ECE 467 Midterm 2

University of Toronto

2022 November 18

1. (4 points) Consider the following grammar.

S -> A S -> B A \rightarrow C A A -> a B -> D B B -> b C -> d D -> d Nonterminal First S a, b, d А a, d В b, d С d D d

- (a) (2 points) Compute the LR(1) start state.
 - -0.5 for each incorrect or missing item (no negative marks).

S' -> . S, \$ S -> . A, \$ S -> . B, \$ A -> . C A, \$ A -> . a, \$ B -> . D B, \$ B -> . b, \$ C -> . d, a/d D -> . d, b/d

(b) (2 points) Compute all the possible next states for the following state only (compute the GOTO for each symbol, and take the closure of each resulting kernel).

A -> C . A, \$ A -> . C A, \$ A -> . a, \$ C -> . d, a/d

• -0.5 for each incorrect or missing state (no negative marks).

GOTO(_, A) = { [A -> C A ., \$] } // CLOSURE { [A -> C A ., \$] } GOTO(_, C) = { [A -> C . A, \$] }
// CLOSURE
{ [A -> C . A, \$], [A -> . C A, \$], [A -> . a, \$], [C -> . d, a/d] }
GOTO(_, a) = { [A -> a ., \$] }
// CLOSURE
{ [A -> a ., \$] }
GOTO(_, d) = { [C -> d ., a/d] }
// CLOSURE
{ [C -> d ., a/d] }

2. (4 points) Consider the following grammar, and the following LR(1) states (these are just a subset of all the LR(1) states for this grammar).

```
// Grammar
1. S -> E
2. E -> E - T
3. E -> T
4. T -> n
5. T -> 1 E r
// States
1. {[S -> E ., $], [E -> E . - T, $/-]}
2. {[E -> T ., $/-]}
3. {[T -> n ., $/-]}
4. {[T -> 1 E . r, $/-], [E -> E . - T, r/-]}
5. {[E -> T ., r/-]}
6. {[T -> 1 E r ., $/-]}
7. {[T -> 1 E . r, r/-], [E -> E . - T, r/-]}
```

- (a) (2 points) Draw the LR(1) parsing table for the above states, filling in just the reduces.
 - -0.3 for each incorrect or missing row (no negative marks).

State	r	-	\$
1			r1
2		r3	r3
3		r4	r4
4			
5	r3	r3	
6		r5	r5
7			

- (b) (2 points) Draw the merged LALR(1) states from those LR(1) states.
 - $\bullet\,$ -0.5 for each incorrect or missing state (no negative marks).

1: {[S -> E ., \$], [E -> E . - T, \$/-]} 2/5: {[E -> T ., r/\$/-]} 3: {[T -> n ., \$/-]} 4/7: {[T -> 1 E . r, r/\$/-], [E -> E . - T, r/-]} 6: {[T -> 1 E r ., \$/-]} 3. (2 points) Draw a control-flow graph for the following code.

```
int i;
for (i = 0; i < 10; i = i + 1) {
    t = i * i;
    if (t > 100) {
        break;
    }
    i = t;
}
print(i);
```

 $\bullet\,$ -0.5 for each mistake.

- 4. (4 points) For busy expressions analysis:
 - A value in the domain is a set of expressions that appear in the program.
 - It is a backwards analysis.
 - $f_s(x) = \operatorname{gen}(s) \cup (x \setminus \operatorname{kill}(s)).$
 - gen(s) is the set containing the expression of s.
 - kill(s) is the set of all expressions in the program that have an operand that is assigned to by s.
 - Meet is set intersection.
 - Initialize IN[exit] to be empty. Initialize IN of every other node to be the set of all expressions.

The iterative algorithm for backwards analysis is as follows.

```
// initialization
while changed {
   for each node s in the CFG {
      OUT[s] = meet IN[s'] for all successors s';
      IN[s] = f_s(OUT[s]);
   }
}
```

Compute 1 iteration of busy expressions analysis, going in *backwards order* (5, 4, 3, 2, 1, 0). *Reminder*: you don't need to do anything for OUT[exit] or IN[entry].

• -0.5 for each incorrect IN or OUT.

Node	Gen	Kill	IN_0	OUT_1	IN_1
5	n/a	n/a	Ø	n/a	Ø
4	$\set{c * d}$	$\{n+m\}$	$\{n+m, x+y, a+b, c*d\}$	Ø	$\set{c*d}$
3	$\{a+b\}$	$\{n+m\}$	$\{n+m, x+y, a+b, c*d\}$	$\set{c*d}$	$\set{c*d, a+b}$
2	$\{x+y\}$	$\{a+b\}$	$\{n+m, x+y, a+b, c*d\}$	$\{n+m, x+y, a+b, c*d\}$	$\{n+m, x+y, c*d\}$
1	$\{n+m\}$	$\{x+y\}$	$\{n+m, x+y, a+b, c*d\}$	$\set{c*d}$	$\{c * d, n + m\}$
0	n/a	n/a	n/a	$\{ c * d, n + m \}$	n/a

- 5. (2 points) A semilattice consists of the following.
 - A domain (a set of values) V.
 - A binary meet \land operator.
 - A distinguished "top" value \top .

The meet operator must satisfy the following relations, for all $x, y, z \in V$.

1.
$$x \wedge x = x$$
.

2.
$$x \wedge y = y \wedge x$$
.

3. $(x \wedge y) \wedge z = x \wedge (y \wedge z)$.

Additionally, for all values $x \in V$, we must have that $\top \land x = x$.

Suppose $\top' \in V$ also satisfies $\top' \wedge x = x$ for all $x \in V$. Can \top' be different from \top (does the property for "top" in a lattice uniquely define an element)? Prove or disprove.

- 1 point if you leave this blank; otherwise
- -1 for incorrect reasoning, -0.5 for unclear or incomplete reasoning.

Top \top satisfies $\top \land x = x$ for all x. In particular, setting $x = \top'$, we get $\top \land \top' = \top'$. Since \top' also satisfies $\top' \land x = x$ for all x, setting $x = \top$, we get $\top' \land \top = \top$. By commutativity, $\top \land \top' = \top' \land \top$. So:

$$\top' = \top \land \top' = \top' \land \top = \top.$$

Top is unique.

- 6. (4 points) In general, for any set S, a partial order \leq is a binary relation on S such that for all $x, y, z \in S$, the following hold.
 - x ≤ x.
 x ≤ y and y ≤ x implies x = y.
 x ≤ y and y ≤ z implies x ≤ z.

In general, given a partial order \leq on a set S, and a function $f: S \to S$, we say f is monotonic if and only if:

$$x \leq y$$
 implies $f(x) \leq f(y)$.

Note: in the case of data-flow analysis, the transfer indeed maps values from the domain of a lattice V back to V (it remains to be shown for each analysis that the transfer functions do actually satisfy this property).

For a (semi) lattice, we can define a partial order on its domain V as follows:

$$x \leq y$$
 if and only if $x \wedge y = x$.

Suppose we have a function f and a lattice with domain V that satisfies the following (for all $x, y \in V$).

$$f(x \wedge y) \le f(x) \wedge f(y).$$

Let $a, b \in V$, such that $a \leq b$. Prove that $f(a) \leq f(b)$.

For the following parts worth 1 point each:

- 0.3 points if you leave it blank; otherwise:
- 0 for incorrect, incomplete, or unclear reasoning.
- (a) (1 point) Rewrite $a \leq b$ in terms of the meet operator.

$$a \wedge b = a.$$

(b) (1 point) Rewrite $f(x \wedge y) \leq f(x) \wedge f(y)$ in terms of the meet operator.

$$f(x \wedge y) \wedge (f(x) \wedge f(y)) = f(x \wedge y).$$

(c) (1 point) Rewrite $f(a) \leq f(b)$ in terms of the meet operator.

$$f(a) \wedge f(b) = f(a).$$

(d) (1 point) Complete the rest of the proof.

The statements in parts (a) and (b) are true by assumption/definitions. The statement in part (c) is (equivalent to) what we want to prove.

- Set x = a and y = b.
- By (b), $f(a \wedge b) \wedge f(a) \wedge f(b) = f(a \wedge b)$.
- By (a), $f(a) \wedge f(a) \wedge f(b) = f(a)$.
- By idempotency of meet, $f(a) \wedge f(b) = f(a)$.
- By (c), this is equivalent to $f(a) \leq f(b)$, as desired.

7. (3 points) A partition P of a set S is a set of subsets of S, such that every element $x \in S$ appears in one and only one subset of S in the partition P.

For example, given the set $\{a, b, c, d, e\}$, the following are possible (but not all) partitions:

- $\{\{a,b\},\{c,d\},\{e\}\}\}.$
- $\{\{a\},\{b\},\{c\},\{d\},\{e\}\}\}.$
- $\{\{a, b, c, d, e\}\}$.

(Recall a partition is a set of (sub)sets.) Given two partitions P_1 and P_2 of a set S, we first define a partial order:

 $P_1 \leq P_2$ iff every element of P_1 is a subset of an element of P_2 .

Given two elements $x, y \in S$ and a partition P of S, we say $x \cong_P y$ (x and y are equivalent with respect to the partition P) iff x and y are in a single set in the partition P (an element of P is a set).

- (a) (1 point) Write down any lower bound for the following two partitions based on the partial order defined.
 - $P_0 = \{\{i_0, j_0, i_1, j_1\}\},\$
 - $P_1 = \{\{i_0, j_0\}, \{i_1, j_1\}\}.$
 - No penalty for error.

 P_1 is a lower bound for P_0 $(P_1 \leq P_0)$ and P_1 $(P_1 \leq P_1)$.

- (b) (2 points) Consider a new data-flow analysis for a program in SSA form. Recall that each variable/name in SSA form is unique; a name is defined by a single expression. Let S be the set of all names (and their corresponding expressions) in the program.
 - A value in the domain is a partition of S.
 - The analysis is forwards.
 - The meet of two values P_1, P_2 in the domain is the greatest lower bound of P_1 and P_2 (you can imagine computing this by brute force).
 - Assume every name/defining expression s takes the form of s = op(u, v) where op is a deterministic, side-effect-free function in the program. The transfer function $f_s(P)$ is as follows.
 - -s is a name/expression in the program. So it is in S. So it is in exactly one set in the partition P. Designate that set containing s as X.
 - The result $f_s(P)$ will be a partition containing all elements of P except X, and instead of X we will have X_1 and X_2 , where we split X into the two sets X_1 and X_2 .
 - We split X as follows: start by placing s in X_1 . Then for all other names/expressions $s' = op'(u', v') \in X$:
 - We place s' in X_1 only if s and s' have the same operator, $u \cong_P u'$, and $v \cong_P v'$ (all three hold). We place s' in X_2 otherwise. (We loop over X once and that's it.)
 - For example, if s = a b and P is the set containing $\{s = a b, y = c d, z = e f\}$, $\{a = ..., c = ..., f = ...\}$, and $\{b = ..., d = ..., e = ...\}$:
 - Then $f_s(P)$ contains $\{a = ..., c = ..., f = ...\}$ and $\{b = ..., d = ..., e = ...\}$ verbatim, and $\{s = a b, y = c d, z = e f\}$ needs to be split.
 - We first put s = a b in X_1 .
 - Consider y = c d. It has the same operator. c (the first operand of y) was in the same set as a (the first operand of s) (referring back to P). d was in the same set as b. So we put y = c d in X_1 .
 - Consider z = e f. It has the same operator. But e (z's first operand) is not in the same set as a (s's first operand). So we put z = e f in X_2 .
 - Our result $f_s(P)$ is the set containing $\{s = a b, y = c d\}, \{z = e f\}, \{a = ..., c = ..., f = ...\}, and <math>\{b = ..., d = ..., e = ...\}.$

Finally, consider the following program (suppose a, b, c are some previously defined values).

Consider + to be the usual integer operator/function, and note that φ_2 and φ_5 are different from each other (but the two φ_2 in the same basic block are the same operator, and similarly for φ_5 in the other basic block).

Break the basic blocks into individual nodes per instruction.

 $\label{eq:2.1} \text{Initialize OUT for all nodes to be the partition } \{ \left\{ \, i_0, j_0, i_2, j_2, x_0, y_0, x_2, y_2, i_1, j_1, x_1, y_1 \, \right\}, \left\{ \, a \, \right\}, \left\{ \, b \, \right\}, \left\{ \, c \, \right\} \, \}.$

For forwards analysis:

```
// initialization
while changed {
   for each node s in the CFG {
      IN[s] = meet OUT[s'] for all predecessors s';
      OUT[s] = f_s(IN[s]);
   }
}
```

Carry out the data-flow analysis for the first 4 nodes (after splitting the basic blocks) (you should have 4 INs and 4 OUTs).

- $\bullet~0.5$ if you leave it blank, otherwise
- -0.3 points per error.

0. entry
1. i0 = a + b
2. j0 = a + b
3. i1 = phi2(i0, i2)
4. j1 = phi2(j0, j2)

Note that the transfer function only splits one element/set of the partition at a time.

- $IN_1[1] = OUT_0[0] = \{\{i_0, j_0, i_2, j_2, x_0, y_0, x_2, y_2, i_1, j_1, x_1, y_1\}, \{a\}, \{b\}, \{c\}\}.$
- OUT₁[1] = { { i_0, j_0, x_0, y_0 } , { $i_1, j_1, x_1, y_1, i_2, j_2, x_2, j_2$ } , { a } , { b } , { c } }.
- $IN_1[2] = OUT_1[1].$
- $OUT_1[2] = IN_1[2]$ (no change).
- $IN_1[3] = OUT_1[2]$ (the initial value meet $OUT_1[2]$ is $OUT_1[2]$).
- OUT₁[3] = { { $\{i_0, j_0, x_0, y_0\}, \{i_1, j_1\}, \{x_1, y_1, i_2, j_2, x_2, j_2\}, \{a\}, \{b\}, \{c\}\}.$
- $IN_1[4] = OUT_1[3].$
- $OUT_1[4] = IN_1[4]$ (no change).
- (c) (1 bonus points) What does this data-flow analysis compute?
 - No penalty for error.

Names/expressions in the same set at the end of the iterative algorithm must have equivalent values.

- (d) (1 bonus points) Why must the φ in different basic blocks be considered different operators/functions $(\varphi_2 \text{ and } \varphi_5)$? *Hint*: think about how the algorithm could produce incorrect results.
 - No penalty for error.

The "action" of a phi function depends on the control-flow. The control-flow is different in different basic blocks. So phi functions in different basic blocks have different semantics.

If φ_2 and φ_5 are treated as the same operator, then the algorithm would think that $i_1 = j_1 = x_1 = y_1$, even though the loops they are in are different and could execute a different number of times.