
ECE 467 Midterm 2

University of Toronto

2022 November 18

1. (4 points) Consider the following grammar.

S -> A

S -> B

A -> C A

A -> a

B -> D B

B -> b

C -> d

D -> d

Nonterminal First
S a, b, d
A a, d
B b, d
C d
D d

(a) (2 points) Compute the LR(1) start state.

• -0.5 for each incorrect or missing item (no negative marks).

S’ -> . S, $

S -> . A, $

S -> . B, $

A -> . C A, $

A -> . a, $

B -> . D B, $

B -> . b, $

C -> . d, a/d

D -> . d, b/d

(b) (2 points) Compute all the possible next states for the following state only (compute the GOTO
for each symbol, and take the closure of each resulting kernel).

A -> C . A, $

A -> . C A, $

A -> . a, $

C -> . d, a/d

• -0.5 for each incorrect or missing state (no negative marks).

GOTO(_, A) = { [A -> C A ., $] }

// CLOSURE

{ [A -> C A ., $] }

1



GOTO(_, C) = { [A -> C . A, $] }

// CLOSURE

{ [A -> C . A, $], [A -> . C A, $], [A -> . a, $], [C -> . d, a/d] }

GOTO(_, a) = { [A -> a ., $] }

// CLOSURE

{ [A -> a ., $] }

GOTO(_, d) = { [C -> d ., a/d] }

// CLOSURE

{ [C -> d ., a/d] }

Page 2



2. (4 points) Consider the following grammar, and the following LR(1) states (these are just a subset of
all the LR(1) states for this grammar).

// Grammar

1. S -> E

2. E -> E - T

3. E -> T

4. T -> n

5. T -> l E r

// States

1. {[S -> E ., $], [E -> E . - T, $/-]}

2. {[E -> T ., $/-]}

3. {[T -> n ., $/-]}

4. {[T -> l E . r, $/-], [E -> E . - T, r/-]}

5. {[E -> T ., r/-]}

6. {[T -> l E r ., $/-]}

7. {[T -> l E . r, r/-], [E -> E . - T, r/-]}

(a) (2 points) Draw the LR(1) parsing table for the above states, filling in just the reduces.

• -0.3 for each incorrect or missing row (no negative marks).

State r - $
1 r1
2 r3 r3
3 r4 r4
4
5 r3 r3
6 r5 r5
7

(b) (2 points) Draw the merged LALR(1) states from those LR(1) states.

• -0.5 for each incorrect or missing state (no negative marks).

1: {[S -> E ., $], [E -> E . - T, $/-]}

2/5: {[E -> T ., r/$/-]}

3: {[T -> n ., $/-]}

4/7: {[T -> l E . r, r/$/-], [E -> E . - T, r/-]}

6: {[T -> l E r ., $/-]}

Page 3



3. (2 points) Draw a control-flow graph for the following code.

int i;

for (i = 0; i < 10; i = i + 1) {

t = i * i;

if (t > 100) {

break;

}

i = t;

}

print(i);

• -0.5 for each mistake.

entry

i = 0

i < 10

t = i * i

t > 100

i = t

i = i + 1

print(i)

exit

Page 4



4. (4 points) For busy expressions analysis:

• A value in the domain is a set of expressions that appear in the program.

• It is a backwards analysis.

• fs(x) = gen(s) ∪ (x \ kill(s)).
• gen(s) is the set containing the expression of s.

• kill(s) is the set of all expressions in the program that have an operand that is assigned to by s.

• Meet is set intersection.

• Initialize IN[exit] to be empty. Initialize IN of every other node to be the set of all expressions.

The iterative algorithm for backwards analysis is as follows.

// initialization

while changed {

for each node s in the CFG {

OUT[s] = meet IN[s’] for all successors s’;

IN[s] = f_s(OUT[s]);

}

}

Compute 1 iteration of busy expressions analysis, going in backwards order (5, 4, 3, 2, 1, 0). Reminder :
you don’t need to do anything for OUT[exit] or IN[entry].

• -0.5 for each incorrect IN or OUT.

0. entry

1. x = n+m

2. a = x+ y

3. m = a+ b

4. n = c ∗ d

5. exit

Node Gen Kill IN0 OUT1 IN1

5 n/a n/a ∅ n/a ∅
4 { c ∗ d } {n+m } {n+m,x+ y, a+ b, c ∗ d } ∅ { c ∗ d }
3 { a+ b } {n+m } {n+m,x+ y, a+ b, c ∗ d } { c ∗ d } { c ∗ d, a+ b }
2 {x+ y } { a+ b } {n+m,x+ y, a+ b, c ∗ d } {n+m,x+ y, a+ b, c ∗ d } {n+m,x+ y, c ∗ d }
1 {n+m } {x+ y } {n+m,x+ y, a+ b, c ∗ d } { c ∗ d } { c ∗ d, n+m }
0 n/a n/a n/a { c ∗ d, n+m } n/a

Page 5



5. (2 points) A semilattice consists of the following.

• A domain (a set of values) V .

• A binary meet ∧ operator.

• A distinguished ”top” value ⊤.

The meet operator must satisfy the following relations, for all x, y, z ∈ V .

1. x ∧ x = x.

2. x ∧ y = y ∧ x.

3. (x ∧ y) ∧ z = x ∧ (y ∧ z).

Additionally, for all values x ∈ V , we must have that ⊤ ∧ x = x.

Suppose ⊤′ ∈ V also satisfies ⊤′ ∧ x = x for all x ∈ V . Can ⊤′ be different from ⊤ (does the property
for ”top” in a lattice uniquely define an element)? Prove or disprove.

• 1 point if you leave this blank; otherwise

• -1 for incorrect reasoning, -0.5 for unclear or incomplete reasoning.

Top ⊤ satisfies ⊤ ∧ x = x for all x. In particular, setting x = ⊤′, we get ⊤ ∧⊤′ = ⊤′.

Since ⊤′ also satisfies ⊤′ ∧ x = x for all x, setting x = ⊤, we get ⊤′ ∧ ⊤ = ⊤.

By commutativity, ⊤ ∧⊤′ = ⊤′ ∧ ⊤. So:

⊤′ = ⊤ ∧⊤′ = ⊤′ ∧ ⊤ = ⊤.

Top is unique.

Page 6



6. (4 points) In general, for any set S, a partial order ≤ is a binary relation on S such that for all x, y, z ∈ S,
the following hold.

1. x ≤ x.

2. x ≤ y and y ≤ x implies x = y.

3. x ≤ y and y ≤ z implies x ≤ z.

In general, given a partial order ≤ on a set S, and a function f :S → S, we say f is monotonic if and
only if:

x ≤ y implies f(x) ≤ f(y).

Note: in the case of data-flow analysis, the transfer indeed maps values from the domain of a lattice V
back to V (it remains to be shown for each analysis that the transfer functions do actually satisfy this
property).

For a (semi)lattice, we can define a partial order on its domain V as follows:

x ≤ y if and only if x ∧ y = x.

Suppose we have a function f and a lattice with domain V that satisfies the following (for all x, y ∈ V ).

f(x ∧ y) ≤ f(x) ∧ f(y).

Let a, b ∈ V , such that a ≤ b. Prove that f(a) ≤ f(b).

For the following parts worth 1 point each:

• 0.3 points if you leave it blank; otherwise:

• 0 for incorrect, incomplete, or unclear reasoning.

(a) (1 point) Rewrite a ≤ b in terms of the meet operator.

a ∧ b = a.

(b) (1 point) Rewrite f(x ∧ y) ≤ f(x) ∧ f(y) in terms of the meet operator.

f(x ∧ y) ∧ (f(x) ∧ f(y)) = f(x ∧ y).

(c) (1 point) Rewrite f(a) ≤ f(b) in terms of the meet operator.

f(a) ∧ f(b) = f(a).

(d) (1 point) Complete the rest of the proof.

The statements in parts (a) and (b) are true by assumption/definitions. The statement in part (c)
is (equivalent to) what we want to prove.

• Set x = a and y = b.

• By (b), f(a ∧ b) ∧ f(a) ∧ f(b) = f(a ∧ b).

• By (a), f(a) ∧ f(a) ∧ f(b) = f(a).

• By idempotency of meet, f(a) ∧ f(b) = f(a).

• By (c), this is equivalent to f(a) ≤ f(b), as desired.

Page 7



7. (3 points) A partition P of a set S is a set of subsets of S, such that every element x ∈ S appears in
one and only one subset of S in the partition P .

For example, given the set { a, b, c, d, e }, the following are possible (but not all) partitions:

• { { a, b } , { c, d } , { e } }.
• { { a } , { b } , { c } , { d } , { e } }.
• { { a, b, c, d, e } }.

(Recall a partition is a set of (sub)sets.) Given two partitions P1 and P2 of a set S, we first define a
partial order:

P1 ≤ P2 iff every element of P1 is a subset of an element of P2.

Given two elements x, y ∈ S and a partition P of S, we say x ∼=P y (x and y are equivalent with respect
to the partition P ) iff x and y are in a single set in the partition P (an element of P is a set).

(a) (1 point) Write down any lower bound for the following two partitions based on the partial order
defined.

• P0 = { { i0, j0, i1, j1 } },
• P1 = { { i0, j0 } , { i1, j1 } }.
• No penalty for error.

P1 is a lower bound for P0 (P1 ≤ P0) and P1 (P1 ≤ P1).

Page 8



(b) (2 points) Consider a new data-flow analysis for a program in SSA form. Recall that each vari-
able/name in SSA form is unique; a name is defined by a single expression. Let S be the set of all
names (and their corresponding expressions) in the program.

• A value in the domain is a partition of S.

• The analysis is forwards.

• The meet of two values P1, P2 in the domain is the greatest lower bound of P1 and P2 (you can
imagine computing this by brute force).

• Assume every name/defining expression s takes the form of s = op(u, v) where op is a deter-
ministic, side-effect-free function in the program. The transfer function fs(P ) is as follows.

– s is a name/expression in the program. So it is in S. So it is in exactly one set in the
partition P . Designate that set containing s as X.

– The result fs(P ) will be a partition containing all elements of P except X, and instead of
X we will have X1 and X2, where we split X into the two sets X1 and X2.

– We split X as follows: start by placing s in X1. Then for all other names/expressions
s′ = op′(u′, v′) ∈ X:

– We place s′ in X1 only if s and s′ have the same operator, u ∼=P u′, and v ∼=P v′ (all three
hold). We place s′ in X2 otherwise. (We loop over X once and that’s it.)

– For example, if s = a − b and P is the set containing { s = a− b, y = c− d, z = e− f },
{ a = ..., c = ..., f = ... }, and { b = ..., d = ..., e = ... }:

– Then fs(P ) contains { a = ..., c = ..., f = ... } and { b = ..., d = ..., e = ... } verbatim, and
{ s = a− b, y = c− d, z = e− f } needs to be split.

– We first put s = a− b in X1.

– Consider y = c − d. It has the same operator. c (the first operand of y) was in the same
set as a (the first operand of s) (referring back to P ). d was in the same set as b. So we
put y = c− d in X1.

– Consider z = e− f . It has the same operator. But e (z’s first operand) is not in the same
set as a (s’s first operand). So we put z = e− f in X2.

– Our result fs(P ) is the set containing { s = a− b, y = c− d }, { z = e− f },
{ a = ..., c = ..., f = ... }, and { b = ..., d = ..., e = ... }.

Page 9



Finally, consider the following program (suppose a, b, c are some previously defined values).

entry

i0 = a+ b
j0 = a+ b

i1 = φ2(i0, i2)
j1 = φ2(j0, j2)

i2 = i1 + c
j2 = j1 + c

x0 = a+ b
y0 = a+ b

x1 = φ5(x0, x2)
y1 = φ5(y0, y2)

x2 = x1 + c
y2 = y1 + c

exit

Consider + to be the usual integer operator/function, and note that φ2 and φ5 are different from
each other (but the two φ2 in the same basic block are the same operator, and similarly for φ5 in
the other basic block).

Break the basic blocks into individual nodes per instruction.

Initialize OUT for all nodes to be the partition { { i0, j0, i2, j2, x0, y0, x2, y2, i1, j1, x1, y1 } , { a } , { b } , { c } }.

Page 10



For forwards analysis:

// initialization

while changed {

for each node s in the CFG {

IN[s] = meet OUT[s’] for all predecessors s’;

OUT[s] = f_s(IN[s]);

}

}

Carry out the data-flow analysis for the first 4 nodes (after splitting the basic blocks) (you should
have 4 INs and 4 OUTs).

• 0.5 if you leave it blank, otherwise

• -0.3 points per error.

0. entry

1. i0 = a + b

2. j0 = a + b

3. i1 = phi2(i0, i2)

4. j1 = phi2(j0, j2)

Note that the transfer function only splits one element/set of the partition at a time.

• IN1[1] = OUT0[0] = { { i0, j0, i2, j2, x0, y0, x2, y2, i1, j1, x1, y1 } , { a } , { b } , { c } }.
• OUT1[1] = { { i0, j0, x0, y0 } , { i1, j1, x1, y1, i2, j2, x2, j2 } , { a } , { b } , { c } }.
• IN1[2] = OUT1[1].

• OUT1[2] = IN1[2] (no change).

• IN1[3] = OUT1[2] (the initial value meet OUT1[2] is OUT1[2]).

• OUT1[3] = { { i0, j0, x0, y0 } , { i1, j1 } , {x1, y1, i2, j2, x2, j2 } , { a } , { b } , { c } }.
• IN1[4] = OUT1[3].

• OUT1[4] = IN1[4] (no change).

(c) (1 bonus points) What does this data-flow analysis compute?

• No penalty for error.

Names/expressions in the same set at the end of the iterative algorithm must have equivalent values.

(d) (1 bonus points) Why must the φ in different basic blocks be considered different operators/functions
(φ2 and φ5)? Hint : think about how the algorithm could produce incorrect results.

• No penalty for error.

The ”action” of a phi function depends on the control-flow. The control-flow is different in different
basic blocks. So phi functions in different basic blocks have different semantics.

If φ2 and φ5 are treated as the same operator, then the algorithm would think that i1 = j1 = x1 =
y1, even though the loops they are in are different and could execute a different number of times.

Page 11


