
UNIVERSITY OF TORONTO
FACULTY OF APPLIED SCIENCE AND ENGINEERING

CSC467– Compilers and Interpreters
Final Examination, Dec. 14, 2018

Exam Type: A, Calculator Type: 4

Duration: 2 and 1⁄2 hours

Examiner: Xu Zhao

Name:

UTOR ID:

Student Number:

This exam contains 12 pages (including this cover page) and 6 questions. Total of points is 100.
Good luck!

Distribution of Marks

Question Points Score

1 10

2 25

3 10

4 10

5 20

6 25

Total: 100

1

CSC467 Compilers and Interpreters 2018/12/14

1. (10 points) True or False. Clearly mark True or False for the following statements.

1) True False Bottom-up parsing traces a right-most derivation in reverse.

2) True False SLR parsing can resolve shi�-reduce con�icts for all LR(0) automatas.

3) True False The variable liveness analysis result is used in register allocation.

4) True False In C++, each object contains a this pointer in its memory structure.

5) True False By default, Java uses lexical scoping, and C uses dynamic scoping.

6) True False A program’s .text segment stores the global variables.

7) True False Semantic analysis can determine whether a program has in�nite loops.

8) True False Bottom-up parsing requires a non-le�-recursive grammar.

9) True False If class A inherits class B, B a = A(); will cause object slicing.

10) True False A unique_ptr uses reference counting to manage dynamic memory.

Page 2 of 12

CSC467 Compilers and Interpreters 2018/12/14

2. (25 points) Bottom-up Parsing Consider the following augmented context free grammar.
Non-terminals are {S ′, S, A}, terminals are {a, b}.

S ′ → S (0)

S → A A (1)

A → a A (2)

A → b (3)

a) (10 points) Draw the LR(0) automata for the bottom-up parsing. Use In to name each state.
The initial state is I0.

b) (10 points) Complete the following SLR parsing table. You do not need to �ll in all the rows.

State ACTION GOTO
a b $ S A

I0

Part c) is on the next page.

Page 3 of 12

CSC467 Compilers and Interpreters 2018/12/14

c) (5 points) Parse the string aabab. Write down the reverse of a right-most derivation (NOT
the parse tree). Specify the grammar rule you are using to reduce on each step.

Page 4 of 12

CSC467 Compilers and Interpreters 2018/12/14

3. (10 points) Program Analysis. Perform the Andersen-style pointer analysis on the follow-
ing program.

p = &a;
p = &b;
q = &c;
*q = p;

Draw the pointer reference graph.

Page 5 of 12

CSC467 Compilers and Interpreters 2018/12/14

4. (10 points) Instruction scheduling. Consider the following Three Address Code:

1 b = 3
2 a = b + 1
3 c = b + 4
4 b = b + 5
5 a = 2 + b
6 c = 5
7 d = a + b
8 b = 10

a) (5 points) Suppose every instruction can �nish in 1 cycle and we have in�nite hardware
resources. Write down the optimal instruction scheduling that requires the minimum num-
ber of cycles.
Note: Instructions with data dependencies must be placed in different cycles.

b) (5 points) Suppose every instruction can �nish in 1 cycle and we can at most execute 2
instructions in parallel in one cycle due to hardware limitation. Write down the optimal
instruction scheduling that requires the minimum number of cycles.
Note: Instructions with data dependencies must be placed in different cycles.

Page 6 of 12

CSC467 Compilers and Interpreters 2018/12/14

5. (20 points) Register allocation. Consider the following control �ow graph. In the TAC code,
d = !c is the boolean NOT operation, and b = a % b is the modulo operation. The live vari-
able set before the Exit basic block contains a single variable {a}.

a) (10 points) Infer the live variable set before (IN()) and a�er (OUT()) each instruction.

Instruction IN() OUT()

a = 119

b = 85

L1:

t = b

b = a % b

a = t

c = (b == 0)

d = !c

If d Goto L1

Part b) and c) of the question are on the next page.

Page 7 of 12

CSC467 Compilers and Interpreters 2018/12/14

b) (5 points) Draw the register interference graph that contains all the temporary variables
{a, b, c, d, t}.

c) (5 points) Show the minimum number of registers needed for the variables by coloring
the register interference graph. Prove that your solution is optimal.

Page 8 of 12

CSC467 Compilers and Interpreters 2018/12/14

6. (25 points) Runtime environment and optimization. Consider the following 64-bit x86 as-
sembly. By convention, the function return value is stored in the register%eax.

1 .globl myfunction
2 myfunction:
3 pushq %rbp
4 movq %rsp, %rbp
5 movl $872, -20(%rbp)
6 movl $721, -16(%rbp)
7 movl -16(%rbp), %eax
8 movl -20(%rbp), %edx
9 andl %edx, %eax
10 movl %eax, -12(%rbp)
11 movl -20(%rbp), %eax
12 movl %eax, -8(%rbp)
13 movl -16(%rbp), %eax
14 movl -8(%rbp), %edx
15 andl %edx, %eax
16 movl %eax, -4(%rbp)
17 movl -4(%rbp), %eax
18 popq %rbp
19 ret

We provide the following table of explaining the x86 assembly code semantics.

Assembly C Semantic
ret return;

movl $872, -20(%ebp) int *p = %ebp - 20; *p = 872;
movl -20(%ebp), %eax int *p = %ebp - 20; %eax = *p;

andl %edx, %eax %eax = %eax & %edx;

Table 1: AT&T x86 assembly semantics

Answer the questions on the next page.

Page 9 of 12

CSC467 Compilers and Interpreters 2018/12/14

a) (10 points) Complete the following �gure that describes the stack frame when the code
is executing on line 8. Suppose each cell is 4 bytes. Pointers or register values may occupy
more than 1 cell (e.g. the return address is 8 bytes, therefore it occupies 2 cells). Only �ll in
the cells that are needed, and you are free to draw more cells if necessary.

b) (10 points) You are asked to optimize the above assembly by eliminating asmany code lines
as possible. Write down the line numbers of the assembly code that can be safely removed.
Note: you are only allowed to remove the assembly code. For example, if you are going to
remove the code on line 1, 3, 7, 8, 9, write down “1, 3, 7-9”.

c) (5 points) Write down the simplest C code that is equivalent to the optimized assembly
code.

Page 10 of 12

CSC467 Compilers and Interpreters 2018/12/14

This page is intentionally le� blank to accommodate work that wouldn’t �t elsewhere and/or
scratch work.

Page 11 of 12

CSC467 Compilers and Interpreters 2018/12/14

This page is intentionally le� blank to accommodate work that wouldn’t �t elsewhere and/or
scratch work.

Page 12 of 12

