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I. System Model: OFDM without PHN

• Discrete OFDM channel model with input b ∈ CN×1 and output
r ∈ CN×1, sampled at fs = N/T :
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where N is the number of subcarriers and T is the OFDM symbol
period.

• Defining H to be circular convolution matrix, the mathematical model
is:

r = h ∗ d̃ + n = h⊗ d + n
= Hd + n = x + n.

(1)
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I. System Model: Source of PHN

• Voltage-controlled oscillator (VCO) converts the received signal from
carrier frequency (CF) to intermediate frequency (IF).

• Small random phase variation is introduced by VCO at the receiver
during frequency down-conversion.
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• VCO output with PHN: s(t) = ej(2πfot+θ(t)).

=⇒ Rs(τ) ≈ e−j2πfoτ + Rθ(τ)e−j2πfoτ

=⇒ Ss(f) ≈ δ(f − fo) + Sθ(f − fo).
(1)
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I. System Model: OFDM with PHN

• Discrete OFDM channel model with phase noise (PHN):
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• u = [exp(jθ1), · · · , exp(jθN)]T is the time domain PHN pattern.

• Assuming small {θn}N
n=1, then u ≈ 1 + jθ.Therefore,

r = x ◦ u + n ≈ x ◦ (1 + jθ) + n. (1)
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I. System Model: Statistics of PHN

• What do we know about PHN?
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• Since Ss(f) = δ(f − fo) + Sθ(f − fo), we may extract Sθ(f) from the
measured PSD.

• The autocorrelation function of θ(t), Rθ(τ) = F−1(Sθ(f)).

• Assuming the sampled θ(t), θ, is a zero mean Gaussian process with
distribution N (0,Φ), we may calculate Φ as:

Φi,j = Rθ

(
| i− j | T

N

)
. (1)
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II. Conventional Scheme: Common PHN Removal

• Writing θ(t) = θo + θrandom(t) and assuming θrandom(t) is small, the
conventional scheme focuses on removing θo, the common PHN.

• Ignoring θrandom(t), the system model becomes:

r = x ◦ u + n ≈ ejθox + n. (1)

Given perfect knowledge of x = Hd (using pilot symbols or tentative
data decisions), θo can be accurately estimated.
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II. Conventional Scheme: Common PHN Removal

• Small θrandom(t) assumption is only realistic for good quality,
low-bandwidth VCO, where θ(t) is a highly correlated process.

• In realistic scenarios, knowing θo is not sufficient. More sophisticated
algorithm needs to be developed to estimate θ(t), or θ.
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II. Exact Inference: Brute Force

• Consider the probabilistic model of r ≈ x◦ (1+ jθ)+n, where x = Hd.

• Assuming p(d) = CN (0, 2ρ2I), we have p(x) = CN (0, 2ρ2HHH).

• The joint distribution of the input and output is:

p(x, θ, r) = p(x)p(θ)p(r|x, θ). (1)

• The posterior estimate of x, p(x|r) can be computed by eliminating θ:

p(x|r) ∝ p(x, r) =
∫

θ
p(x, θ, r)dθ

= CN (r;x,diag(x)Φdiag(x)H + 2σ2I) · CN (x;0, 2ρ2HHH).
(2)

• Yet the optimal estimate x̂ = arg maxx p(x|r) cannot be easily
extracted due to the complicated expression.
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IV. Variational Inference: Motivation

• We have the joint posterior p(x, θ|r), but it is too complex for us to
extract optimal estimates x̂ and θ̂ !

• Solution: We can try to find a more manageable parameterized
approximation, say Q(x, θ|r) (or written as Q(x, θ) for simplicity).

• The Kullback-Leibler divergence D[p(a)‖p(b)] offers a measure of
similarity between two distributions. Thus we are looking for

Q̂(x, θ) = arg min
Q

D[Q(x, θ)‖p(x, θ|r)]. (1)

Or equivalently, Q̂(x, θ) = arg minQ D[Q(x, θ)‖p(x, θ, r)], where
p(x, θ, r) is the complete likelihood function we already have.
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IV. Variational Inference: Free Energy

• We define D[Q(x, θ)‖p(x, θ, r)] to be the Variational Free Energy, i.e.

F(Q, p) =
∫

x,θ

Q(x, θ) log
Q(x, θ)
p(x, θ, r)

dxdθ. (1)

• If no assumptions are made, we simply get Q(x, θ) = p(x, θ|r).

• Introduce two convenient approximations to parameterize Q(x, θ):

– Mean-Field Approximation

Q(x, θ) = Q(x)Q(θ) (2)

– Gaussian Approximation

Q(x) = CN (mx,Sx); Q(θ) = N (mθ,Sθ) (3)
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IV. Variational Inference: Parameter Update

• F(Q, p) can be obtained as

F = tr(Σ−1Sx) + mH
x Σ−1mx + 1

2tr(Φ
−1Sθ) + 1

2m
T
θ Φ−1mθ − log |Sθ|12 − log |Sx|

+ 1
2σ2{tr[diag(Sθ)Sx] + mH

x diag(Sθ)mx + tr[(jMθ + I)Sx(jMθ + I)H]

+[(jMθ + I)mx − r]H[(jMθ + I)mx − r])},
(1)

where Mθ = diag(mθ), Σ = 2ρ2HHH.

• The approximate posterior Q(x) and Q(θ) may be found by minimizing
F(Q, p) w.r.t. the parameters of Q(x) and Q(θ).

• Since the optimal values of mx,Sx,mθ, and Sθ are coupled, we take
the coordinate descent approach by solving for the optimal parameters
iteratively. For example, in the t-th iteration,

m̂(t)
x = arg min

mx
F(mx, Ŝ(t−1)

x , m̂(t−1)
θ , Ŝ(t−1)

θ ) (2)
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IV. Variational Algorithm for PHN Cancellation

• In the t-th iteration, the parameter update equations are:

S(t)
θ = σ2[σ2Φ−1 + diag(S(t−1)

x ) + MH(t−1)
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x ]−1;

m(t)
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θ · Re[jMH(t−1)
x (m(t−1)

x − r∗)];

S(t)
x = 2σ2[σ2

ρ2 (HHH)−1 + diag(S(t−1)
θ )

+(jM(t−1)
θ + I)H(jM(t−1)

θ + I)]−1;

m(t)
x = 1

2σ
−2S(t−1)

x (jM(t−1)
θ + I)Hr.

(1)

• But to initialize the iteration, we need m(0)
x and S(0)

x . Random
initialization traps the algorithm into a poor local minimum.

• We may set S(0)
x = 0 and let m(0)

x = xinit = Hdinit, where dinit is a
tentative symbol decision, obtained e.g. by ignoring PHN.
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IV. Variational PHN Cancellation: Receiver Structure

• The iterative update of the parameters monotonically decreases
F(Q, p).
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• The PHN canceller takes the initial estimate xinit and produces a
better estimate xfinal.

• xfinal is now ideally clean of PHN distortion and can be used for final
equalization and detection.
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IV. ICM PHN Cancellation: A Simplified Alternative

• Iterative Conditional Mode (ICM) is a special case of variational
inference with the Q-functions parameterized as δ functions instead of
Gaussian. i.e.

Q(x) = δ(x, x̂); Q(θ) = δ(θ, θ̂) (1)

• It can be shown that the minimization of F(Q, p) is equivalent to the
maximization of p(x, θ, r) over x and θ.

• In the t-th iteration, the parameter update equations are:

θ(t) = [σ2Φ−1 + XH(t−1)X(t−1)]−1 · Re[jXH(t−1)(x(t−1) − r)]

x(t) = [σ2

ρ2 (HHH)−1 + (I + jΘ(t−1))H(I + jΘ(t−1))]−1

·(I + jΘ(t−1))Hr,

(2)

where X = diag(x) and Θ = diag(θ).
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IV. Variational PHN Cancellation: Simulations

• Settings: 1) Rayleigh fading with 3 taps; 2) N = 64 subcarriers and
each subcarrier 64-QAM; 3) Baseband fs = 20MHz; 4) A phase-locked
VCO with a PHN of 3 degrees RMS; 5) Random PHN generated as
i.i.d. Gaussian samples through a 100KHz 3dB B/W Butterworth filter
as recommended for IEEE 802.11g standard.
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IV. Variational PHN Cancellation: Simulations

• Bit error rate (BER) comparison.
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IV. Variational PHN Cancellation: Complexity

• The updates of parameters involve the inverse of N ×N matrices,
which has complexity O(N3).
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• By partitioning the OFDM symbol into smaller blocks of size K, the
complexity of PHN cancellation is reduced to
O(N/K ×K3) = O(NK2). A big difference for N in the thousands.
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IV. Simplified PHN Cancellation: Simulations

• Bit error rate (BER) comparison.
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V. Summary

• What is phase noise?

• What are the conventional and optimal solutions?

• How do we find practical solutions using variational inference?

• Future directions:

– Further reduce the computational complexity.
– Extend to carrier frequency offset and Doppler shift cancellation.
– Use variational EM to remove residual errors in channel estimation.
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Thank You!
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