
ECE 467 Midterm 1

University of Toronto

2022 October 11

1. (3 points) Draw an NFA for (open|close)* (where the parentheses indicate the order of operations).
Draw states as circles. Label the start state. Indicate final state(s) with a double-circle. See the next
question for an example.

0start 1

2 3 4 5 6

7 8 9 10 11 12

13 14
ϵ

ϵ

ϵ

ϵ

o p e n

ϵ

c l o s e

ϵ

ϵ
ϵ

2. (4 points) Draw the DFA for the following NFA. Show your work.

0start

1 2 3 4

5 6 7 8 9

10

ϵ

ϵ

ϵ

ϵ

a
ϵ

ϵ ϵ

ϵ

ϵ

b c ϵ

ϵ

ϵ

1

ϵ-closure({ 0 }) = { 0, 1, 2, 4, 5, 6, 9, 10 } = A

ϵ-closure(move(A, a)) = ϵ-closure({ 3 }) = { 3, 2, 4, 10 } = B

ϵ-closure(move(A, b)) = ϵ-closure({ 7 }) = { 7 } = C

ϵ-closure(move(A, c)) = ϵ-closure({ }) = { }
ϵ-closure(move(B, a)) = ϵ-closure({ 3 }) = { 3, 2, 4, 10 } = B

ϵ-closure(move(B, b)) = ϵ-closure({ }) = { }
ϵ-closure(move(B, c)) = ϵ-closure({ }) = { }
ϵ-closure(move(C, a)) = ϵ-closure({ }) = { }
ϵ-closure(move(C, b)) = ϵ-closure({ }) = { }
ϵ-closure(move(C, c)) = ϵ-closure({ 8 }) = { 8, 6, 9, 10 } = D

ϵ-closure(move(D, a)) = ϵ-closure({ }) = { }
ϵ-closure(move(D, b)) = ϵ-closure({ 7 }) = { 7 } = C

ϵ-closure(move(D, c)) = ϵ-closure({ }) = { } .

A, B, and D contain accepting NFA states so they are accepting DFA states.

Astart

B

C D

a

b

a

c

b

3. (10 points) Consider the following grammar, where E is the start symbol.

E → T C

T → lparen E rparen | id
C → C op T | ϵ

(a) (3 points) Compute the NULLABLE, FIRST, and FOLLOW functions for all nonterminals in the
grammar.

Nonterminal NULLABLE FIRST FOLLOW
E false lparen, id $, rparen
T false lparen, id $, rparen, op
C true op $, rparen, op

(b) (5 points) Draw the LR(0) states for the grammar (with labeled arrows between the states).

Page 2

closure({E′ → ·E }) =E′ → ·E
E → ·TC
T → ·(E)

T → ·id = S0.

goto(S0, E) =E′ → E· = S1.

goto(S0, T) =E → T · C = S′
2.

goto(S0, lparen) =T → (·E) = S′
3.

goto(S0, id) =T → id· = S4.

closure(S′
2) =E → T · C

=C → ·CopT

=C → · = S2.

closure(S′
3) =T → (·E)

E → ·TC
=T → ·(E)

=T → ·id = S3.

goto(S2, C) =E → TC·
=C → C · opT = S5.

goto(S3, E) =T → (E·) = S6.

goto(S3, T) =E → T · C = S′
2.

goto(S3, lparen) =T → (·E) = S′
3.

goto(S3, id) =T → id· = S4.

goto(S5, op) =C → Cop · T = S′
7.

closure(S′
6) =T → (·E)

=E → ·TC
=T → ·(E)

=T → ·id = S6.

closure(S′
7) =C → Cop · T

=T → ·(E)

=T → ·id = S7.

goto(S6, rparen) =T → (E)· = S8.

goto(S7, T) =C → CopT · = S9.

goto(S7, lparen) =T → (·E) = S′
3.

goto(S7, id) =T → id· = S4.

(c) (2 points) Write the SLR parsing table for the grammar based on your previous two parts
(you will not lose marks in this part if your previous computations were incorrect).

Note that FOLLOW(E′) = FOLLOW(E).

Number the following productions:

0. E′ → E

1. E → TC

2. T → (E)

3. T → id

Page 3

4. C → CopT

5. C → ϵ

State lparen rparen id op $ E’ E T C
0 s3 s4 1 2
1 r0
2 r5 r5 r5 5
3 s3 s4 6 2
4 r3 r3 r3
5 r1 s7 r1
6 s8
7 s3 s4 9
8 r2 r2 r2
9 r4 r4 r4

4. (3 points) Based on the course lab project.

(a) (1 point) You wish to add support for augmented assignment operators (e.g. += and -=). The
instructor says you don’t need to introduce new tokens as augmented assignment operators consist
of existing tokens, e.g. += is a PLUS token followed by an ASSIGN token. What could go wrong?

The lexer ignores whitespace, so the parser cannot distinguish between += and + =; in both cases,
the lexer simply returns PLUS followed by ASSIGN.

(b) (2 points) Suppose you have a sorted vector v of the offsets of all newline characters in the input
buffer (starting from 0). Given an arbitrary offset k, you wish to use the binary search function
partition in the standard library of your favourite language to find which line it is on. Suppose
partition returns the smallest index i such that v[i] >= k. Given the vector of newline offsets v,
an input offset k, write the code to compute the line and column of k using partition, assuming
lines and columns both start at 1.

The function partition gives us the index of the next newline after (or at) offset k. Since a newline
character terminates a line, the index of the next newline is the index of the line a character belongs
to in a file, counting from 0.

index = partition(v, k);

line = index + 1;

if index == 0 {

// k is before the very first newline character in the file.

column = k + 1;

} else {

column = k - v[index - 1];

}

5. (8 points) Let ak be the string of length 2k consisting of k left parentheses followed by k right parentheses.
Consider the language L = { ak | k ∈ N } (i.e. all strings ak for non-negative integers k). Suppose there
exists a DFA that defines L; call it D.

(a) (1 point) Define reachable of a state v of D to be true if there exists a string sv ∈ L such that
the execution of the DFA is at state v at some point during the input of sv, and false otherwise.
Consider the subset V of reachable states of D. Argue that V is finite. (Hint: the argument is very
simple.)

A DFA has finitely many states. A subset of a finite set is finite.

(b) (1 point) For each state v ∈ V , choose some string sv such that the execution of D given sv (at
some point) reaches v. Consider the set S of all such chosen strings sv (one string for each v ∈ V).
What is the most you can say about the size of S?

Page 4

There is at least one chosen string because there is at least one reachable state in the DFA (the
start state). There are at most |V | chosen strings in S, since we may have chosen duplicate strings
and sets don’t ”remember” duplicates.

(c) (3 points) Argue that there exists a string not in L that D accepts. (Hint: let n be the greatest
integer such that an ∈ S; i.e. an is the longest string in S. Consider the execution of D given the
string an+1.)

D accepts an+1 by assumption, so during the execution of D on an+1, D is always at some reachable
state. Let u be the (reachable) state D is at after matching half of an+1; i.e. from the start state,
transitioning given n+ 1 left parentheses.

Consider the earlier chosen string su ∈ S. At some point while matching su (upon consuming some
prefix of su), D reaches state u. Therefore the ”rest of” su (some suffix of su) takes D from state
u to an accepting state. Define s′u to be a suffix of su that takes D from state u to an accepting
state. Note that any suffix of su contains at most n right parentheses, by definition/choice of n.

The string consisting of n + 1 left parentheses concatenated with s′u is accepted by D, so n + 1
left parentheses takes D from the start state to state u, and then s′u takes D from state u to an
accepting state. However, this string is not in L, since it contains n+1 left parentheses and at most
n right parentheses.

(d) (1 point) Give a definition for a regular language.

A regular language is a set of strings that can be defined by a regular expression.

(e) (2 points) Combine the previous parts to prove that L is not regular.

Suppose we have a DFA D that recognizes L. But by the previous parts, D accepts a string not in
L. By contradiction, no such DFA can exist. By the equivalence of DFAs and regular expressions,
L is not regular.

Page 5

