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I. Problem Description

• OFDM channel with PHN (Phase Noise) and CFO (Carrier Frequency
Offset):
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I. Signal Model in Matrix Form

• Complex baseband received signal in one OFDM symbol interval:

r = EPGFHd + n, (1)

– r ∈ CN×1: received OFDM symbol with cyclic prefix removed;
– E = diag([1, ej2πε/N , · · · , ej2π(N−1)ε/N ]T ): CFO matrix;
– P = diag([ejθ0, · · · , ejθN−1]T ): PHN matrix;
– G: channel circular convolution matrix, formed by CIR g;
– F ∈ CN×N : DFT matrix;
– d ∈ CN×1: vector of constant-modulus training symbols;
– n ∈ CN×1: complex white Gaussian noise with variance σ2 per

dimension.

• The objective is to, based on received r, estimate three unknowns:

– (1)ε, (2)θ = [θ0, · · · , θN−1]T , (3)g = [g0, · · · , gL−1]T .
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II. Prior Statistics of Phase Noise

• Two different models of PHN are available:

– For free-running oscillator at the receiver, we assume a non-stationary
Gaussian process, called Wiener PHN.

– For oscillator controlled by a phase-locked loop (PLL), we assume a
zero-mean coloured Gaussian process, called Gaussian PHN.

• The prior statistics of both types of PHN can be modeled as a
multivariate Gaussian distribution:

p(θ) = N (0,Φ), (2)

where the covariance matrix Φ can be determined from the power
spectral density (PSD) of the VCO output. The details are presented in
the paper, but omitted here.
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III. Channel Estimation Ignoring CFO and PHN

• If we ignore CFO and PHN (i.e. assume EP = I), the received signal
model becomes: r = GFHd + n.

• Or, it can be written alternatively as

r = FHDWg + n, (3)

– D = diag(d);
– F = [W|V], W ∈ CN×L;
– g ∈ CL×1 is the CIR (Channel Impulse Response) of length L < N .

• Assuming constant-modulus training symbols, i.e. DHD = 2ρ2I,
maximizing p(r|g) = CN (FHDWg, 2σ2I) leads to the ML estimator

ĝ = (2ρ2)−1WHDHFr. (4)
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IV. The Complete Likelihood Function

• If we consider CFO and PHN, the optimal estimator requires joint
estimation of three unknowns, ε,θ and g, in

r = EPFHDWg + n. (5)

• We first write the “complete likelihood function”

p(r, ε, θ,g) = p(r|ε, θ,g)p(ε)p(θ)p(g), (6)

which is proportional to the a posteriori distribution of the unknowns,
p(ε,θ,g|r).

• Since we assume no prior knowledge of ε and g, p(ε) and p(g) are
constants and can be omitted. The prior of θ is available, which is
p(θ) = N (0,Φ) as discussed before.
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IV. Target of Optimization

• Taking the logarithm, the “complete negative log-likehood function”
can be written as

L(ε, θ,g) = − log p(r|ε,θ,g)− log p(θ)
= 1

2σ2(r−EPFHDWg)H(r−EPFHDWg) + 1
2θ

TΦ−1θ.
(7)

• The objective is to find the jointly optimal estimates

(ε̂, θ̂, ĝ) = arg min
ε,θ,g

L(ε, θ,g). (8)

• The estimator proposed here is “optimal” in the sense of maximizing
the “complete likelihood function”. It can be derived in 3 optimization
steps.
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IV. The Optimal Estimator: CIR and PHN Estimation

1. CIR Estimation: Solve ∂L(ε,θ,g)/∂g∗ = 0, we obtain

ĝ = (2ρ2)−1WHDHFPHEHr. (9)

– Substituting g = ĝ back into L(ε, θ,g) produces L(ε,θ).

2. PHN Estimation: Solve ∂L(ε, θ)/∂θ = 0, we obtain

θ̂ = [Re(ECCHEH) + 2σ2ρ2Φ−1]−1Im(ECCHEH)1, (10)

where C = RHFHDV and R = diag(r).

– Substituting θ = θ̂ back into L(ε,θ) produces L(ε)
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IV. The Optimal Estimator: CFO Estimation

3. CFO Estimation: To minimize L(ε), we require searching over the range
−0.5 < ε < 0.5:

ε̂ = arg minε 1TECCHEH1− 1T Im(ECCHEH)T

×[Re(ECCHEH) + 2σ2ρ2Φ−1]−1Im(ECCHEH)1.
(11)

• Combining the 3 optimization steps leads to the complete Joint
CFO/PHN/CIR Estimation (JCPCE) algorithm:

Step 1: ε̂ = arg minε 1T ECCHEH1 − 1T Im(ECCHEH)T

×[Re(ECCHEH) + 2σ2
ρ
2Φ−1]−1Im(ECCHEH)1;

Ê = diag([1, ej2πε̂/N
, · · · , e

j2π(N−1)ε̂/N ]T );

Step 2: θ̂ = [Re(ÊCCHÊH) + 2σ2
ρ
2Φ−1]−1Im(ÊCCHÊH)1;

P̂ = diag([ejθ̂0 , · · · , e
jθ̂N−1 ]T );

Step 3: ĝ = (2ρ2)−1WHDHFP̂HÊHr.
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V. Complexity Reduction: Special Structure of Ψ

• Letting Ψ = 1
2σ2ρ2Φ, the dominant complexity of the previous algorithm

is associated with the evaluation of [Re(ECCHEH) + Ψ−1]−1, which
in general has complexity O(N3).

• Fortunately, complexity reduction is available by noticing the following:

– For Wiener PHN, Ψ−1 is a tridiagonal matrix;

Ψ−1 =
2σ2ρ2

α2
φ




2 −1 0
−1 2 −1

. . . . . . . . .
−1 2 −1

0 −1 1




. (12)

– For Gaussian PHN, Ψ is a Toeplitz matrix, but can be closely
approximated as a circulant matrix Ψ̃, making the evaluation of Ψ̃−1

simple.
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V. Complexity Reduction: Conjugate Gradient Method

• Letting q = Im(ÊCCHÊH)1, the evaluation of
[Re(ECCHEH) + Ψ−1]−1q can be accomplished by the conjugate
gradient method as follows:

Initialization:
θ0 = 0

γ0 = [Re(ECCHEH) + Ψ̃−1]θ0 − q = −q

ν0 = −γ0 = q

For k = 0 : i − 1

αk = γH

k
γ

k
/(νH

k
[Re(ECCHEH) + Ψ̃−1]νk)

θk+1 = θk + αkνk

γ
k+1 = γ

k
+ αk[Re(ECCHEH) + Ψ̃−1]νk

βk+1 =
γ

H

k+1γ
k+1

γ
H

k
γ

k

νk+1 = −γ
k+1 + βk+1νk

End
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V. Complexity Reduction: Overall Complexity

• Using the Conjugate Gradient algorithm, we have control over the
number of iteration i. Exact matrix inversion corresponds to i = N .

• By utilizing the special structure of Ψ, we have reduced the complexity
from O(N3) to O(3N2) for Wiener PHN, and O(N2 log N) for
Gaussian PHN.

• In practice, i ¿ N . In this case, the complexity becomes O(i× 3N) for
Wiener PHN, and O(i×N log N) for Gaussian PHN.

• Simulations demonstrate that even for i = 5, no significant performance
degradation results.

D.D. Lin, R.A. Pacheco, T.J. Lim and D. Hatzinakos, Univ. of Toronto 16



• Problem description and signal model in matrix form.

• Prior statistics of phase noise.

• Channel estimation ignoring frequency offset and phase noise.

• The optimal joint CFO/PHN/CIR estimator.

• Complexity reduction using conjugate gradient method.

• Simulation results.

D.D. Lin, R.A. Pacheco, T.J. Lim and D. Hatzinakos, Univ. of Toronto 17



III. Residual Phase Rotation

• Unresolvable residual common phase rotation: A residual phase rotation
δ cannot be estimated for Gaussian PHN. δ ∼ N (0,1TΦ1/N2).
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III. Simulation Settings

• The effect of residual phase rotation is that the channel estimate ĝ is
off by a small unknown phase δ, which does not introduce ICI.

• We assume that δ can be perfectly corrected to facilitate easy
assessment of channel estimation mean-squared error (MSE).

• The following system parameters are used in simulations:

– A Rayleigh multipath fading channel with a delay of L = 10 taps;
– An OFDM training symbol size of N = 64 subcarriers with each

subcarrier modulated in QPSK;
– Baseband sampling rate fs = 20 MHz;
– The Wiener PHN is generated as a random-walk process with

incremental PHN of αφ = 0.6 deg.
– The Gaussian PHN has a standard deviation of θrms = 3 deg. It is

generated as i.i.d. Gaussian samples passed through a single pole
Butterworth filter of 3dB bandwidth Ωo = 100 KHz.
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III. Simulation Results

• JCPCE performance in Wiener PHN:
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III. Simulation Results

• JCPCE performance in Gaussian PHN:
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Summary

• Challenge: How do we optimally estimate the CIR of an OFDM channel
in the presence of unknown PHN and CFO?

• Solution: We derived a Joint CFO/PHN/CIR Estimation (JCPCE)
algorithm that optimizes the “complete likelihood function”
incorporating the prior distribution of PHN. The CFO and PHN are
accurately estimated together with the CIR.

• In addition, we reduced the complexity of the proposed estimator to an
acceptable level using the Conjugate Gradient method.

• The complexity we cannot reduce within the optimal algorithm is the
search operation in the estimation of CFO.

• This problem is solved with a sub-optimal algorithm to be presented at
ICC 2006, titled ”Near-Optimal Training-Based Estimation of Frequency
Offset and Channel Response in OFDM with Phase Noise”.
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Thank You!
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