
+

[
HT H · diag(6∏j−1

p=i µp)◦ 6
∏L

p=j,p 6=l(Σp + µpµ
T
p )

]T
}

Ωl =
∑l

i=1

{
2i−1 diag(6∏L

p=i,p 6=l µp)
}

+ I(l = L) · 2l−1I

φl =
∑

1≤i≤l<j≤L 2i+j−2
{

diag(6∏j−1
p=i,p 6=l µp)

[
(HT H)◦ 6∏L

p=j(Σp + µpµ
T
p )

]
1

+I(i = l = j − 1) ·
[
(HT H)◦ 6∏L

p=j(Σp + µpµ
T
p )

]
1
}

(24)

In (24), I(A) is an indicator function which equals 1 if A is true and 0 otherwise. Also, we let

6∏n∈S Xn = 0 for S = ∅. In other words, the Schur product over an empty set of matrices equals zero.

4) Examples: We will now show how to obtain Gaussian SISO detectors for BPSK and 4-PAM

modulation. Table I contains a list of parameters resulting from evaluating (24) for L = 1 and L = 2.

Substituting the parameters corresponding to L = 1 into (22) and (23), we have

µ = b̃ + (HTH + σ2W−1)−1(HT r−HTHb̃)

Σ = (σ−2HTH + W−1)−1.
(25)
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These are identical to Q(b) evaluated in Section III-A. It verifies that, not surprisingly, the Gaussian

SISO detector for BPSK modulation discussed in [10] is a special case of the general BLESD scheme

when L = 1.

For L = 2, substituting the parameters in Table I into (22) and (23) yields expressions corresponding

to Q(b1) and Q(b2):

µ1 = b̃1 + [R1 + σ2W−1
1 ]−1[HT

1 r−R1(b̃1 + 21)]

Σ1 = (σ−2R1 + W−1
1 )−1

µ2 = b̃2 + [R2 + σ2W−1
2 ]−1[HT

2 r−R2b̃2]

Σ2 = (σ−2R2 + W−1
2 )−1

(26)

where
H1 = diag(µ2)H; R1 = (Σ2 + µ2µ

T
2 ) ◦ (HTH);

H2 = diag(µ1 + 21)H; R2 = [Σ1 + (µ1 + 21)(µ1 + 21)T ] ◦ (HTH).
(27)

Notice the clear similarity between the equations for 4-PAM and those of BPSK. An interesting

intuitive interpretation may be drawn. For instance, in 4-PAM, bit 1 of all users, b1, sees an effective

channel diag(µ2)H and effective channel correlation matrix (Σ2 + µ2µ
T
2 ) ◦ (HTH). Similarly, b2 sees

diag(µ1 + 21)H and [Σ1 + (µ1 + 21)(µ1 + 21)T ] ◦ (HTH). Such a similarity implies that techniques

for reducing the computational cost of SISO detection for BPSK, which are discussed in [3] and [14],

also apply to the Gaussian SISO BLESD approach.

C. Discrete SISO Detector for 2L-PAM Modulation

Now we consider a different class of SISO detectors, using discrete prior and posterior distributions

in the VFEM formulation.

1) Postulated Distributions: Prior Distribution: Assuming the independence of bl,k, l = 1, · · · , L, due

to interleaving, we may write, for bl,k ∈ {±1}

p(d) =
∏L

l=1 p(bl)

=
∏L

l=1

∏K
k=1 ξ

1+bl,k

2
l,k (1− ξl,k)

1−bl,k

2

=
∏L

l=1

∏K
k=1(

1+b̃l,k

2 )
1+bl,k

2 (1−b̃l,k

2 )
1−bl,k

2 ,

(28)

where ξl,k is the prior probability of the l-th bit of user k’s symbol being 1. A change of variable is

made in the third equality, such that b̃l,k represents the prior mean of bl,k, i.e., b̃l,k = 2ξl,k − 1.

Channel Transition Distribution: Again we make use of the multi-linear bit-to-symbol mapping intro-
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duced in Section IV-A. The channel transition distribution will be the same as (17):

p(r|d) = p(r|b1, · · · ,bL)

= N
(
H ·∑L

l=1 2l−1 6∏L
p=l bp, σ

2I
)

,
(29)

Posterior Distribution: We make a mean-field approximation [10] and assume that bl,k’s are independent

over both l and k conditioned on observations. In particular,

Q(d) =
∏L

l=1 Q(bl)

=
∏L

l=1

∏K
k=1 γ

1+bl,k

2
l,k (1− γl,k)

1−bl,k

2

=
∏L

l=1

∏K
k=1(

1+ml,k

2 )
1+bl,k

2 (1−ml,k

2 )
1−bl,k

2 ,

(30)

where γl,k is the posterior probability of bl,k being 1. A change of variable is also made here, such that

ml,k represents the posterior mean of bl,k.

2) Free Energy Evaluation: In Appendix B, we present the detailed derivation of F given p(d), p(r|d)

and Q(d) defined in (28), (29) and (30), respectively. The complete free energy expression for discrete

SISO detection is therefore assembled as follows:

F(m1, · · · ,mL)

=
∑L

l=1

∑K
k=1

{
1+ml,k

2 log 1+b̃l,k

1+ml,k
+ 1−ml,k

2 log 1−b̃l,k

1−ml,k

}
− 1

2σ2

{
2rT H(

∑L
l=1 2l−1 6∏L

p=l mp)
}

+ 1
2σ2

{
(
∑L

l=1 2l−1 6∏L
p=l mp)T [HT H− diag(HT H)](

∑L
l=1 2l−1 6∏L

p=l mp)
}

+ 1
2σ2

{
1T diag(HT H)(

∑
0<i≤j<L 2i+j 6∏j

p=i mp)
}

(31)

3) Free Energy Minimization: Taking the derivative of F({ml}L
l=1) w.r.t. ml, 1 ≤ l ≤ L, and equating

to zero yields:




log 1+ml,1
1−ml,1

...

log 1+ml,K

1−ml,K


 =




log 1+b̃l,1

1−b̃l,1

...

log 1+b̃l,K

1−b̃l,K


 + 2

σ2

{
∆T

l HT r−El diag(HT H)1−∆T
l [HT H− diag(HT H)](∆lml + ζl)

}

(32)

where ∆l = diag(δl), El = diag(εl) and




δl =
∑l

i=1

{
2i−1 6∏L

n=i,n6=l mn

}
+ I(l = L) · 2l−1 · 1

εl =
∑

0<i≤l≤j<L,i 6=j

{
2i+j−1 6∏j

n=i,n6=l mn

}
+ I(0 < l < L) · 22l−1 · 1

ζl =
∑L

i=l+1 2i−1 6∏L
n=i mn.

(33)

F(m1, · · · ,mL) cannot be minimized over {ml}L
l=1 in one step, but iterative schemes, such as the

coordinate descent method, are available to decrease the free energy iteratively. From (32) it is seen that
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setting ∂F/∂ml,k = 0 leads to

log
1 + ml,k

1−ml,k
= log

1 + b̃l,k

1− b̃l,k

+
2
σ2

{
δl,k · hT

k r− εl,k · ρT
k 1− δl,k · βT

k (δl ◦ml + ζl)
}

, (34)

where hk, ρk, and βk are the kth column of H, diag(HTH), and HTH − diag(HTH), respectively.

Notice that the right hand side of (34) is independent of ml,k, and

ΛO(bl,k) = log
1 + b̃l,k

1− b̃l,k

(35)

represents the LLR of the prior probability. Therefore, the detector output EXT becomes

ΛI(bl,k) = log 1+ml,k

1−ml,k
− log 1+b̃l,k

1−b̃l,k

= 2
σ2

{
δl,k · hT

k r− εl,k · ρT
k 1− δl,k · βT

k (δl ◦ml + ζl)
}

.
(36)

4) Examples: We will now show how discrete SISO detection schemes can be formulated for BPSK

and 4-PAM modulation. Evaluating (33) for L = 1 and L = 2 results in a set of parameters as listed in

Table II.

TABLE II
PARAMETERS FOR BPSK AND 4-PAM DISCRETE SISO BLESD DETECTOR.

BPSK (L = 1)
δ1 = 1
ε1 = 0
ζ1 = 0

4-PAM: (L = 2)
δ1 = m2 δ2 = m1 + 21
ε1 = 21 ε2 = 0
ζ1 = 2m2 ζ2 = 0

The update equations for a BPSK detector are determined after substituting the parameters correspond-

ing to L = 1 into (34):

log
1 + mk

1−mk
= log

1 + b̃k

1− b̃k

+
2
σ2

[
hT

k r− βT
k m

]
. (37)

Alternatively, (37) may be written as a recursive relation

ΛI(bk) =
2
σ2

[
hT

k r− βT
k m

]
(38)

mk = tanh
[
ΛI(bk) + ΛO(bk)

2

]
, (39)

which is identical to the original discrete SISO detector for BPSK described in Section III-B. Substituting
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the parameters corresponding to L = 2 into (34), we have

ΛI(b2,k) =
2
σ2

[
(m1,k + 2) · hT

k r− (m1,k + 2) · βT
k (m2 ◦m1 + 2m2)

]
(40)

ΛI(b1,k) =
2
σ2

[
m2,k · hT

k r− 2ρT
k 1−m2,k · βT

k (m2 ◦m1 + 2m2)
]
, (41)

where, for l = 1, 2

ml,k = tanh
[
ΛI(bl,k) + ΛO(bl,k)

2

]
. (42)

These equations for 4-PAM modulation resemble the BPSK counterpart, but require the sequential update

of ΛI(b2,k) as well as ΛI(b1,k).

The discrete SISO detectors derived above have a common feature. That is, the free energy expression

in (31) is non-convex w.r.t. m, implying that the coordinate descent method to decrease F(m1, · · · ,mL)

does not guarantee global convergence. To alleviate this problem, the detector needs to be initialized to

a point close to the global minimum of F , thereby reducing the algorithm’s chance of being trapped in

local minima. [10] proposed a decorrelating-decision-feedback (DDF) SISO detector (the SISO version

of the well-known DDF detector [20]) as the front end of BPSK-based discrete SISO detectors. In this

paper, the DDF SISO detector will also be used in the first outer iteration of the discrete SISO BLESD

turbo receiver to overcome local minima of F . We refer the reader to [10] for details.

V. NUMERICAL RESULTS

In the previous section, the Gaussian SISO and discrete SISO detector formulations for Gray-coded

PAM symbols were derived for the general linear channel model in (1). This section will test the

proposed discrete SISO algorithm for turbo MUD and Gaussian SISO algorithm for turbo equalization.

For conciseness, the simulation examples are only selected to exhibit the power of the paradigm shift

brought by the BLESD approach, and are not exhaustive by any means.

A. Turbo Multiuser Detection

The discrete SISO detection formulation was presented in Section IV-C. Table III outlines the turbo

MUD algorithm implementing discrete SISO detection for 4-PAM/16-QAM. It should be noted that in

the actual simulation, the first outer iteration needs to employ a decorrelating decision-feedback (DDF)

SISO detector, as described in [10].

In Fig. 1 we present simulations for the discrete SISO MUD, with 16-QAM channel symbols. We use

a setting similar to that in [3], by assuming a flat-fading synchronous system with K = 8 users and equal

spreading code cross-correlation ρ = 0.5. All users transmit packets containing 128 information bits each,

which are encoded by the same rate-1/2 convolutional code with generator 101 and 111. All channels have
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TABLE III
TURBO MUD OF 4-PAM/16-QAM IMPLEMENTING GAUSSIAN SISO DETECTION.

Discrete SISO MUD of 4-PAM/16-QAM
Initialization: ΛO(bl,k) = 0 and ΛI(bl,k) = 0 for l = 1, 2, k = 1, · · · , K
FOR j = 1 : J (Outer Iteration)

m̃l,k = tanh[(ΛO(bl,k) + ΛI(bl,k))/2] for l = 1, 2, k = 1, · · · ,K
FOR g = 1 : G (Inner Iteration)

FOR k = 1 : K

ΛI(b2,k) = 2
σ2 [(m1,k + 2) · hT

k r− (m1,k + 2) · βT
k (m2 ◦m1 + 2m2)]

m2,k = tanh[(ΛO(b2,k) + ΛI(b2,k))/2]
END
FOR k = 1 : K

ΛI(b1,k) = 2
σ2 [m2,k · hT

k r− 2ρT
k 1−m2,k · βT

k (m2 ◦m1 + 2m2)]
m1,k = tanh[(ΛO(b1,k) + ΛI(b1,k))/2]

END
END

ΛO(bl,k)
Decoding⇐= ΛI(bl,k) for l = 1, 2, k = 1, · · · ,K (BCJR Decoding)

END

2 3 4 5 6 7 8
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Single User Bound
Symbol−Based Turbo MUD
Discrete SISO BLESD MUD

Iteration 1
Iteration 5

Fig. 1. BER performance of discrete-SISO BLESD and symbol-based turbo MUD for 16-QAM modulation (K = 8, ρ = 0.5).
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Performance Lower Bound with Zero ISI
Symbol−Based Turbo Equalization
Gaussian SISO BLESD Equalization

Iteration 1

Iteration 15

Fig. 2. BER performance of Gaussian-SISO BLESD and symbol-based turbo equalization for 16-QAM modulation.

perfect power control, i.e., Ak = ejφk , where φk is sampled from a uniform distribution, but is perfectly

known at the receiver. It is seen that the discrete SISO BLESD receivers perform close to the single user

bound (SUB). This is done amid both strong interference among users, as well as interaction between

channel bits that make up each symbol. We use G = 6 inner iterations for each outer iteration. The

symbol-based detection scheme in [15] was also implemented. Its performance after the fourth iteration

(after which no further improvement is obtained) is plotted along with the proposed schemes. Under the

assumed simulation settings, the discrete SISO BLESD detector demonstrates significantly reduced BER

and faster convergence.

B. Turbo Equalization

The Gaussian SISO algorithm presented in Section IV-B needs to be modified to conform to the

equalization setting. Appendix C shows how the conversion is done for 4-PAM/16-QAM modulated

signals.
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In Fig. 2, we compare the performance of the proposed BLESD equalizer with the symbol-level

equalizer [15]. We assume a system employing 16-QAM modulation, with each packet containing 2048

information bits encoded by a rate 1/2 convolutional code with generator 111 and 101. Similar to

[14], the Porat-Friedlander channel [21] is chosen, which has M + 1 = 5 complex taps, with CIR

h = [2− 0.4j, 1.5 + 1.8j, 1, 1.2− 1.3j, 0.8 + 1.6j]T . We fix the detector window size to be N1 = 0 and

N2 = 9 (We adopt the same notation as [15], using N1 and N2 to specify the sliding window size).

In the BLESD equalizer, G = 4 inner iterations are used for each outer iteration. Under this severe ISI

channel, the symbol-based equalizer performs poorly (no improvement after three iterations). In contrast,

the Gaussian SISO BLESD equalizer remains effective even in this channel condition.

It is worth mentioning that the symbol-based schemes are also capable of equalizing the Porat-

Friedlander channel, as demonstrated in [22] and [23]. However, they require a much stronger code,

a longer interleaver, and a larger window size. The proposed BLESD equalizer achieves a significant

advantage in these aspects over the symbol-based alternatives at the cost of increased detector complexity,

as multiple inner iterations are required to minimize the free energy.

VI. CONCLUSIONS

The BLESD method for SISO detection of M -QAM symbols opens up a new way for the receiver

to handle the mapping between bits and symbols. The resulting algorithms perform data detection on

the bit level, as opposed to prior work which translate symbol EXT to bit EXT through approximate

low-complexity techniques that may introduce greater errors because of their two-level structure.

The view of Gray-coded data symbols as a multi-linear combination of transmitted bits has potentially

far-reaching implications. For instance, a layered coding strategy may be implemented to offer non-

uniform coding protection, to take account of the non-uniform weight each bit takes up in the QAM

symbol. With the encoding optimized over the “layers” in which the bits belong, the achievable informa-

tion rate may be improved considerably [24]. This may be realized with multilevel modulation coupled

with the BLESD methodology, where encoding and detection are both performed in a layer-by-layer

fashion.

APPENDIX A

FREE ENERGY EVALUATION OF GAUSSIAN SISO DETECTOR

We first develop a few matrix identities involving the Schur product:

Lemma 1:

tr[diag(x) ·A · diag(y) ·BT ] = xT (A ◦B)y (43)

for square matrices A, B ∈ RN×N , and vectors x, y ∈ RN×1.
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Proof: Writing A = [Aij ] and B = [Bij ], it is easily verified that both sides of the equation are

equal to
∑

i,j xiAijBijyj .

Lemma 2:

tr[A · (B ◦C)T ] = tr[(A ◦B) ·CT ] (44)

for square matrices A, B and C ∈ RN×N .

Proof: Writing A = [Aij ], B = [Bij ] and C = [Cij ], it is easily verified that both sides of the

equation are equal to
∑

i,j AijBijCij .

Now we are ready to derive some quadratic expectation properties for Schur products of Gaussian

random vectors.

Lemma 3: Consider independent Gaussian random vectors b1, · · · ,bU ∈ RK×1, each with a distribu-

tion bl ∼ N (µl,Σl), l = 1, · · · , U . Then, for a real symmetric matrix C,

E
[
(6∏U

l=1 bl)TC(6∏U
l=1 bl)

]
= tr

[
6∏U

l=1(Σl + µlµ
T
l ) ·C

]
. (45)

Proof: This identity may be proven by induction. It is easily verified that for U = 1,

E
[
bT

1 Cb1

]
= µT

1 Cµ1 + tr[CΣ1]

= tr
[
(Σ1 + µ1µ

T
1 ) ·C]

.
(46)

Assuming (45) is true for U = u, i.e.,

E
{
( 6∏u

l=1 bl)TC( 6∏u
l=1 bl)

}
= tr

[6∏u
l=1(Σl + µlµ

T
l ) ·C]

, (47)

then for U = u + 1, we have

E
{

(6∏u+1
l=1 bl)TC(6∏u+1

l=1 bl)
}

= E
{
(6∏u

l=1 bl)T [Bu+1CBu+1] ( 6
∏u

l=1 bl)
}

= E
{
tr

[ 6∏u
l=1(Σl + µlµ

T
l ) ·BuCBu

]}
L.1= E

{
bT

u

[6∏u
l=1(Σl + µlµ

T
l ) ◦C

]
bu

}

= tr
{[6∏u

l=1(Σl + µlµ
T
l ) ◦C

] ·Σu+1

}
+ µT

u+1

[6∏u
l=1(Σl + µlµ

T
l ) ◦C

]
µu+1

= tr
{
(Σu+1 + µu+1µ

T
u+1) ·

[6∏u
l=1(Σl + µlµ

T
l ) ◦C

]}
L.2= tr

{
6∏u+1

l=1 (Σl + µlµ
T
l ) ·C

}

(48)

where Bl = diag(bl).

Lemma 4: Consider independent Gaussian random vectors b1, · · · ,bV ∈ RK×1, each with a distribu-
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tion bl ∼ N (µl,Σl), l = 1, · · · , V . Then, for a real symmetric matrix C and U < V ,

E
[
(6∏U

l=1 bl)TC(6∏V
l=1 bl)

]
= tr

[
6∏U

l=1(Σl + µlµ
T
l ) · [C diag(6∏V

l=u+1 ul)]
]

= 1T
[
6∏U

l=1(Σl + µlµ
T
l ) ◦C

]
6∏V

l=u+1 µl.
(49)

Proof: Utilizing Lemma 3 yields

E
{

(6∏U
l=1 bl)TC 6∏V

l=1 bl

}

L.3= E
{

tr
[
6∏U

l=1(Σl + µlµ
T
l ) ·C · diag(6∏V

l=u+1 bl)
]}

= tr
[
6∏U

l=1(Σl + µlµ
T
l ) · I ·C · diag(6∏V

l=u+1 µl)
]

L.1= 1T
[
6∏U

l=1(Σl + µlµ
T
l ) ◦C

]
6∏V

l=u+1 µl.

(50)

The three integrals in (20) can now be evaluated in closed form:

∫
d Q(d) log Q(d)dd =

∑L
l=1

∫
bl

Q(bl) log Q(bl)dbl

= −1
2

∑L
l=1 log |Σl|.

(51)

∫
d Q(d) log p(d)dd =

∑L
l=1

∫
bl

Q(bl) log p(bl)dbl

=
∑L

l=1 E
[
−1

2(bl − b̃l)TW−1
l (bl − b̃l)

]

= −∑L
l=1

[
1
2 tr(W−1

l Σl) + 1
2µT

l W−1
l µl − b̃T

l W−1
l µl

]
.

(52)

∫
d

Q(d) log p(r|d)dd

= − 1
2σ2

{
E

[
(
∑L

l=1 2l−1 6∏L
p=l bp)T HT H(

∑L
l=1 2l−1 6∏L

p=l bp)
]
− E

[
2rT H(

∑L
l=1 2l−1 6∏L

p=l bp)
]}

= − 1
2σ2

{∑L
l=1 2l−1 tr

[
6∏L

p=l(Σp + µpµ
T
p )(̇HT H)

]
+

∑
1≤i<j≤L 2i+j−1 tr

[
6∏L

p=j(Σp + µpµ
T
p ) ·HT H · diag(6∏j−1

p=i µp)
]}

+ 1
2σ2

{
2rT H(

∑L
l=1 2l−1 6∏L

p=l µp)
}

(53)

Combining (51), (52) and (53) yields the complete free energy expression in (21).

APPENDIX B

FREE ENERGY EVALUATION OF DISCRETE SISO DETECTOR

We require two identities related to the quadratic expectations of binary random vectors, as summarized

in Lemmas 5 and 6 below.

Lemma 5: Consider independent binary random vectors b1, · · · ,bU ∈ {±1}K×1 with independently

distributed elements. Let the means of these vectors be {ml}U
l=1, −1 ¹ ml ¹ 1. Then, for a symmetric

real matrix C,

E
[
(6∏U

l=1 bl)TC(6∏U
l=1 bl)

]
= (6∏U

l=1 ml)T [C− diag(C)] ( 6∏U
l=1 ml) + 1T diag(C)1. (54)
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Proof: This identity may be proven by induction. It is easily verified that for U = 1,

E
[
bT

1 Cb1

]
= mT

1 [C− diag(C)]m1 + 1T diag(C)1. (55)

Assuming (54) is true for U = u, i.e.,

E
{
(6∏u

l=1 bl)TC(6∏u
l=1 bl)

}

= ( 6∏u
l=1 ml)T [C− diag(C)] ( 6∏u

l=1 ml) + 1T diag(C)1,
(56)

then for U = u + 1, we have

E
{

(6∏u+1
l=1 bl)TC(6∏u+1

l=1 bl)
}

= E
{
(6∏u

l=1 ml)T [Bu+1CBu+1 − diag(Bu+1CBu+1)] ( 6
∏u

l=1 ml) + 1T diag(Bu+1CBu+1)1
}

= E
{
bT

u+1

[
(
∏u

l=1 Ml)TC(
∏u

l=1 Ml)− diag((
∏u

l=1 Ml)C(
∏u

l=1 Ml))
]
bu+1 + bT

u+1 diag(C)bu+1

}

= (6∏u+1
l=1 ml)T [C− diag(C)] ( 6∏u+1

l=1 ml) + 1T diag(C)1,
(57)

where Bl = diag(bl) and Ml = diag(ml).

Lemma 6: Consider independent binary random vectors b1, · · · ,bV ∈ {±1}K×1 with independently

distributed elements. Let the means of these vectors be {ml}V
l=1, −1 ¹ ml ¹ 1. Then, for a symmetric

real matrix C and U < V ,

E
[
(6∏U

l=1 bl)TC 6∏V
l=1 bl

]
= (6∏U

l=1 ml)T [C− diag(C)] 6∏V
l=1 ml + 1T diag(C) 6∏V

l=U+1 ml. (58)

Proof: Utilizing Lemma 5 yields

E
{

(6∏U
l=1 bl)TC 6∏V

l=1 bl

}

= E
{

(6∏U
l=1 ml)T

[
C

∏V
l=U+1 Bl − diag(C

∏V
l=U+1 Bl)

]
6∏U

l=1 ml + 1T diag(C
∏V

l=U+1 Bl)1
}

= E
{

(6∏V
l=U+1 bl)T

[
C

∏U
l=1 Ml − diag(C

∏U
l=1 Ml)

]
(6∏V

l=U+1 bl) + 1T diag(C) 6∏V
l=U+1 bl

}

= ( 6∏U
l=1 ml)T [C− diag(C)] 6∏V

l=1 ml + 1T diag(C) 6∏V
l=U+1 ml.

(59)

The three integrals in (20) can now be evaluated in closed form:

∫
d Q(d) log Q(d)dd =

∑L
l=1

∫
bl

Q(bl) log Q(bl)dbl

=
∑L

l=1

∑K
k=1

{
1+ml,k

2 log 1+ml,k

2 + 1−ml,k

2 log 1−ml,k

2

}
.

(60)

∫
d Q(d) log p(d)dd =

∑L
l=1

∫
bl

Q(bl) log p(bl)dbl

=
∑L

l=1 E
[∑K

k=1

{
1+bl,k

2 log 1+b̃l,k

2 + 1−bl,k

2 log 1−b̃l,k

2

}]

=
∑L

l=1

∑K
k=1

{
1+ml,k

2 log 1+b̃l,k

2 + 1−ml,k

2 log 1−b̃l,k

2

}
.

(61)
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∫
d

Q(d) log p(r|d)dd

= − 1
2σ2

{
E

[
(
∑L

l=1 2l−1 6∏L
p=l bp)T HT H(

∑L
l=1 2l−1 6∏L

p=l bp)
]
− E

[
2rT H(

∑L
l=1 2l−1 6∏L

p=l bp)
]}

= − 1
2σ2

{
(
∑L

l=1 2l−1 6∏L
p=l mp)T [HT H− diag(HT H)](

∑L
l=1 2l−1 6∏L

p=l mp)
}

− 1
2σ2

{
1T diag(HT H)(

∑
0<i≤j<L 2i+j 6∏j

p=i mp)− 2rT H(
∑L

l=1 2l−1 6∏L
p=l mp)

}
(62)

Combining (60), (61) and (62) yields the complete free energy expression in (31).

APPENDIX C

GAUSSIAN SISO EQUALIZER OF 4-PAM/16-QAM MODULATION

Consider the expressions for Q(bl), l = 1, 2, obtained in Section IV-B4. Taking Q(b2) for example:

µ2 = b̃2 + [R2 + σ2W−1
2 ]−1[HT

2 r−R2b̃2] (63)

Σ2 = [σ−2R2 + W−1
2 ]−1, (64)

where H2 = diag(µ1 +21) ·H and R2 = [Σ1 +(µ1 +21)(µ1 +21)T ] ◦ (HTH). However, since Wl =

diag([1− b̃2
l,1, · · · , 1− b̃2

l,K ]T ) may become rank-deficient as the turbo iterations converge (b̃l,k → ±1),

(63) and (64) need to be converted to a more suitable form that does not require the inversion of Wl.

To proceed, we first notice that Σl can be approximated as a diagonal matrix. This is true under

a mean-field approximation assuming the independence of Q(bl,k), l = 1, 2, k = 1, · · · ,K. Writing

Σ1 = diag([σ2
b1,1

, · · · , σ2
b1,K

]T ), we have

R2 + σ2W−1
2 = [Σ1 + (µ1 + 21)(µ1 + 21)T ] ◦ (HTH) + σ2W−1

2

= HT
2 H2 + Σ1 ◦ (HTH) + σ2W−1

2

= HT
2 H2 + σ2W̃−1

2 ,

(65)

where the diagonal matrix W̃2 =
(
I + σ−2W2[Σ1 ◦ (HTH)]

)−1 W2. The derivation makes use of the

fact that Σ1 is a diagonal matrix, as well as the identity [(µ1 + 21)(µ1 + 21)T ] ◦ (HTH) = HT
2 H2.

Now, recognizing that (63) and (64) can be rewritten as

µ2 = b̃2 + [HT
2 H2 + σ2W̃−1

2 ]−1[HT
2 r−R2b̃2] (66)

Σ2 = [σ−2HT
2 H2 + W̃−1

2 ]−1, (67)

we may use the matrix inversion lemma to evaluate [HT
2 H2 + σ2W̃−1

2 ]−1, and obtain

µ2 = b̃2 + σ−2W̃2

[
I−HT

2 (H2W̃2HT
2 + σ2I)−1H2W̃2

]
(HT

2 r−R2b̃2) (68)

Σ2 = W̃2 − W̃2HT
2 [H2W̃2HT

2 + σ2I]−1H2W̃2. (69)
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It can be subsequently shown that the detector output LLR of b2,n is ΛI(b2,n) = 2µ̌2,n

1−α̌2,n
, where

µ̌2,n = σ−2eT
n [I−HT

2 (H2W̃2HT
2 + σ2I)−1H2W̃2] · [HT

2 r−R2b̃2,n] (70)

α̌2,n = [HT
2 (H2W̃2HT

2 + σ2I)−1H2W̃2]n,n. (71)

In (70), b̃2,n = [b̃2,1, · · · , b̃2,n−1, 0, b̃2,n+1, · · · , b̃2,K ]T .

Likewise, the LLR of b1,n, ΛI(b1,n) = 2µ̌1,n

1−α̌1,n
is specified by

µ̌1,n = σ−2eT
n [I−HT

1 (H1W̃1HT
1 + σ2I)−1H1W̃1] · [HT

1 r−R1(b̃1,n + 21)] (72)

α̌1,n = [HT
1 (H1W̃1HT

1 + σ2I)−1H1W̃1]n,n. (73)

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Titmajshima, “Near Shannon limit error-correction coding and decoding: Turbo codes,” in

Proc. IEEE Int. Conf. Commun. (ICC’93), May 1993, pp. 1064–1070.

[2] P. D. Alexander, A. J. Grant, and M. C. Reed, “Iterative detection in code-division multiple-access with error control coding,”

Euro. Trans. Telecommun., vol. 9, no. 5, pp. 419–426, Oct. 1998.

[3] X. Wang and H. V. Poor, “Iterative (turbo) soft interference cancellation and decoding for coded CDMA,” IEEE Trans.

Commun., vol. 47, no. 7, pp. 1046–1061, July 1999.
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