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Abstract— We propose an optimal training-based OFDM chan-
nel impulse response (CIR) estimation algorithm that addresses
the phase noise (PHN) and carrier frequency offset (CFO) prob-
lem. If left unattended, these combined problems severely degrade
the accuracy of the channel estimate and ultimately the quality of
the wireless link. The solution involves the joint optimization of
a complete log-likelihood function over the unknown CIR, PHN
and CFO. To reduce the complexity of the proposed algorithm,
a simplification based on the conjugate gradient method is
introduced, yielding an efficient realization using the Fast Fourier
Transform (FFT) with only minor performance degradation.

I. INTRODUCTION

An open problem in OFDM receiver design is statistically
optimal channel estimation when both phase noise (PHN)
and carrier frequency offset (CFO) are present. The channel
estimation problem in the presence of both CFO and PHN is a
challenging one because of the complexity introduced by the
coupled unknown parameters.

While the detrimental effects of CFO and PHN have
been well documented [1], successful alleviation of these
combined problems based on a statistically optimal receiver
implementation, which must include channel estimation in
the presence of CFO and PHN, have not been proposed. In
[2], [3] and [4] PHN suppression methods were proposed
for frequency selective channels but the channel frequency
response was assumed to be known prior to PHN suppression.
In [5] PHN was considered in the formulation of the channel
estimation problem but was not directly used in the solution
and thus the method is not statistically optimal. In [6] channel
estimation was performed but the PHN was estimated using at
least one “carrier recovery” pilot tone that required frequency
guard bands on both band edges to minimize interference
from data symbols. Only specific frequency selective channels
were considered in the simulations, but the performance may
degrade in general Rayleigh frequency selective channels since
a channel null could occur in the vicinity of the pilot tone.

In this paper, our goal is to tackle the channel estimation
problem when CFO and PHN are present from a maximum
likelihood stand-point. Special features of the likelihood func-
tion are taken advantage of that enable a unique and elegant
joint estimation scheme achieving optimal performance. We
name it the Joint CFO/PHN/CIR Estimator (JCPCE).

Notation: Upper and lower case bold face letters indicate
matrices and column vectors, respectively; 1 represents the
all-one column vector; diag(x) is a diagonal matrix with the

vector x on its diagonal; diag(X) is a diagonal matrix with
the diagonal elements of square matrix X on its diagonal;
Re(·) and Im(·) denote the real and imaginary part of a
vector or matrix; E(·) and V(·) stand for the expected value
and variance of a random variable; N (µ,Σ) and CN (µ,Σ)
represent respectively real and circularly symmetric complex
Gaussian random vectors with mean µ and covariance matrix
Σ. In particular, for an N -dimensional circularly symmetric
complex Gaussian random vector x

CN (µ,Σ) =
1

πN |Σ| exp
{−(x − µ)HΣ−1(x − µ)

}
. (1)

II. SYSTEM DESCRIPTION

A. Prior Statistics of Phase Noise

Two different models of PHN are available in the literature
[1]. The first one models a free-running oscillator and assumes
the PHN process to be a Wiener process that is nonstationary,
with a power that grows with time. The second one models an
oscillator controlled by a phase-locked loop (PLL) and approx-
imates the PHN process as a zero-mean coloured Gaussian
process that is wide sense stationary (WSS) and has finite-
power. In this paper, our solution covers both scenarios. For
simplicity, we will refer to the first one as Wiener PHN and
the second one as Gaussian PHN.

In both cases, denoting the phase noise process at the output
of the VCO by θ(t), the samples of θ(t) within the mth OFDM
symbol, θm, has a multivariate Gaussian prior distribution:
p(θm) = N (0,Φ), where the samples are taken at a rate of
N/T samples per second, N is the number of OFDM sub-
carriers, and T is the period of the OFDM symbol. For this
model to be useful, however, the covariance matrix, Φ, must
be available. In the rest of this section we explain how Φ can
be determined from the power spectral density (PSD) of the
VCO output.

We first write the output of the VCO with PHN as1

s(t) = ej(2πfot+θ(t)). Then the autocorrelation function of
s(t), Rs(τ), can be calculated:

Rs(τ)
.= E{s∗(t)s(t+ τ)}
= ej2πfoτE{ej(θ(t+τ)−θ(t))}. (2)

1This is equivalent to considering real-valued sinusoids. See [7, pgs. 369–
372] for details.
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We will now briefly describe the autocorrelation functions
of s(t) for Wiener and Gaussian PHN respectively.

1) Wiener Phase Noise: The Wiener PHN process θ(t) =∫ t

0
φ(τ)dτ , where φ(t) is zero-mean stationary Gaussian pro-

cess with autocorrelation function Rφ(τ) = 4πβlδ(τ). Then
it is known that [8]

Rs(τ) = ej2πfoτe−2πβl|τ |

Ss(f) = 1
πβl

(
1

1+((f−fo)/βl)
2

) (3)

where Ss(f) = F{Rs(τ)} denotes the PSD. So βl is the 3dB
bandwidth of the VCO output which can be easily measured
using a spectrum analyzer. The discrete-time samples of θ(t)
form a random-walk process θk = θk−1+φk, k = 0, · · · , N−
1, where p(φk) = N (0, α2

φ), α2
φ = 4πβlT/N . Assuming

θ−1 = 0 due to perfect synchronization at the beginning
of the OFDM symbol, the Gaussian-distributed PHN vector
θ = [θ0, · · · , θN−1]T has a covariance matrix

Φ = α2
φ




1 1 · · · 1
1 2 · · · 2
...

...
. . .

1 2 N


 . (4)

2) Gaussian Phase Noise: In this case θ(t) is modelled
as a stationary random process with autocorrelation function
Rθ(τ). It is known that [9]

Rs(τ) = ej2πfoτe−Rθ(0)eRθ(τ)

≈ ej2πfoτe−Rθ(0)(1 +Rθ(τ)).
(5)

where the approximation is tight when Rθ(0) � 1 (since
|Rθ(τ)| ≤ Rθ(0)). This is a common assumption made about
the PHN process in coherent receivers. Exact analysis of the
PSD is found in [9] but for our purposes it is enough to use
the above approximation to obtain

Ss(f) = e−Rθ(0)[δ(f − fo) + Sθ(f − fo)], (6)

where Sθ(f) = F{Rθ(τ)}. The shape of Ss(f) may be
measured by a spectrum analyzer or provided as part of the
VCO specifications (phase noise masks are commonly known)
and hence Sθ(f) and Rθ(f) can be found. Finally the value
on the ith row and jth column of Φ is

Φi,j = Rθ

(
| i− j | T

N

)
, (7)

since T/N is the sampling period.
In the subsequent derivations, since both types of PHN can

be sufficiently characterized by the covariance matrix Φ, we
shall not distinguish between the two unless specifically stated.

B. Signal Model

We consider a slow fading frequency-selective channel
where the CIR is assumed to remain constant during each
packet of transmission which consists of multiple OFDM
symbols including the initial preambles for synchronization
and channel estimation as well as the variable-length payload
that follows (as depicted in Fig. 1).

AGC &
Synchronization

Channel
Estimation

DATA
Variable Number of OFDM Symbols

� �� �Preamble Section Payload Section

Fig. 1. OFDM packet structure.

Assuming perfect timing synchronization, the complex
baseband received signal of an OFDM symbol within the
training period sampled at rate N/T can be written as an N
point sequence for n = 0, · · · , N − 1:

rn =
1√
N
ej(θn+2πεn/N)

N−1∑
k=0

hkdke
j2πnk/N + ηn, (8)

where ε = ∆fT is the normalized CFO; {θn}N−1
n=0 is

the discrete-time PHN sequence; {hk}N−1
k=0 is the channel

frequency response at subcarriers 0 to N − 1; {dk}N−1
k=0

are the transmitted data symbols belonging to an M -QAM
constellation; and {ηn}N−1

n=0 is complex white Gaussian noise
with variance σ2 per dimension. (8) may be written in matrix
form as:

r = EPFHHd + n, (9)

where F ∈ C
N×N is the DFT matrix with the (l,m)th element

being Fl,m = 1√
N
e−j

2π(l−1)(m−1)
N ; d = [d0, · · · , dN−1]T is

the data vector; n = [η0, · · · , ηN−1]T is the noise vector;
P = diag([ejθ0 , · · · , ejθN−1 ]T ) is the PHN matrix; E =
diag([1, ej2πε/N , · · · , ej2π(N−1)ε/N ]T ) is the CFO matrix; and
H = diag(h) = diag([h0, · · · , hN−1]T ) is the channel matrix.
Notice that although a full OFDM symbol contains Ng + N
time samples, Ng being the length of the cyclic prefix, in this
signal model we assume the cyclic prefix has been removed
and so there are only N samples per OFDM symbol. Depicting
the channel response by a circulant matrix G, we may rewrite
(9) as

r = EPGFHd + n. (10)

This is true because the circulant matrix G can be diagonalized
by the DFT matrix, i.e. FGFH = H or GFH = FHH.
Using g = [g0, · · · , gL−1]T to denote the CIR, where L is the
channel length, G is formed by circular rotations of 1√

N
g.

The CIR can be converted to the channel frequency response
by writing h = Wg ∈ C

N×1, where W is a partition of the
DFT matrix, i.e., F = [W|V], in which W ∈ C

N×L and
V ∈ C

N×(N−L) are orthogonal unitary matrices satisfying
WHV = 0 and WWH + VVH = I.

Let D = diag(d). We can now introduce the following
equivalent representation of (10) for the convenience of chan-
nel estimation:

r = EPFHDWg + n. (11)

III. CHANNEL ESTIMATION WITH CFO AND PHN

A. Ignoring CFO and PHN

To obtain the maximum likelihood (ML) estimate of the
channel, we assume that the tap length of the impulse response
(or equivalently, the dimension of g), L, is known a priori.
If we ignore CFO and PHN (i.e. assume EP = I), from (11)

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2006 proceedings.

1051



we may write the negative log-likelihood function:

L(g) = − log p(r|g)
= 1

2σ2 (r − FHDWg)H(r − FHDWg), (12)

where
p(r|g) = CN (FHDWg, 2σ2I). (13)

Setting ∂L(g)/∂g∗ = 0 yields the ML channel estimate

ĝ = (WHDHDW)−1WHDHFr. (14)

It shall be assumed hereafter that constant-modulus training
symbols are used, i.e. DHD = 2ρ2I and the symbol energy
per subcarrier Es = 2ρ2. Further simplifications lead to

ĝ = (2ρ2)−1WHDHFr. (15)

However, this estimator is unusable if the CFO ε and PHN
θ are not equal to zero. In the next section we will derive
a channel estimator that works even with non-zero CFO and
PHN.

B. Joint CFO/PHN/CIR Estimator (JCPCE)

Looking at (11), it is obvious that given only r, the optimal
estimates for E, P and g are coupled and in general difficult
to obtain. But as the following derivation shows, we are very
fortunate in this case as the joint optimization problem can in
fact be decoupled.

First, we write the “complete likelihood function”
p(r, ε,θ,g) = p(r|ε,θ,g)p(ε)p(θ)p(g)2. Since we assume no
prior knowledge of ε and g, p(ε) and p(g) are constants. Also,
we have assumed in Section II-A that the prior distribution of
θ is

p(θ) = N (0,Φ), (16)

where Φ is known. The “complete negative log-likehood
function” can therefore be written as

L(ε,θ,g) = − log p(r|ε,θ,g) − log p(θ)
= 1

2σ2 (r − EPFHDWg)H(r − EPFHDWg)
+ 1

2θ
T Φ−1θ.

(17)
Our objective is to find the optimal estimates

(ε̂, θ̂, ĝ) = arg min
ε,θ,g

L(ε,θ,g). (18)

1) Forward Substitution: Solving ∂L(ε,θ,g)/∂g∗ = 0
produces the ML channel estimate3 in terms of ε and θ

ĝ = (2ρ2)−1WHDHFPHEHr. (19)

Noticing that

r − EPFHDWĝ
= r − (2ρ2)−1EPFHDWWHDHFPHEHr
= (2ρ2)−1EPFHDVVHDHFPHEHr,

(20)

2The complete likelihood function is proportional to the a posteriori
distribution p(ε, θ,g|r).

3Note that we are maximizing the “complete likelihood function”
p(r, ε, θ,g) rather than the conventional likelihood function p(r|ε, θ,g).

TABLE I

JOINT CFO/PHN/CIR ESTIMATOR (JCPCE).

Step 1: ε̂ = arg minε 1T ECCHEH1 − 1T Im(ECCHEH)T

×[Re(ECCHEH) + 2σ2ρ2Φ−1]−1Im(ECCHEH)1;

Ê = diag([1, ej2πε̂/N , · · · , ej2π(N−1)ε̂/N ]T );

Step 2: θ̂ = [Re(ÊCCHÊH) + 2σ2ρ2Φ−1]−1Im(ÊCCHÊH)1;

P̂ = diag([ejθ̂0 , · · · , ejθ̂N−1 ]T );

Step 3: ĝ = (2ρ2)−1WHDHFP̂HÊHr.

and substituting (20) into (17), we have after simplification

L(ε,θ) = 1
4σ2ρ2 uT ERHFHDVVHDHFREHu∗

+ 1
2θ

T Φ−1θ,
(21)

where R = diag(r) and u = [ejθ0 , · · · , ejθN−1 ]T . Realizing
that for small θ, u ≈ 1 + jθ and letting C = RHFHDV,

L(ε,θ) ≈ 1
4σ2ρ2 (1 + jθ)T ECCHEH(1 − jθ) + 1

2θ
T Φ−1θ

= 1
4σ2ρ2

[
θT Re(ECCHEH)θ + 2σ2ρ2θT Φ−1θ

−2θT Im(ECCHEH)1 + 1T ECCHEH1
]
.

(22)
The last equality holds for real valued θ. Solving
∂L(ε,θ)/∂θ = 0 gives us the optimal estimate of θ in terms
of ε

θ̂ = [Re(ECCHEH) + 2σ2ρ2Φ−1]−1Im(ECCHEH)1.
(23)

Substituting (23) into (22) and simplifying, we have

L(ε) ∝ −1T Im(ECCHEH)T [Re(ECCHEH) + 2σ2ρ2Φ−1]−1

×Im(ECCHEH)1 + 1T ECCHEH1.
(24)

Hence by searching over a range of values of ε, we may find
the optimal estimate of ε

ε̂ = arg min
ε

L(ε). (25)

2) Backward Substitution: After finding ε̂ and correspond-
ingly Ê, the values of θ̂ can be determined by substituting
E = Ê into (23):

θ̂ = [Re(ÊCCHÊH) + 2σ2ρ2Φ−1]−1Im(ÊCCHÊH)1.
(26)

Letting P̂ = diag(exp(jθ̂)) and plugging it into (19), the
ML channel estimate after removing the CFO and PHN is
therefore:

ĝ = (2ρ2)−1WHDHFP̂HÊHr. (27)

We summarize the complete JCPCE algorithm in Table I.
Note that the luxury of easily finding the jointly optimal

estimates for ε, θ and g is to a great extent owed to the unitary
property of CFO and PHN matrices: EHE = I and PHP = I.
This property is also utilized in [10] to establish the optimality
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TABLE II

CONJUGATE GRADIENT ALGORITHM FOR EVALUATING (26).

Initialization: θ̂0 = 0

γ0 = [Re(ÊCCHÊH) + Ψ−1]θ̂0 − q = −q
ν0 = −γ0 = q

For k = 0 : i − 1

αk = γH
k γk/(νH

k [Re(ÊCCHÊH) + Ψ−1]νk)

θ̂k+1 = θ̂k + αkνk

γk+1 = γk + αk[Re(ÊCCHÊH) + Ψ−1]νk

βk+1 =
γH

k+1γk+1

γH
k

γk

νk+1 = −γk+1 + βk+1νk End

of MUSIC-based CFO estimation in OFDM.

C. Complexity Analysis and Low Complexity Implementation

In the OFDM system, computational complexity is a critical
issue, since the use of FFT implies a low complexity order of
O(N logN). In the implementation of the JCPCE, the main
computational tasks reside in evaluating equations (24), (26)
and (27). We will now investigate the complexity of each
computation and seek means to reduce it.

In (27), we see that D, P̂ and Ê are diagonal matrices,
while F and WH are FFT or partial FFT matrices. Thus each
step of matrix-vector multiplication has a complexity order of
O(N logN) or less.

The more challenging task is (26), which involves a matrix
inversion requiring in general a complexity order of O(N3).
However, as we will show in the following, with the help of
the conjugate gradient (CG) method [11], we are able to lower
the complexity to an acceptable level.

1) Wiener Phase Noise: The inverse of Wiener PHN co-
variance matrix Φ has a convenient tridiagonal structure [12].
If we let Ψ = 1

2σ2ρ2 Φ, Ψ−1 = 2σ2ρ2Φ−1 can be written as:

Ψ−1 =
2σ2ρ2

α2
φ




2 −1 0
−1 2 −1

. . .
. . .

. . .
−1 2 −1

0 −1 1


 . (28)

Let q = Im(ÊCCHÊH)1, where q can be computed effi-
ciently using FFT since all matrices involved in calculating
q are either diagonal or FFT (or partial FFT) matrices. The
evaluation of (26) is now equivalent to solving a linear
equation [Re(ÊCCHÊH)+Ψ−1]θ̂ = q. This problem can be
easily tackled by the conjugate gradient method. The complete
algorithm is presented in Table II.

Of all the operations in Table II, the dominant com-
plexity is associated with the matrix-vector multiplication
[Re(ÊCCHÊH) + Ψ−1]νk. Thanks to the tridiagonal form
of Ψ−1, this can be performed easily. More specifically,
evaluating [Re(ÊCCHÊH)+Ψ−1]νk requires 7N+6N logN
operations. Thus, the overall complexity of every iteration of
the CG algorithm is O(N logN). The CG algorithm requires

a maximum of N iterations to converge to the exact solu-
tion. But our simulations show that the number of iterations
required for good estimation performance is much smaller
than N . In conclusion, the complexity of evaluating (26) is
O(iN logN), where i is the number of iterations in the CG
algorithm.

2) Gaussian Phase Noise: In the case of Gaussian PHN,
we notice that Ψ, as a Toeplitz matrix, can be approximated
by a circulant matrix Ψ̃ [13] according to this simple result:

Theorem 1: The best circulant approximation to a symmet-
ric Toeplitz matrix Ψ ∈ C

N×N , Ψ̃ ∈ C
N×N , in the sense

of minimizing the Frobenius norm ‖Ψ − Ψ̃‖F , is a circulant

matrix whose first row ψ̃
T

= [ψ̃0, · · · , ψ̃N−1] has entries

ψ̃i =
(N − i)ψi + iψN−i

N
, (29)

where ψT = [ψ0, · · · , ψN−1] is the first row of Ψ. This
operation has complexity of O(N).

Proof: See [13].
It can be shown that this approximation is asymptotically

exact as N → ∞ for an autocorrelation matrix Ψ of a
first-order autoregressive process, which is a good fit to the
Gaussian PHN process assumed in [14]. Being a circulant
matrix, the eigenvalue decomposition (EVD) of Ψ̃ is FΛΨ̃FH

and Ψ̃−1 = FΛ−1

Ψ̃
FH , where ΛΨ̃ is a diagonal matrix. It is

well-known that ΛΨ̃ = diag(
√
NFHϕ̃1), where ϕ̃1 is the first

column of Ψ̃. Replacing Ψ by Ψ̃, the simplification for (26)
becomes

θ̂ = [Re(ÊCCHÊH) + Ψ̃−1]−1Im(ÊCCHÊH)1. (30)

This problem can be treated similar to the Wiener PHN case
using the conjugate gradient method in Table II by replacing
Ψ with Ψ̃. It can be shown that the overall complexity is again
O(iN logN).

The computation of (24) can be done almost identically as
(26) using the CG algorithm, and its analysis is omitted here.

IV. SIMULATIONS

In the following, we simulate the performance of the pro-
posed JCPCE based on the algorithm presented in Table I.
The following system parameters are assumed in our simula-
tions unless stated otherwise: 1) A Rayleigh multipath fading
channel with a delay of L = 10 taps and an exponentially
decreasing power delay profile that has a decay constant of 4
taps. 2) An OFDM training symbol size of N = 64 subcarriers
with each subcarrier modulated in QPSK format. 3) Baseband
sampling rate fs = 20 MHz (subcarrier spacing of 312.5 kHz).
4) The Wiener PHN is generated as a random-walk process
with incremental PHN of αφ = 0.6 deg. The covariance matrix
Φ is as depicted in (4). 5) The Gaussian PHN has a standard
deviation of θrms = 3 deg (i.e. Rθ(0) = (πθrms/180)2). It is
generated, according to the Matlab code recommended for the
IEEE 802.11g standard [14], as i.i.d. Gaussian samples passed
through a single pole Butterworth filter of 3dB bandwidth
Ωo = 100 KHz. Hence, the PHN covariance matrix Φ is
Φi,j = (πθrms/180)2e−

2πΩo|i−j|
fs .
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Fig. 2. Effect of residual common phase rotation in JCPCE.

A. Unresolvable Residual Common Phase Rotation

We will first perform simulations with no CFO to study
the joint PHN and CIR estimation described as part of the
JCPCE algorithm (Steps 2 and 3 in Table I with Ê = I).
Fig. 2 plots two instances of the PHN process (from the
Wiener and Gaussian model, respectively) and their estimates
via the JCPCE algorithm. At SNR = 30 dB, it is seen that
the Wiener PHN is estimated accurately, while the estimator
for the Gaussian PHN differs from the actual profile by
a constant phase rotation. This constant rotation δ creates
and equal but opposite rotation in the channel estimate – a
phenomenon called residual common phase rotation (RCPR).
The exact analysis of RCPR is difficult, but we have a fairly
good understanding of its origin which is summarized in the
following proposition and is backed up by further simulations:

Proposition 1: Assume the actual PHN process and channel
impulse response are θo and go, respectively. As SNR → ∞,
the jointly ML estimates, θ̂ and ĝ, calculated using the JCPCE
algorithm approach

θ̂ → θ0 + δ1 (31)

ĝ → e−jδgo, (32)

where δ = arg minα(θ0 + α1)T Φ−1(θ0 + α1).
Proof: See Appendix I.

In brief, the RCPR, represented by an unknown constant
δ, is introduced to shift the optimal estimate θo such that
θo + δ1 is closer to a zero-mean Gaussian process defined by
the covariance matrix Φ. Thus although the PHN estimate we
have obtained is “maximum a posteriori”, it is not unbiased.

This proposition not only gives us a qualitative understand-
ing of the phenomenon, but also offers quantitative predictions.
By making θ̂ most likely, θ̂ = θo + δ1 is approximately zero
mean. That implies δ should be approximately the negative
sample mean of θo: δ ≈ − 1

N θ
T
o 1.

Since θo ∼ N (0,Φ), it is easy to see that δ ∼
N (0,1T Φ1/N2).
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Fig. 3. The predicted pdf vs. the histogram of δ at SNR = 15, 25, 35 dB.

Fig. 3 shows the pdf of the measured δ compared to the
Gaussian prediction, where δ is measured in simulation as
the mean difference between θ̂ and θo. It is seen that this
prediction holds very well at different SNR’s. Hence, we
now have a much better knowledge about the behaviour of
RCPR, and know that it is not significant, as its variance is a
fraction of that of PHN. In practice, we also have the option
to estimate and remove δ in the data detection stage using the
pilot symbols embedded in the transmitted OFDM symbols.
Since this is not the subject of this paper, we will assume
from hereon that δ can be perfectly corrected to facilitate easy
assessment of the quality of channel estimation.

B. Channel Estimation Performance with both CFO and PHN

We now simulate the channel estimation performance in
the presence of both CFO and PHN. The achievable CFO
estimation range is |ε| < 0.5 for the JCPCE. In the simulations,
the CFO term ε will be generated from a uniform distribution
in [−0.4, 0.4] corresponding to a maximum CFO of 125 kHz.

Fig. 4 and Fig. 5 plot the channel estimation MSE as a
function of the system SNR (SNR = Es/No = ρ2/σ2) in
the presence of both CFO and PHN. The complete JCPCE
algorithm is compared to the partial JCPCE where PHN esti-
mation is omitted. (We cannot compare with the conventional
channel estimator in (15) because it completely fails when
ε �= 0.) The JCPCE algorithm is compared against the Cramér-
Rao Lower Bound (CRLB) for estimating g in an OFDM
channel free of CFO or PHN, which can be shown to be
CRLB(g) = L/SNR. It is seen that the complete JCPCE
algorithm almost completely cancels the effect of CFO and
PHN distortion. The partial JCPCE, which optimally cancels
CFO but ignores PHN, deviates from the CRLB at high
SNR, demonstrating that PHN has a major effect in channel
estimation even with optimal CFO estimation. We also plot
the low complexity implementation of JCPCE using the CG
method described in Section III-C. It is shown that for both
types of PHN, there is only a small performance degradation
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Fig. 4. MSE vs. SNR channel estimation performance (Wiener PHN).
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Fig. 5. MSE vs. SNR channel estimation performance (Gaussian PHN).

when using i = 5 CG iterations to evaluate (24) and (26).

V. CONCLUSIONS

This paper derived the optimal training-based OFDM chan-
nel estimation in the presence of CFO and PHN. The complex
joint optimization problem turns out to be solvable through
three elegantly decoupled optimization steps. In addition, we
explored ways to reduce the complexity through the conjugate
gradient method. This paper paves the way for the design of
OFDM detectors in the presence of PHN (e.g. [4]), where
the CIR and CFO (which are quasi-static) can now be safely
assumed known.

APPENDIX I
PROOF OF PROPOSITION 1

Consider the minimization of the complete negative log-
likelihood function L(θ,g), where the actual values of the
variables are go and θo. We examine the joint optimizers of
L(θ,g) as SNR → ∞ in relation to go and θo.

Looking at (17), it is seen that L(θ,g) has two components,
associated with p(r|θ,g) and p(θ), respectively. Denote

Lp(r|θ,g)(θ,g) =
1

2σ2
‖r − EPFHDWg‖2; (33a)

Lp(θ)(θ) =
1
2
θT Φ−1θ. (33b)

As SNR → ∞ (i.e., σ2 → 0)

(θo,go) = arg min
θ,g

Lp(r|θ,g)(θ,g), (34)

but the minimizer is not unique, since

(θo + δ1, e−jδgo) = arg min
θ,g

Lp(r|θ,g)(θ,g), (35)

for arbitrary angle δ. This is because introducing two opposite
phase rotations to u and g does not alter the overall channel
response, and hence the likelihood.

Assume the uniqueness of (35), i.e. Sp(r|θ,g) ≡ {(θo +
δ1, e−jδgo)} describes a complete set of optimizers for
Lp(r|θ,g)(θ,g). Notice that any variable pair (θ,g) ∈ Sp(r|θ,g)

makes Lp(r|θ,g)(θ,g) = 0, or p(r|θ,g) = ∞. It then follows
that the optimizer (θ̂, ĝ) of L(θ,g) must be a subset of
Sp(r|θ,g), as any other pair (θ,g) would make the complete
likelihood finite. Consequently, the only task remaining is
to find (θ̂, ĝ) = arg minθ,g Lp(θ)(θ) subject to (θ̂, ĝ) ∈
Sp(r|θ,g).
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