ECE 467 Midterm 2

University of Toronto

2022 November 18

1. (4 points) Consider the following grammar.

S > A
S ->B
A->CA
A -> a
B->DB
B->b
C->d
D ->d
Nonterminal First
S|a, b, d
A a, d
B b, d
C d
D d

(a) (2 points) Compute the LR(1) start state.

e -0.5 for each incorrect or missing item (no negative marks).

S’ -> .8, $
S -> .4, $
S->.8B, $
A->.CA,$
A-> . a,$
B->.DB, $
B->.b, $
Cc ->.d, a/d
D->.d, b/d

(b) (2 points) Compute all the possible next states for the following state only (compute the GOTO
for each symbol, and take the closure of each resulting kernel).

A->C . A8

A->.CA,$

» 8

, a/d

Q. p Q

A > .
Cc > .

e -0.5 for each incorrect or missing state (no negative marks).
GOTO(_, A) ={ [A->CA ., $]1}
// CLOSURE
{[A—>CA ., $]1}

GoTO(_, ¢©) ={ [A > C

// CLOSURE

{[A->C.

GOTO(_, a)
// CLOSURE
{[A->a

GOTO(_, d)
// CLOSURE
{[C->4d

*

*

A, 81, [A —> .

{[A->a
$1 3}
{[C->d

a/d]l }

. A, 81}

C A, $1,

., 81 %

., a/dl }

Page 2

A —> .

a, $1,

[C —> .

d, a/d] }

2. (4 points) Consider the following grammar, and the following LR(1) states (these are just a subset of
all the LR(1) states for this grammar).

// Grammar

1. S > E

2. E->E-T

3. E->T

4. T > n

5. T->1Er

// States

1. {[s->E ., $§], [E>E . -T, $/-1}

2. {[E—>T ., $/-1%

3. {[T->n ., $/-1%

4. {[T>1E . r, $/-1, [E->E . -T, r/-1}
5. {[E->T., r/-1}

6. {[T->1Er ., $/-1}

7. {[T>1E.r, /-1, [E>E.-T, r/-1}

(a) (2 points) Draw the LR(1) parsing table for the above states, filling in just the reduces.

e -0.3 for each incorrect or missing row (no negative marks).

State | r| - | $
1 rl
2 r3 | r3
3 4 | 4
4

) r3 | 13

6 rd | 15
7

(b) (2 points) Draw the merged LALR(1) states from those LR(1) states

e -0.5 for each incorrect or missing state (no negative marks).

1: {[S—>E ., $1, [E—>E . -T, $/-1}

2/5: {[E > T ., r/$/-1%}

3: {[T->n ., $/-1}

4/7: {[T>1E . r, r/$/-1, [E->E . - T, r/-1}
6: {[T>1Er ., $/-1}

Page 3

3. (2 points) Draw a control-flow graph for the following code.

int 1i;
for (i =0; i <10; i =1+ 1) {
t =1i%* 1i;
if (t > 100) {
break;
}
i=t;
}
print(i);

e -0.5 for each mistake.

entry

Y
i=1i+1

Page 4

4. (4 points) For busy expressions analysis:

e A value in the domain is a set of expressions that appear in the program.

e It is a backwards analysis.

fs(x) = gen(s) U (z \ kill(s)).

gen(s) is the set containing the expression of s.

e Meet is set intersection.

kill(s) is the set of all expressions in the program that have an operand that is assigned to by s.

e Initialize INexit] to be empty. Initialize IN of every other node to be the set of all expressions.

The iterative algorithm for backwards analysis is as follows.

// initialization
while changed {

for each node s in the CFG {

OUT[s] = meet IN[s’] for all successors s’;

IN[s] = f_s(0UT[s]);

}

Compute 1 iteration of busy expressions analysis, going in backwards order (5, 4, 3, 2, 1, 0). Reminder:
you don’t need to do anything for OUT][exit] or IN[entry].

e -0.5 for each incorrect IN or OUT.

0. entry

Node Gen Kill INO OUTl INl
5 n/a n/a [n/a [
4 {cxd} {n+m} | {n+m,z+y,a+bcxd} 0 {cxd}
3 {a+b} |{n+m} | {n+mz+y,a+becxd} {c*xd} {cxd,a+b}
2 {z4+y} | {a+b} | {n+mz+y,a+becxd} | {n+max+y,a+becxd} | {n+max+ycxd}
1 {n+m} | {z+y} | {n+max+ya+becxd} {cxd} {exd,n+m}
0 n/a n/a n/a {exd,n+m} n/a

Page 5

5. (2 points) A semilattice consists of the following.

e A domain (a set of values) V.
e A binary meet A operator.

e A distinguished "top” value T.
The meet operator must satisfy the following relations, for all z,y,z € V.

1. 2Nz =2
2.z Ny=yAzx.
. (zAhy)Az=xA(yA=z).
Additionally, for all values x € V', we must have that T Az = z.

Suppose T’ € V also satisfies T' Az =z for all x € V. Can T’ be different from T (does the property
for "top” in a lattice uniquely define an element)? Prove or disprove.

e 1 point if you leave this blank; otherwise

e -1 for incorrect reasoning, -0.5 for unclear or incomplete reasoning.

Top T satisfies T Az = x for all x. In particular, setting x = T, we get TA T =T'.
Since T’ also satisfies T' Az = x for all z, setting x = T, we get T'"AT =T.
By commutativity, TAT' =T/ A T. So:

T =TAT =T'AT=T.

Top is unique.

Page 6

6. (4 points) In general, for any set S, a partial order < is a binary relation on S such that for all z,y, z € S,

the following hold.
1. x <.
2. x <yand y < x implies z = y.
3. x <yandy < zimplies z < z.

In general, given a partial order < on a set S, and a function f:S — S, we say f is monotonic if and
only if:

z <y implies f(x) < f(y).

Note: in the case of data-flow analysis, the transfer indeed maps values from the domain of a lattice V'
back to V (it remains to be shown for each analysis that the transfer functions do actually satisfy this

property).
For a (semi)lattice, we can define a partial order on its domain V as follows:

z<yifand only if z Ay = x.

Suppose we have a function f and a lattice with domain V' that satisfies the following (for all z,y € V).

flany) < fl@) A fy).
Let a,b € V, such that a < b. Prove that f(a) < f(b).
For the following parts worth 1 point each:

e 0.3 points if you leave it blank; otherwise:
e 0 for incorrect, incomplete, or unclear reasoning.

(a) (1 point) Rewrite a < b in terms of the meet operator.

aANb=a.

(b) (1 point) Rewrite f(z Ay) < f(z) A f(y) in terms of the meet operator.

fany) A(f@) A f(y) = FlzAy).
(¢) (1 point) Rewrite f(a) < f(b) in terms of the meet operator.

fla) A f(b) = f(a).

(d) (1 point) Complete the rest of the proof.
The statements in parts (a) and (b) are true by assumption/definitions. The statement in part (c)
is (equivalent to) what we want to prove.
e Set x =a and y = b.
By (b), f(aAb) A f(a) A F(B) = f(anb).
By (a), f(a) A f(a) A F(b) = f(a).
By idempotency of meet, f(a) A f(b) = f(a).
By (c), this is equivalent to f(a) < f(b), as desired.

Page 7

7. (3 points) A partition P of a set S is a set of subsets of S, such that every element 2 € S appears in
one and only one subset of S in the partition P.

For example, given the set { a,b,c,d, e}, the following are possible (but not all) partitions:

e {{a, b}, {c,d} . {e}}
o {{a} {b} {c} {d} {e}}
e {{a,b,c,d,e}}.

(Recall a partition is a set of (sub)sets.) Given two partitions P; and P, of a set S, we first define a
partial order:

P, < P, iff every element of P; is a subset of an element of Ps.

Given two elements z,y € S and a partition P of S, we say x =p y (x and y are equivalent with respect
to the partition P) iff and y are in a single set in the partition P (an element of P is a set).

(a) (1 point) Write down any lower bound for the following two partitions based on the partial order
defined.

o o= {{io,jo. 71,71} },
° Pl :{{iOajO}v{ilajl}}'

e No penalty for error.

Py is a lower bound for Py (P; < Py) and Py (P < Py).

Page 8

(b) (2 points) Consider a new data-flow analysis for a program in SSA form. Recall that each vari-
able/name in SSA form is unique; a name is defined by a single expression. Let S be the set of all
names (and their corresponding expressions) in the program.

e A value in the domain is a partition of S.

The analysis is forwards.

The meet of two values P;, P, in the domain is the greatest lower bound of Py and Py (you can
imagine computing this by brute force).

e Assume every name/defining expression s takes the form of s = op(u,v) where op is a deter-
ministic, side-effect-free function in the program. The transfer function fs(P) is as follows.

— s is a name/expression in the program. So it is in S. So it is in exactly one set in the
partition P. Designate that set containing s as X.

— The result f(P) will be a partition containing all elements of P except X, and instead of
X we will have X; and X5, where we split X into the two sets X; and Xo.

— We split X as follows: start by placing s in X;. Then for all other names/expressions
s =op'(v,v) e X:

— We place s’ in X; only if s and s’ have the same operator, u 2p u/, and v 2p v’ (all three
hold). We place s’ in X5 otherwise. (We loop over X once and that’s it.)

— For example, if s = a — b and P is the set containing {s=a—by=c—d,z=e— [},
{a=.,c=.,f=. .} and{b=..,d=..,e=..}

— Then fs(P) contains {a=..,c=...f=..} and {b=..,d=..,e=..} verbatim, and
{s=a—-by=c—d,z=e— f} needs to be split.

— We first put s =a — b in X;.

— Consider y = ¢ — d. It has the same operator. ¢ (the first operand of y) was in the same
set as a (the first operand of s) (referring back to P). d was in the same set as b. So we
put y =c—din Xj.

— Consider z = e — f. It has the same operator. But e (z’s first operand) is not in the same
set as a (s’s first operand). So we put z = e — f in Xo.

— Our result fy(P) is the set containing {s=a—-by=c—d}, {z=e—f},
{a=.,c=.,f=.},and{b=..,d=...,e=..}.

Page 9

Finally, consider the following program (suppose a, b, ¢ are some previously defined values).

entry

ig=a-+b
Jo=a+b

i1 = a(io,i2)
J1 = 2(jo, J2)

Consider + to be the usual integer operator/function, and note that 2 and 5 are different from
each other (but the two ¢9 in the same basic block are the same operator, and similarly for ¢5 in
the other basic block).

Break the basic blocks into individual nodes per instruction.

Initialize OUT for all nodes to be the partition { { ¢, jo, i2, j2, Zo, Yo, T2, Y2, 91, j1, 1,41 } ,{a },{b},{c} }.

Page 10

For forwards analysis:

// initialization
while changed {
for each node s in the CFG {
IN[s] = meet OUT[s’] for all predecessors s’;
OUT[s] = f_s(IN[sl);

}

Carry out the data-flow analysis for the first 4 nodes (after splitting the basic blocks) (you should
have 4 INs and 4 OUTs).

0.5 if you leave it blank, otherwise
-0.3 points per error.

0. entry

1. i0 =a +b

2. j0=a+b

3. i1 phi2(i0, i2)
4. j1 phi2(jO, j2)

Note that the transfer function only splits one element/set of the partition at a time.

IN; [1] = OUTy[0] = { { i0, jo, i2, j2; To, Yo, T2, Y2, i1, J1, 71,91 } > {a}, {b}, {c}}.
OUT:[1] = { {0, Jo, Tos Yo } > { i1, 41, %1, Y1, 82, J2, T2, 2 }, {a },{b},{c} }.
IN;[2] = OUT,[1].

OUT[2] = IN;[2] (no change).

IN;[3] = OUT,[2] (the initial value meet OUT[2] is OUT,[2]).

OUT1[3] = {{0,Jo, 0,40 }» { i1, 51 } {21, v, 02, 52,22, 52}, {a }, {0}, {c}}
IN,[4] = OUT,[3].

OUT, [4] = IN;[4] (no change).

(¢) (1 bonus points) What does this data-flow analysis compute?

No penalty for error.

Names/expressions in the same set at the end of the iterative algorithm must have equivalent values.

(d) (1 bonus points) Why must the ¢ in different basic blocks be considered different operators/functions
(p2 and 5)? Hint: think about how the algorithm could produce incorrect results.

No penalty for error.

The ”action” of a phi function depends on the control-flow. The control-flow is different in different
basic blocks. So phi functions in different basic blocks have different semantics.

If o and @5 are treated as the same operator, then the algorithm would think that iy = j; = x1 =
y1, even though the loops they are in are different and could execute a different number of times.

Page 11

