Optimal OFDM Channel Estimation with Carrier Frequency Offset and Phase Noise

Darryl Dexu Lin, Ryan A. Pacheco, Teng Joon Lim and Dimitrios Hatzinakos

University of Toronto

Presented by Amir Basri at WCNC'2006, Las Vegas, NV USA

April 3, 2006

- Problem description and signal model in matrix form.
- Prior statistics of phase noise.
- Channel estimation ignoring frequency offset and phase noise.
- The optimal joint CFO/PHN/CIR estimator.
- Complexity reduction using conjugate gradient method.
- Simulation results.

• OFDM channel with PHN (Phase Noise) and CFO (Carrier Frequency Offset):

• Distortions caused by PHN and CFO:

D.D. Lin, R.A. Pacheco, T.J. Lim and D. Hatzinakos, Univ. of Toronto

• Complex baseband received signal in one OFDM symbol interval:

$$\mathbf{r} = \mathbf{E}\mathbf{P}\mathbf{G}\mathbf{F}^H\mathbf{d} + \mathbf{n},\tag{1}$$

- $\mathbf{r} \in \mathbb{C}^{N \times 1}$: received OFDM symbol with cyclic prefix removed;
- $\mathbf{E} = \operatorname{diag}([1, e^{j2\pi\epsilon/N}, \cdots, e^{j2\pi(N-1)\epsilon/N}]^T)$: CFO matrix;
- $\mathbf{P} = \operatorname{diag}([e^{j\theta_0}, \cdots, e^{j\theta_{N-1}}]^T)$: PHN matrix;
- G: channel circular convolution matrix, formed by CIR g;
- $\mathbf{F} \in \mathbb{C}^{N \times N}$: DFT matrix;
- $\mathbf{d} \in \mathbb{C}^{N \times 1}$: vector of constant-modulus training symbols;
- $\mathbf{n} \in \mathbb{C}^{N \times 1}$: complex white Gaussian noise with variance σ^2 per dimension.
- The objective is to, based on received \mathbf{r} , estimate three unknowns:

$$(1)\epsilon, (2)\theta = [\theta_0, \cdots, \theta_{N-1}]^T, (3)\mathbf{g} = [g_0, \cdots, g_{L-1}]^T.$$

- Problem description and signal model in matrix form.
- Prior statistics of phase noise.
- Channel estimation ignoring frequency offset and phase noise.
- The optimal joint CFO/PHN/CIR estimator.
- Complexity reduction using conjugate gradient method.
- Simulation results.

- Two different models of PHN are available:
 - For free-running oscillator at the receiver, we assume a non-stationary Gaussian process, called *Wiener PHN*.
 - For oscillator controlled by a phase-locked loop (PLL), we assume a zero-mean coloured Gaussian process, called *Gaussian PHN*.
- The prior statistics of both types of PHN can be modeled as a multivariate Gaussian distribution:

$$p(\boldsymbol{\theta}) = \mathcal{N}(\mathbf{0}, \boldsymbol{\Phi}), \tag{2}$$

where the covariance matrix Φ can be determined from the power spectral density (PSD) of the VCO output. The details are presented in the paper, but omitted here.

- Problem description and signal model in matrix form.
- Prior statistics of phase noise.
- Channel estimation ignoring frequency offset and phase noise.
- The optimal joint CFO/PHN/CIR estimator.
- Complexity reduction using conjugate gradient method.
- Simulation results.

III. Channel Estimation Ignoring CFO and PHN

- If we ignore CFO and PHN (i.e. assume $\mathbf{EP} = \mathbf{I}$), the received signal model becomes: $\mathbf{r} = \mathbf{GF}^H \mathbf{d} + \mathbf{n}$.
- Or, it can be written alternatively as

$$\mathbf{r} = \mathbf{F}^H \mathbf{D} \mathbf{W} \mathbf{g} + \mathbf{n}, \tag{3}$$

$$- \mathbf{D} = \mathsf{diag}(\mathbf{d});$$

$$-\mathbf{F} = [\mathbf{W}|\mathbf{V}], \mathbf{W} \in \mathbb{C}^{N \times L};$$

- $\mathbf{g} \in \mathbb{C}^{L \times 1}$ is the CIR (Channel Impulse Response) of length L < N.
- Assuming constant-modulus training symbols, i.e. $\mathbf{D}^H \mathbf{D} = 2\rho^2 \mathbf{I}$, maximizing $p(\mathbf{r}|\mathbf{g}) = \mathcal{CN}(\mathbf{F}^H \mathbf{DWg}, 2\sigma^2 \mathbf{I})$ leads to the ML estimator

$$\hat{\mathbf{g}} = (2\rho^2)^{-1} \mathbf{W}^H \mathbf{D}^H \mathbf{Fr}.$$
 (4)

- Problem description and signal model in matrix form.
- Prior statistics of phase noise.
- Channel estimation ignoring frequency offset and phase noise.
- The optimal joint CFO/PHN/CIR estimator.
- Complexity reduction using conjugate gradient method.
- Simulation results.

• If we consider CFO and PHN, the optimal estimator requires joint estimation of three unknowns, ϵ, θ and g, in

$$\mathbf{r} = \mathbf{E} \mathbf{P} \mathbf{F}^H \mathbf{D} \mathbf{W} \mathbf{g} + \mathbf{n}.$$
 (5)

• We first write the "complete likelihood function"

$$p(\mathbf{r}, \epsilon, \boldsymbol{\theta}, \mathbf{g}) = p(\mathbf{r}|\epsilon, \boldsymbol{\theta}, \mathbf{g}) p(\epsilon) p(\boldsymbol{\theta}) p(\mathbf{g}), \tag{6}$$

which is proportional to the *a posteriori* distribution of the unknowns, $p(\epsilon, \theta, \mathbf{g} | \mathbf{r})$.

• Since we assume no prior knowledge of ϵ and \mathbf{g} , $p(\epsilon)$ and $p(\mathbf{g})$ are constants and can be omitted. The prior of $\boldsymbol{\theta}$ is available, which is $p(\boldsymbol{\theta}) = \mathcal{N}(\mathbf{0}, \boldsymbol{\Phi})$ as discussed before.

• Taking the logarithm, the "complete negative log-likehood function" can be written as

$$\mathcal{L}(\epsilon, \boldsymbol{\theta}, \mathbf{g}) = -\log p(\mathbf{r}|\epsilon, \boldsymbol{\theta}, \mathbf{g}) - \log p(\boldsymbol{\theta}) = \frac{1}{2\sigma^2} (\mathbf{r} - \mathbf{E}\mathbf{P}\mathbf{F}^H \mathbf{D}\mathbf{W}\mathbf{g})^H (\mathbf{r} - \mathbf{E}\mathbf{P}\mathbf{F}^H \mathbf{D}\mathbf{W}\mathbf{g}) + \frac{1}{2}\boldsymbol{\theta}^T \boldsymbol{\Phi}^{-1}\boldsymbol{\theta}.$$
(7)

• The objective is to find the jointly optimal estimates

$$(\hat{\epsilon}, \hat{\theta}, \hat{\mathbf{g}}) = \arg\min_{\epsilon, \theta, \mathbf{g}} \mathcal{L}(\epsilon, \theta, \mathbf{g}).$$
 (8)

• The estimator proposed here is "optimal" in the sense of maximizing the "complete likelihood function". It can be derived in 3 optimization steps.

IV. The Optimal Estimator: CIR and PHN Estimation

1. CIR Estimation: Solve $\partial \mathcal{L}(\epsilon, \theta, \mathbf{g}) / \partial \mathbf{g}^* = \mathbf{0}$, we obtain

$$\hat{\mathbf{g}} = (2\rho^2)^{-1} \mathbf{W}^H \mathbf{D}^H \mathbf{F} \mathbf{P}^H \mathbf{E}^H \mathbf{r}.$$
 (9)

– Substituting $\mathbf{g} = \hat{\mathbf{g}}$ back into $\mathcal{L}(\epsilon, \boldsymbol{\theta}, \mathbf{g})$ produces $\mathcal{L}(\epsilon, \boldsymbol{\theta})$.

2. *PHN Estimation*: Solve $\partial \mathcal{L}(\epsilon, \theta) / \partial \theta = 0$, we obtain

$$\hat{\boldsymbol{\theta}} = [\operatorname{Re}(\mathbf{E}\mathbf{C}\mathbf{C}^{H}\mathbf{E}^{H}) + 2\sigma^{2}\rho^{2}\boldsymbol{\Phi}^{-1}]^{-1}\operatorname{Im}(\mathbf{E}\mathbf{C}\mathbf{C}^{H}\mathbf{E}^{H})\mathbf{1}, \quad (10)$$

where $\mathbf{C} = \mathbf{R}^H \mathbf{F}^H \mathbf{D} \mathbf{V}$ and $\mathbf{R} = \text{diag}(\mathbf{r})$.

– Substituting $\theta = \hat{\theta}$ back into $\mathcal{L}(\epsilon, \theta)$ produces $\mathcal{L}(\epsilon)$

IV. The Optimal Estimator: CFO Estimation

3. *CFO Estimation*: To minimize $\mathcal{L}(\epsilon)$, we require searching over the range $-0.5 < \epsilon < 0.5$:

$$\hat{\epsilon} = \arg \min_{\epsilon} \mathbf{1}^{T} \mathbf{E} \mathbf{C} \mathbf{C}^{H} \mathbf{E}^{H} \mathbf{1} - \mathbf{1}^{T} \mathsf{Im} (\mathbf{E} \mathbf{C} \mathbf{C}^{H} \mathbf{E}^{H})^{T} \times [\mathsf{Re}(\mathbf{E} \mathbf{C} \mathbf{C}^{H} \mathbf{E}^{H}) + 2\sigma^{2} \rho^{2} \Phi^{-1}]^{-1} \mathsf{Im}(\mathbf{E} \mathbf{C} \mathbf{C}^{H} \mathbf{E}^{H}) \mathbf{1}.$$
(11)

• Combining the 3 optimization steps leads to the complete *Joint CFO/PHN/CIR Estimation* (JCPCE) algorithm:

$$\begin{array}{lll} \text{Step 1:} & \hat{\epsilon} = \arg\min_{\epsilon} \mathbf{1}^{T}\mathbf{E}\mathbf{C}\mathbf{C}^{H}\mathbf{E}^{H}\mathbf{1} - \mathbf{1}^{T}\text{Im}(\mathbf{E}\mathbf{C}\mathbf{C}^{H}\mathbf{E}^{H})^{T} \\ & \times[\text{Re}(\mathbf{E}\mathbf{C}\mathbf{C}^{H}\mathbf{E}^{H}) + 2\sigma^{2}\rho^{2}\boldsymbol{\Phi}^{-1}]^{-1}\text{Im}(\mathbf{E}\mathbf{C}\mathbf{C}^{H}\mathbf{E}^{H})\mathbf{1}; \\ & \hat{\mathbf{E}} = \text{diag}([1,e^{j2\pi\hat{\epsilon}/N},\cdots,e^{j2\pi(N-1)\hat{\epsilon}/N}]^{T}); \\ \text{Step 2:} & \hat{\boldsymbol{\theta}} = [\text{Re}(\hat{\mathbf{E}}\mathbf{C}\mathbf{C}^{H}\hat{\mathbf{E}}^{H}) + 2\sigma^{2}\rho^{2}\boldsymbol{\Phi}^{-1}]^{-1}\text{Im}(\hat{\mathbf{E}}\mathbf{C}\mathbf{C}^{H}\hat{\mathbf{E}}^{H})\mathbf{1}; \\ & \hat{\mathbf{P}} = \text{diag}([e^{j\hat{\theta}_{0}},\cdots,e^{j\hat{\theta}_{N-1}}]^{T}); \\ \text{Step 3:} & \hat{\mathbf{g}} = (2\rho^{2})^{-1}\mathbf{W}^{H}\mathbf{D}^{H}\mathbf{F}\hat{\mathbf{P}}^{H}\hat{\mathbf{E}}^{H}\mathbf{r}. \end{array}$$

- Problem description and signal model in matrix form.
- Prior statistics of phase noise.
- Channel estimation ignoring frequency offset and phase noise.
- The optimal joint CFO/PHN/CIR estimator.
- Complexity reduction using conjugate gradient method.
- Simulation results.

V. Complexity Reduction: Special Structure of Ψ

- Letting $\Psi = \frac{1}{2\sigma^2 \rho^2} \Phi$, the dominant complexity of the previous algorithm is associated with the evaluation of $[\operatorname{Re}(\mathbf{ECC}^H \mathbf{E}^H) + \Psi^{-1}]^{-1}$, which in general has complexity $\mathcal{O}(N^3)$.
- Fortunately, complexity reduction is available by noticing the following:
 - For Wiener PHN, Ψ^{-1} is a tridiagonal matrix;

$$\Psi^{-1} = \frac{2\sigma^2 \rho^2}{\alpha_{\phi}^2} \begin{bmatrix} 2 & -1 & & \mathbf{0} \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ \mathbf{0} & & & -1 & 1 \end{bmatrix}.$$
 (12)

– For Gaussian PHN, Ψ is a Toeplitz matrix, but can be closely approximated as a circulant matrix $\tilde{\Psi}$, making the evaluation of $\tilde{\Psi}^{-1}$ simple.

V. Complexity Reduction: Conjugate Gradient Method

 Letting q = lm(ÊCC^HÊ^H)1, the evaluation of [Re(ECC^HE^H) + Ψ⁻¹]⁻¹q can be accomplished by the conjugate gradient method as follows:

Initialization:	
	$oldsymbol{ heta}_0 = oldsymbol{0}$
	$\boldsymbol{\gamma}_0 = [\operatorname{Re}(\mathbf{E}\mathbf{C}\mathbf{C}^H\mathbf{E}^H) + \tilde{\mathbf{\Psi}}^{-1}]\boldsymbol{\theta}_0 - \mathbf{q} = -\mathbf{q}$
	$oldsymbol{ u}_0=-oldsymbol{\gamma}_0=\mathbf{q}$
For	k = 0: i - 1
	$\alpha_k = \boldsymbol{\gamma}_k^H \boldsymbol{\gamma}_k / (\boldsymbol{\nu}_k^H [\operatorname{Re}(\mathbf{E}\mathbf{C}\mathbf{C}^H \mathbf{E}^H) + \tilde{\boldsymbol{\Psi}}^{-1}]\boldsymbol{\nu}_k)$
	$oldsymbol{ heta}_{k+1} = oldsymbol{ heta}_k + lpha_k oldsymbol{ u}_k$
	$\boldsymbol{\gamma}_{k+1} = \boldsymbol{\gamma}_{k} + \alpha_{k} [\operatorname{Re}(\mathbf{E}\mathbf{C}\mathbf{C}^{H}\mathbf{E}^{H}) + \tilde{\mathbf{\Psi}}^{-1}]\boldsymbol{\nu}_{k}$
	$eta_{k+1} = rac{oldsymbol{\gamma}_{k+1}^{H}oldsymbol{\gamma}_{k+1}}{oldsymbol{\gamma}_{k}^{H}oldsymbol{\gamma}_{k}}$
	$oldsymbol{ u}_{k+1} = -oldsymbol{\gamma}_{k+1} + eta_{k+1}oldsymbol{ u}_k$
End	

V. Complexity Reduction: Overall Complexity

- Using the Conjugate Gradient algorithm, we have control over the number of iteration i. Exact matrix inversion corresponds to i = N.
- By utilizing the special structure of Ψ , we have reduced the complexity from $\mathcal{O}(N^3)$ to $\mathcal{O}(3N^2)$ for Wiener PHN, and $\mathcal{O}(N^2 \log N)$ for Gaussian PHN.
- In practice, $i \ll N$. In this case, the complexity becomes $\mathcal{O}(i \times 3N)$ for Wiener PHN, and $\mathcal{O}(i \times N \log N)$ for Gaussian PHN.
- Simulations demonstrate that even for i = 5, no significant performance degradation results.

- Problem description and signal model in matrix form.
- Prior statistics of phase noise.
- Channel estimation ignoring frequency offset and phase noise.
- The optimal joint CFO/PHN/CIR estimator.
- Complexity reduction using conjugate gradient method.
- Simulation results.

• Unresolvable residual common phase rotation: A residual phase rotation δ cannot be estimated for Gaussian PHN. $\delta \sim \mathcal{N}(0, \mathbf{1}^T \mathbf{\Phi} \mathbf{1}/N^2)$.

D.D. Lin, R.A. Pacheco, T.J. Lim and D. Hatzinakos, Univ. of Toronto

- The effect of residual phase rotation is that the channel estimate \hat{g} is off by a small unknown phase δ , which does not introduce ICI.
- We assume that δ can be perfectly corrected to facilitate easy assessment of channel estimation mean-squared error (MSE).
- The following system parameters are used in simulations:
 - A Rayleigh multipath fading channel with a delay of L = 10 taps;
 - An OFDM training symbol size of N = 64 subcarriers with each subcarrier modulated in QPSK;
 - Baseband sampling rate $f_s = 20$ MHz;
 - The Wiener PHN is generated as a random-walk process with incremental PHN of $\alpha_{\phi} = 0.6$ deg.
 - The Gaussian PHN has a standard deviation of $\theta_{rms} = 3$ deg. It is generated as i.i.d. Gaussian samples passed through a single pole Butterworth filter of 3dB bandwidth $\Omega_o = 100$ KHz.

• JCPCE performance in Wiener PHN:

D.D. Lin, R.A. Pacheco, T.J. Lim and D. Hatzinakos, Univ. of Toronto

• JCPCE performance in Gaussian PHN:

D.D. Lin, R.A. Pacheco, T.J. Lim and D. Hatzinakos, Univ. of Toronto

- Challenge: How do we optimally estimate the CIR of an OFDM channel in the presence of unknown PHN and CFO?
- Solution: We derived a *Joint CFO/PHN/CIR Estimation* (JCPCE) algorithm that optimizes the "complete likelihood function" incorporating the prior distribution of PHN. The CFO and PHN are accurately estimated together with the CIR.
- In addition, we reduced the complexity of the proposed estimator to an acceptable level using the Conjugate Gradient method.
- The complexity we cannot reduce within the optimal algorithm is the search operation in the estimation of CFO.
- This problem is solved with a sub-optimal algorithm to be presented at ICC 2006, titled "Near-Optimal Training-Based Estimation of Frequency Offset and Channel Response in OFDM with Phase Noise".

Thank You!

D.D. Lin, R.A. Pacheco, T.J. Lim and D. Hatzinakos, Univ. of Toronto