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Abstract— We propose a systematic probabilistic framework to
address the phase noise (PHN) problem in OFDM. In addition
to deriving the optimal data detection scheme in the presence of
PHN, we introduce a series of suboptimal approaches to blindly
cancel the effect of PHN without the aid of pilot symbols. Not
only do these algorithms provide the means to efficiently eliminate
the effect of PHN in OFDM, they also open the door to much
wider applications of advanced probabilistic inference algorithms
in solving communications problems.

I. INTRODUCTION

OFDM is becoming the technology of choice in fourth gen-
eration wireless communication systems. Wireless applications
that use OFDM include wireless LAN IEEE 802.11a/g, fixed
broadband wireless access IEEE 802.16a, terrestrial broadcast
of digital television (DVB-T), HiperLAN2 in Europe, and
HiSWANa in Japan. While OFDM is considered a practical
scheme to combat frequency selective channel fading and to
increase data rate, many practical challenges still face OFDM
system designers [1]. In this paper, we consider the phase
noise (PHN) problem that arises from the imperfections of
a practical voltage-controlled oscillator (VCO). Improved RF
circuit design could conceivably alleviate the problem but not
eliminate it. Therefore, it is necessary to design digital signal
processing techniques to combat residual PHN in the high-
performance systems envisioned for the future, which are very
sensitive to PHN. Despite the efforts of many researchers
working in this area, most results are still based on over-
simplified models and are sub-optimal.

The PHN problem appears similar to the channel estimation
problem, but is in fact more challenging. The difficulties lie in
the fact that channel impulse responses generally remain con-
stant for multiple symbol periods, enabling the blind separation
of the clean signal and channel utilizing the estimated statistics
of the received signal [2]. However, PHN patterns vary from
one OFDM symbol to another, and cannot be estimated by the
same approach.

In [3], the effect of PHN on the system performance was
studied and it was found that OFDM is orders more sensitive
to PHN than a single carrier system. Tomba [4] provides
a more detailed treatment on the OFDM error probability
in the presence of PHN for different modulation schemes.
Methods to estimate and mitigate the effect of PHN have been
presented in [5], [6], [7]. These papers decompose PHN into
two components: the common phase noise which is present

in all subcarriers and the random phase noise which induces
inter-carrier interference (ICI). While the common phase noise
is measured as the average angular rotation of the constellation
on the pilot subcarriers and cancelled on the data subcarriers
[8], the random phase noise is simply ignored. This approach
results in straightforward and easy-to-implement solutions,
but is sub-optimal, as ICI can be ignored only when the
phase noise power spectrum is very narrow. In this paper,
we will show that the random phase noise can in fact be
accurately estimated, and subsequently cancelled together with
the common phase noise, as long as they can be modelled
together as a coloured Gaussian process. Indeed, we will not
even distinguish between the two components of PHN, and
instead investigate the general PHN issue, by first developing
a probabilistic model, and then deriving signal processing
algorithms to solve the problem.

The mathematical foundations of our solutions are the
approximate probabilistic inference algorithms. One instance
of probabilistic inference, the sum-product algorithm in factor
graphs [9], has been actively researched in recent years in
connection with the decoding of Turbo codes and low-density
parity-check (LDPC) codes. Recently, probabilistic inference
has also been successfully used in image processing to perform
scene analysis [10]. In this paper, we apply approximate proba-
bilistic inference algorithms, namely variational inference and
iterative conditional mode (ICM) [14], to mitigate PHN in
OFDM, a novel way to approach this problem that leads to
surprisingly low-complexity solutions.

Notation: 1 and 0 represent the all-one and all-zero column
vectors; diag(x) is a diagonal matrix with the vector x on
its diagonal; diag(X) is a diagonal matrix with the diagonal
elements of matrix X on its diagonal; N (µ,Σ) and CN (µ,Σ)
represent respectively real and circularly symmetric Gaussian
random vectors with mean µ and covariance matrix Σ.

II. PHASE NOISE STATISTICS

In this paper, we assume a system with a VCO controlled
by a PLL, hence the PHN process may be assumed to be a
zero-mean, wide sense stationary (WSS), coloured Gaussian
process [11], [12]. Denoting the phase noise process at the
output of the VCO by θ(t), the samples of θ(t) within the
mth OFDM symbol, θm, has a multivariate Gaussian prior
distribution: p(θm) = N (0,Φ), where the samples are taken
at a rate of N/T samples per second, N is the number of
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Fig. 1. Phase noise channel model.

OFDM sub-carriers, and T is the period of the OFDM symbol.
For this model to be useful, however, the covariance matrix,
Φ, must be available. Conveniently, instead of measuring Φ
directly, we may calculate it according to the specifications of
the phase-locked VCO.

We first write the output of the VCO with PHN as:

s(t) = sin(ωt + θ(t))
≈ sin(ωt) + cos(ωt)θ(t), (1)

where the approximation is tight when θ(t) is small. It follows
that the power spectral density (PSD) of the output signal is

Ss(f) = δ(f − ω

2π
) + Sθ(f − ω

2π
), (2)

where the delta function is contributed by sin(ωt) and the
frequency shift of Sθ(f) is caused by cos(ωt). The shape of
Ss(f) may be measured by the spectrum analyzer or provided
as part of the VCO specifications. Shifting Ss(f) by the offset
frequency ω

2π and removing the delta function, we then have
the PSD of θ(t), Sθ(f).

The autocorrelation function Rθ(τ) of the PHN process can
be obtain from the inverse Fourier Transform of Sθ(f). Since
the PHN process has zero mean, this is also its autocovariance
function. Finally, the value on the ith row and jth column of
Φ is extracted from Rθ(τ):

Φi,j = Rθ

(
| i − j | T

N

)
, (3)

since T/N is the sampling period.

III. SIGNAL MODEL

Assuming perfect timing synchronization, the complex
baseband received signal of the mth OFDM symbol, sampled
at rate N/T , may be written in the time domain as:

rm = (hm ⊗ dm) ◦ um + nm, (4)

where dm is the mth transmitted OFDM symbol of length N ,
i.e. the inverse DFT of the original data sequence bm; hm is
the channel impulse response of length Lh < Lc, Lc being
the length of the cyclic prefix; nm is the additive complex
white Gaussian noise with variance σ2 per dimension, and
um = [exp(jθm,1), · · · , exp(jθm,N )]T is the time-domain
PHN pattern (or discrete-time PHN sequence). In (4), ⊗
represents circular convolution, and ◦ represents the Shur (or
element-wise) product. Notice that although a full OFDM
symbol contains Lc + N time samples, in this signal model
we assume the cyclic prefix has been removed and so there
are only N samples per OFDM symbol. Depicting circular

convolution by a circulant matrix H and leaving out the
symbol index m, we may rewrite (4) as follows:

r ≈ Hd ◦ (1 + jθ) + n, (5)

where u ≈ 1+ jθ for small θ, θ = [θ1, · · · , θN ]T . Assuming
the channel impulse response is h = [h0, · · · , hLh−1]T , the
first row of H is [h0, 0, · · · , 0, hLh−1, · · · , h1].

We assume that the channel matrix H is perfectly known
at the receiver. This is possible even in the presence of PHN
because in a slow fading environment, the channel is estimated
through training over a few OFDM symbols. The effect of
PHN is thus averaged out (over time) and does not significantly
affect the accuracy of channel estimation. In contrast to many
papers discussing PHN, we do not assume that the channel is
perfectly equalized before PHN estimation and cancellation,
which would be difficult, looking at (5).

IV. PHASE NOISE CANCELLATION ALGORITHMS

A. Conventional Schemes

In this section, we briefly describe conventional PHN can-
cellation schemes [5], [6]. Taking discrete Fourier transforms
(DFT) on both sides of (4), we have

rf = [hf ◦ df ] ⊗ uf + nf ∈ C
N (6)

where the superscript f denotes the DFT of a vector. Since
the PHN is a low pass process, it is assumed that only the first
term in uf , uf

1 , is significant and therefore

rf ≈ [hf ◦ df ] · uf
1 + nf . (7)

Based on this approximation, and assuming the channel
is perfectly equalized, the conventional schemes focuses on
estimating the common phase noise term θ = ∠uf

1 . These
schemes differ in how the averaged common PHN is obtained,
such as the use of pilot symbols in [5] and the use of tentative
data symbols in [6]. The estimate of θ is

θ̂ =
1
L

L∑
k=1

βk, (8)

where L is the number of frequency-domain pilot symbols
or the number of tentative data symbols, and βk is the phase
difference between the kth subcarrier sample and the kth pilot
symbol or data symbol. In addition, if θ is assumed to be
constant over multiple OFDM symbols, averaging over a few
OFDM symbols yields smoother estimates.

Considering a common PHN across all subcarriers is only
realistic in good quality, low-bandwidth VCO’s, while the
assumption that the PHN estimates do not change much over
multiple OFDM symbols is not practical. In the sequel, we
show that practical algorithms can be developed from more
realistic models.
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B. Exact Inference

We can re-write the received signal as

r ≈ Hd ◦ (1 + jθ) + n
= x + jx ◦ θ + n (9)

where x = Hd. To simplify the development, assume that
p(d) = CN (0, 2ρ2I) and that the prior pdf’s can all be
expressed in terms of Gaussian random vectors:

p(x) = CN (0, 2ρ2HHH)
p(θ) = N (0,Φ)

p(r|x,θ) = CN (x + jx ◦ θ, 2σ2I)
(10)

where ρ2 is the transmitted signal power per dimension.
The optimal posterior estimate of x is derived using classical

estimation theory by treating θ as a nuisance parameter and
“integrating it out” [13] to obtain p(x|r∗) where r∗ denotes the
value of r that is observed. With some effort (see Appendix
I), we find that

p(x|r∗) ∝ p(r∗|x)p(x) = CN (x, diag(x)Φdiag(x)H + 2σ2I)
·CN (0, 2ρ2HHH). (11)

The optimal estimate of x, and hence b since x = HF−1b
where F−1 is the IDFT matrix, is the one which maximizes the
expression in (11). Unfortunately, the optimal estimate of b
can only be found if each symbol hypothesis is tested, resulting
in exponential complexity.

C. Variational Inference

Instead of finding x and θ which maximize p(x,θ|r∗),
the variational technique first looks for a parameterized Q-
distribution, Q(x,θ), which closely resembles p(x,θ|r∗), and
then finds x and θ that maximize Q(x,θ). The simplicity of
the variational technique lies in the fact that when Q(x,θ)
is properly selected (e.g. as a Gaussian distribution), the
maximizers can be easily deduced.

To derive the variational inference algorithm, we first intro-
duce a concept called Variational Free Energy (also called
Helmholtz Free Energy or Gibbs Free Energy) [14] in the
context of the PHN problem:

F(Q, p) =
∫
x,θ

Q(x,θ) log
Q(x,θ)

p(x,θ, r∗)
dxdθ. (12)

Here we use p(x,θ, r∗) instead of p(x,θ|r∗) because they
are proportional and hence equivalent in the free energy
formulation. As is easily observed, this expression is exactly
the Kullback-Leibler divergence [15] between Q(x,θ) and
p(x,θ, r∗), D(Q(x,θ)‖p(x,θ, r∗)). By minimizing F(Q, p)
over the parameters of Q(x,θ), we obtain a Q-distribution
Q(x,θ) that most “resembles” p(x,θ, r∗).

In cases where there are multiple arguments in the Q-
function, an additional simplification can be made by factor-
izing Q(x,θ) into a product form (also known as mean-field
distribution), i.e. Q(x,θ) = Qx(x)Qθ(θ). As a result, the
variational algorithm proceeds by minimizing the variational
free energy iteratively over the parameters of Q(x) and Q(θ)

(where the subscripts of the Q-functions have been dropped
for simplicity of notation).

For PHN estimation, we assume that

Q(x) = CN (mx,Sx),
Q(θ) = N (mθ,Sθ).

(13)

It is worth noting that the posteriors of x and θ are now
parameterized by their means and variances (namely, mx, mθ,
Sx, and Sθ), which then become the targets of optimization
instead of the Q-functions themselves. Substituting the Q-
functions from (13) into (12), we have the closed form
expression of F(Q, p) as derived in Appendix II.

Obviously, the optimal parameters are hard to obtain ana-
lytically. The usual practice is to update each one of them in
turn, while holding the others constant. After a few iterations,
the algorithm is guaranteed to converge to a set of solutions
at a local minimum of the free energy expression.

Algorithm 1: In the t-th iteration, the parameter update
equations for the variational algorithm are:

S(t)
θ = σ2[σ2Φ−1 + diag(S(t−1)

x ) + MH(t−1)
x M(t−1)

x ]−1;
m(t)

θ = σ−2S(t−1)
θ · Re[jMH(t−1)

x (m(t−1)
x − r∗)];

S(t)
x = 2σ2[σ2

ρ2 (HHH)−1 + diag(S(t−1)
θ )

+(jM(t−1)
θ + I)H(jM(t−1)

θ + I)]−1;
m(t)

x = 1
2σ−2S(t−1)

x (jM(t−1)
θ + I)Hr∗,

(14)
where Mx = diag(mx) and Mθ = diag(mθ).
Proof: Differentiating the Gibbs free energy expression w.r.t.
Sθ and setting the result zero, we may solve the updating
equation for Sθ as a function of mθ, Sx, and mx, i.e.
S(t)

θ = arg minSθ
F(m(t−1)

x ,m(t−1)
θ ,S(t−1)

x ,Sθ). The same
procedure applies in finding the updating equations for mθ,
Sx, and mx.

In each iteration of the variational algorithm, these param-
eters are updated in turn to generate new posterior estimates
of x and θ that decrease the free energy monotonically. The
particular update order is chosen due to the dependence of
mθ and mx on Sθ and Sx. For initialization, a tentative data
decision is made ignoring the effect of PHN and fed back as
m(0)

x . At the end of the iterations, posterior distributions of x
and θ are extracted. Obviously, since Q(x) is assumed to be
Gaussian, a most reasonable final estimate of x (clean of PHN
distortion) to be forwarded to the equalization and detection
stage is the mean of Q(x), i.e. mx.

The difference between the variational inference and exact
inference lies in the fact that in variational inference the
posterior estimates are “forced” to be independent Gaussian
functions Q(x) and Q(θ), making final symbol decisions
easy to make. The price paid here is that since the posterior
estimates are not exact posterior distributions, the algorithm
requires a number of iterations to converge to a local minimum
of the Gibbs free energy.

D. Iterative Conditional Mode

Variational inference has made a very complex problem
computationally tractable, but a further simplification is pos-
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sible by assuming the posteriors Q(x) and Q(θ) to be delta
functions instead of Gaussian.

In this case, the Q-functions are δ(x, x̂) and δ(θ, θ̂), respec-
tively. The notation δ(a, â) denotes a Dirac delta function with
the following properties:

∫ ∞
−∞ δ(a, â)f(a) da = f(â), and∫ ∞

−∞ δ(a, â) da = 1. The minimization of Gibbs free energy

over the parameters x̂ and θ̂ is equivalent to maximizing
L(x,θ) = log p(r∗,x,θ) over x and θ. Simply put, the
algorithm iteratively performs optimal point estimation for one
of the two unknowns while holding the other fixed, hence the
name Iterative Conditional Mode (ICM).

Since p(r∗,x,θ) = p(r∗|x,θ)p(x)p(θ), L(x,θ) is evalu-
ated to be:

L(x,θ) = 1
2ρ2 (xH(HHH)−1x) + 1

2θHΦθ+
1

2σ2 (r∗ − x ◦ (1 + jθ))H(r∗ − x ◦ (1 + jθ)).
(15)

Algorithm 2: In the t-th iteration, the parameter update
equations for the ICM algorithm are:

θ(t) = [σ2Φ−1 + XH(t−1)X(t−1)]−1

·Re[jXH(t−1)(x(t−1) − r∗)]
x(t) = [σ2

ρ2 (HHH)−1 + (I + jY(t−1))H(I + jY(t−1))]−1

·(I + jY(t−1))Hr∗,
(16)

where X = diag(x) and Y = diag(θ).
Proof: Differentiating L(x,θ) w.r.t. θ and setting the result
to zero, we may find the new estimate for θ as a function
of x, i.e. θ(t) = arg maxθ L(x(t−1),θ). The same procedure
applies in finding the updating functions for x.

The saving in ICM is that we no longer require the covari-
ance matrices Sx and Sθ of the posterior distribution. The
drawback is that point estimates do not take into account
the uncertainties at each iteration, thus ICM gets stuck in
local minima more easily and in general produce inferior
results compared to variational inference. ICM is also a
more “ad hoc” algorithm compared to exact inference and
its variational counterpart. It resembles the heuristic decision-
directed approach where the data symbols and PHN are
detected/estimated iteratively until decisions are made for both
unknowns. However, the ICM algorithm derived here differs
from the heuristic one in that no detection decisions are made
during the iterations.

E. Low Complexity Scheme

As can be seen in (14) and (16), the major complexity
associated with the proposed algorithms is the evaluation of
the inverse of N × N matrices. Such an inversion requires
a complexity of O(N3), while a practical OFDM system
generally requires a complexity of O(N log(N)). Therefore,
a lower complexity alternative must be devised.

A simple observation at the proposed algorithm reveals that
it applies equally well to any portion of an OFDM symbol.
This means that we may partition the OFDM symbol and
perform PHN cancellation on each section of the partition as
shown in Fig. 2. Assuming each section has K samples, x

N

K K K

Received OFDM Symbol

Fig. 2. OFDM symbol partitioning for low-complexity PHN removal.

and θ are both partitioned into N/K sub-vectors, i.e. x =
[xT

1 , · · · ,xT
N/K ]T and θ = [θT

1 , · · · ,θT
N/K ]T . Denoting these

sub-vectors as {xi}N/K
i=1 and {θi}N/K

i=1 , we have the density
functions similar to (10):

p(xi) = CN (0, 2ρ2(HHH)i)
p(θi) = N (0,Φi)

p(ri|xi,θi) = CN (xi + jxi ◦ θi, 2σ2I)
(17)

where (HHH)i and Φi are the ith diagonal block of HHH

and Φ, respectively. The PHN cancellation scheme then fol-
lows exactly from the variational and ICM schemes discussed
earlier, except that iterations are performed for each partitioned
section. Taking the ICM technique for example, in the t-th
iteration, the update equations of the iterative algorithm are:

For i = 1 : N/K

θ
(t)
i = [σ2Φ−1

i + XH(t−1)
i X(t−1)

i ]−1

·Re[jXH(t−1)
i (x(t−1)

i − r∗i )]
x(t)

i = [σ2

ρ2 (HHH)−1
i + (I + jY(t−1)

i )H

(I + jY(t−1)
i )]−1 · (I + jY(t−1)

i )Hr∗i ,
End

(18)

Since (HHH)1 = · · · = (HHH)N/K and Φ1 = · · · =
ΦN/K , their inverses need to be calculated only once per
OFDM symbol. The overall complexity of the algorithm is
now reduced from O(N3) to O(N/K × K3) = O(NK2).
The savings in implementation complexity with the simplified
scheme is most significant when we consider longer OFDM
symbols, such as in terrestrial broadcast of digital television
(DVB-T) where N is in the range of thousands. The lower
complexity does come with a slightly degraded performance,
however, because we are effectively assuming Φ and HHH

to be block diagonal matrices.

V. SIMULATIONS

To verify the effectiveness of the proposed PHN cancellation
schemes, we present a set of simulations as follows. The role
of the PHN canceller in an OFDM receiver is depicted in
Fig. 3. As can be seen, the received signal first goes through
a tentative equalization and data detection module which
equalizes the multipath channel and detects the transmitted
data as if there is no PHN distortion. Such a decision is
inaccurate, but is necessary to initialize the iterative PHN
cancellation algorithm (so that it is not trapped in the first
iteration). The remodulated OFDM symbol convolved by the

IEEE Communications Society / WCNC 2005 30 0-7803-8966-2/05/$20.00 © 2005 IEEE



channel impulse response is then fed into the PHN cancellation
module as the initial estimate of x to start the iterative PHN
cancellation process. The output of the PHN canceller module
is the final estimate of x, ideally clean of PHN distortions. The
last equalization and detection stage is identical to the first one,
except that this time, the data decision will be more accurate.
The method for channel equalization (MMSE or zero-forcing)
is a choice for the system designers.

r
x

init

Equalization
and Detection

PHN
Canceller

xfinal

Equalization
and DetectionRemodulation

 

b
init

b final

Fig. 3. OFDM receiver with PHN canceller.

In our simulations, we adopted zero-forcing equalization
(i.e. inverting the channel at each subcarrier), for its low
complexity and widespread use in practice. The PHN can-
cellation module consists of 5 iterations for the variational
algorithm and 3 iterations for the ICM algorithm, since the
variational method takes longer to converge. We also assumed
the following system parameters: 1) A Rayleigh fading channel
with three taps two samples away from each other; 2) An
OFDM symbol size of 64 subcarriers with each subcarrier
modulated in 64-QAM format; 3) A baseband sampling rate of
20 MHz; 4) A phase-locked VCO at the receiver with a PHN
of 3 degrees RMS. The random PHN is generated, according to
the Matlab code recommended for the IEEE 802.11g standard
[16], as i.i.d. Gaussian samples passed through a Butterworth
filter of 100 KHz 3dB bandwidth.
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−4

10
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Clean OFDM
Conventional Scheme
Variational
ICM

SNR

Fig. 4. Performance comparison between the conventional and proposed
PHN cancellation schemes.

As illustrated in Fig. 4, we demonstrate the performance
of the proposed PHN cancellation algorithms compared to
the conventional scheme. The dotted line indicates the bit-
error-rate (BER) of a OFDM receiver free of PHN (the
ideal scenario), and the solid line indicates the BER of an
OFDM receiver with PHN but without a PHN canceller (the

worst case scenario). In between these two curves are the
BER performance of receivers implementing the conventional
PHN cancellation scheme (triangles) and the proposed PHN
cancellation schemes (crosses and circles). It is obvious that
both the variational and ICM techniques perform much better
than the conventional one. It is somewhat surprising to notice
that there is not much difference between the variational and
ICM curves. We suspect that the superiority of variational
method is not evident here because the local minimum of the
Gibbs free energy is rather deep, and ICM suffices in such a
case. Therefore, in the remaining simulations, we will leave
out the variational method and use ICM alone for analysis and
comparisons.
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Fig. 5. Phase noise profile estimated using the conventional and proposed
PHN cancellation schemes.

Fig. 5 compares the actual PHN profile with the PHN profile
estimated using both the conventional scheme and the ICM
technique at 30dB SNR. Apparently, the conventional model
is insufficient to capture the dynamics of PHN. Through the
ICM technique, however, we have very accurately estimated
the phase noise profile, resulting in a much improved BER
performance.
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Fig. 6. Performance of the low complexity PHN cancellation schemes.

In Fig. 6 we investigate the performance of the low com-
plexity simplified ICM technique by partitioning the OFDM
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symbol into blocks of size K = 8 and K = 4. It is seen from
the BER curves that the OFDM receiver does not suffer from
significant performance degradation even when K is as small
as 4, implying that the PHN canceller can be implemented
efficiently in a practical receiver.

VI. CONCLUSIONS

In this paper, we studied the blind cancellation of phase
noise distortions at the OFDM receiver frontend. Instead of
devising an optimal detection scheme for the original data
symbol b, we focused on the optimal and suboptimal esti-
mation of the clean data sequence x. We derived the exact
posterior distribution p(x|r∗) in Section IV.B. By simplifying
the optimization objective, we also proposed the suboptimal
estimation algorithms in Section IV.C and IV.D. Finally,
a more practical scheme is introduce in Section IV.E by
partitioning the OFDM symbol into smaller sections. By way
of such a simplification, the complexity of the algorithm is
further reduced.

The proposed PHN cancellation scheme is not limited
to OFDM transmissions, as in the derivation we made no
assumption about the particular form of x, except that it can
be modelled with a Gaussian prior distribution. Certainly, the
proposed algorithms can be readily applied to single carrier or
spread spectrum transmission schemes as well.
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APPENDIX I
CLOSED FORM EXPRESSION OF p(r∗|x)

Since p(r|x,θ) and p(θ) are Gaussian distributed, It can
be shown that the distribution of p(r|x) is also Gaussian.
Denoting the mean of r|x to be E(r|x) and the variance as
V(r|x), we have

E(r|x) = Eθ[Er(r|x,θ)]
V(r|x) = Vθ[Er(r|x,θ)] + Eθ[Vr(r|x,θ)]. (19)

Because p(r|x,θ) = CN (x + jx ◦ θ, 2σ2I), it is straight-
forward to infer that

Er(r|x,θ) = x + jx ◦ θ
Vr(r|x,θ) = 2σ2I. (20)

Given that p(θ) = N (0,Φ), with some further manipula-
tions, we obtain

Eθ[Er(r|x,θ)] = x
Vθ[Er(r|x,θ)] = diag(x)Φdiag(x)H

Eθ[Vr(r|x,θ)] = 2σ2I,
(21)

which implies that

E(r|x) = x
V(r|x) = diag(x)Φdiag(x)H + 2σ2I. (22)

Therefore, p(r∗|x) = CN (x, diag(x)Φdiag(x)H + 2σ2I).

APPENDIX II
CLOSED FROM EXPRESSION OF F(Q, p)

A simple expansion of the Gibbs free energy in (12) shows
that

F(Q, p) =
∫
x,θ

Q(x)Q(θ) log Q(x)Q(θ)
p(x,θ,r) dxdθ

=
∫
x,θ

Q(x)Q(θ) log Q(x)Q(θ)
p(r|x,θ)p(x)p(θ)dxdθ

= − ∫
x

Q(x) log p(x)dx − ∫
θ

Q(θ) log p(θ)dθ
− ∫

x,θ
Q(x)Q(θ) log p(r|x,θ)dxdθ

+
∫
x

Q(x) log Q(x)dx +
∫

θ
Q(θ) log Q(θ)dθ

(23)
Substituting (10) and (13) into the expression above and ap-

plying Gaussian expectation properties, we may obtain Gibbs
free energy as a function of the Q-distribution parameters (with
the constant terms omitted):

F = tr(Σ−1Sx) + mH
x Σ−1mx + 1

2 tr(Φ−1Sθ)
+ 1

2m
T
θ Φ−1mθ − log |Sθ| 12 − log |Sx|

+ 1
2σ2 {tr[diag(Sθ)Sx] + mH

x diag(Sθ)mx

+tr[(jMθ + I)Sx(jMθ + I)H ]
+[(jMθ + I)mx − r]H [(jMθ + I)mx − r])}

where Mθ = diag(mθ), Σ = 2ρ2HHH .
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