ECE 467 Midterm 2

University of Toronto

2022 November 18

1. (4 points) Consider the following grammar.

$$
\begin{array}{lll}
S \rightarrow & A \\
S & -> & B \\
\text { A } & \text { C } & \text { A } \\
\text { A } & \text { a } \\
\text { B } & \text { D } & \text { B } \\
\text { B } \rightarrow \text { b } \\
\text { C } \rightarrow & d \\
\text { D } & \text { d }
\end{array}
$$

Nonterminal	First
S	$\mathrm{a}, \mathrm{b}, \mathrm{d}$
A	a, d
B	b, d
C	d
D	d

(a) (2 points) Compute the $\mathrm{LR}(1)$ start state.

- -0.5 for each incorrect or missing item (no negative marks).

S^{\prime} S -> . S, \$
S \rightarrow. B, \$
A \rightarrow. C A, \$
A $->. a, \$$
B \rightarrow. D B, \$
B -> . b,
C \rightarrow. d, a/d
-> . d, b/d

(b) (2 points) Compute all the possible next states for the following state only (compute the GOTO for each symbol, and take the closure of each resulting kernel).

```
A -> C . A, \$
A -> . C A, \$
A -> . a, \$
C -> . d, a/d
```

- -0.5 for each incorrect or missing state (no negative marks).

```
GOTO(_, A) = { [A -> C A ., $] }
// CLOSURE
{ [A -> C A ., $] }
```

```
GOTO(_, C) = {[A -> C . A, $] }
// CLOSURE
{[A -> C . A, $], [A -> . C A, $], [A -> . a, $], [C -> . d, a/d] }
GOTO(_, a) = {[A -> a ., $] }
// CLOSURE
{[A -> a ., $] }
GOTO(_, d) = { [C -> d ., a/d] }
// CLOSURE
{ [C -> d ., a/d] }
```

2. (4 points) Consider the following grammar, and the following $L R(1)$ states (these are just a subset of all the $\mathrm{LR}(1)$ states for this grammar).
// Grammar
3. $S \rightarrow E$
4. $\mathrm{E} \rightarrow \mathrm{E}-\mathrm{T}$
5. $\mathrm{E} \rightarrow \mathrm{T}$
6. $\mathrm{T} \rightarrow \mathrm{n}$
7. T -> 1 E r
// States
8. $\{[S->E ., \$],[E->E .-T, \$ /-]\}$
9. $\{[\mathrm{E} \rightarrow \mathrm{T} ., \$ /-]\}$
10. $\{[\mathrm{T}->\mathrm{n} ., \$ /-]\}$
11. $\{[\mathrm{T} \rightarrow \mathrm{l}$ E . r, \$/-], [E $\rightarrow \mathrm{E} .-\mathrm{T}, \mathrm{r} /-]\}$
12. $\{[\mathrm{E} \rightarrow \mathrm{T} ., \mathrm{r} /-]\}$
13. $\{[\mathrm{T}->1 \mathrm{Er} ., \$ /-]\}$
14. $\{[T->l E . r, r /-],[E->E .-T, r /-]\}$
(a) (2 points) Draw the $\mathrm{LR}(1)$ parsing table for the above states, filling in just the reduces.

- -0.3 for each incorrect or missing row (no negative marks).

State	r	-	$\$$
1			r 1
2		r3	r3
3		r 4	r 4
4			
5	r 3	r 3	
6		r 5	r 5
7			

(b) (2 points) Draw the merged LALR(1) states from those LR(1) states.

- -0.5 for each incorrect or missing state (no negative marks).

1: \{[S -> E ., \$], [E -> E . - T, \$/-]\}
2/5: \{[E -> T ., r/\$/-]\}
3: \{[T -> n ., \$/-] \}
4/7: \{[T \rightarrow l E . r, r/\$/-], [E $\rightarrow \mathrm{E} .-\mathrm{T}, \mathrm{r} /-]\}$
6: \{[T -> l E r ., \$/-]\}
3. (2 points) Draw a control-flow graph for the following code.

```
    int i;
    for (i = 0; i < 10; i = i + 1) {
        t = i * i;
        if (t > 100) {
            break;
        }
        i = t;
        }
        print(i);
    - -0.5 for each mistake.
```

 entry
 $i=0$

exit
4. (4 points) For busy expressions analysis:

- A value in the domain is a set of expressions that appear in the program.
- It is a backwards analysis.
- $f_{s}(x)=\operatorname{gen}(s) \cup(x \backslash \operatorname{kill}(s))$.
- gen (s) is the set containing the expression of s.
- $\operatorname{kill}(s)$ is the set of all expressions in the program that have an operand that is assigned to by s.
- Meet is set intersection.
- Initialize IN[exit] to be empty. Initialize IN of every other node to be the set of all expressions.

The iterative algorithm for backwards analysis is as follows.

```
// initialization
while changed {
    for each node s in the CFG {
        OUT[s] = meet IN[s'] for all successors s';
        IN[s] = f_s(OUT[s]);
    }
}
```

Compute 1 iteration of busy expressions analysis, going in backwards order (5, 4, 3, 2, 1, 0). Reminder: you don't need to do anything for OUT[exit] or IN[entry].

- -0.5 for each incorrect IN or OUT.

5. (2 points) A semilattice consists of the following.

- A domain (a set of values) V.
- A binary meet \wedge operator.
- A distinguished "top" value T.

The meet operator must satisfy the following relations, for all $x, y, z \in V$.

1. $x \wedge x=x$.
2. $x \wedge y=y \wedge x$.
3. $(x \wedge y) \wedge z=x \wedge(y \wedge z)$.

Additionally, for all values $x \in V$, we must have that $\top \wedge x=x$.
Suppose $\top^{\prime} \in V$ also satisfies $\top^{\prime} \wedge x=x$ for all $x \in V$. Can \top^{\prime} be different from \top (does the property for "top" in a lattice uniquely define an element)? Prove or disprove.

- 1 point if you leave this blank; otherwise
- -1 for incorrect reasoning, -0.5 for unclear or incomplete reasoning.

Top T satisfies $T \wedge x=x$ for all x. In particular, setting $x=T^{\prime}$, we get $T \wedge T^{\prime}=T^{\prime}$. Since \top^{\prime} also satisfies $\top^{\prime} \wedge x=x$ for all x, setting $x=\top$, we get $\top^{\prime} \wedge \top=\top$.
By commutativity, $T \wedge T^{\prime}=T^{\prime} \wedge T$. So:

$$
\top^{\prime}=\top \wedge T^{\prime}=\top^{\prime} \wedge \top=\top .
$$

Top is unique.
6. (4 points) In general, for any set S, a partial order \leq is a binary relation on S such that for all $x, y, z \in S$, the following hold.

1. $x \leq x$.
2. $x \leq y$ and $y \leq x$ implies $x=y$.
3. $x \leq y$ and $y \leq z$ implies $x \leq z$.

In general, given a partial order \leq on a set S, and a function $f: S \rightarrow S$, we say f is monotonic if and only if:

$$
x \leq y \text { implies } f(x) \leq f(y)
$$

Note: in the case of data-flow analysis, the transfer indeed maps values from the domain of a lattice V back to V (it remains to be shown for each analysis that the transfer functions do actually satisfy this property).
For a (semi)lattice, we can define a partial order on its domain V as follows:

$$
x \leq y \text { if and only if } x \wedge y=x
$$

Suppose we have a function f and a lattice with domain V that satisfies the following (for all $x, y \in V$).

$$
f(x \wedge y) \leq f(x) \wedge f(y)
$$

Let $a, b \in V$, such that $a \leq b$. Prove that $f(a) \leq f(b)$.
For the following parts worth 1 point each:

- 0.3 points if you leave it blank; otherwise:
- 0 for incorrect, incomplete, or unclear reasoning.
(a) (1 point) Rewrite $a \leq b$ in terms of the meet operator.

$$
a \wedge b=a
$$

(b) (1 point) Rewrite $f(x \wedge y) \leq f(x) \wedge f(y)$ in terms of the meet operator.

$$
f(x \wedge y) \wedge(f(x) \wedge f(y))=f(x \wedge y)
$$

(c) (1 point) Rewrite $f(a) \leq f(b)$ in terms of the meet operator.

$$
f(a) \wedge f(b)=f(a)
$$

(d) (1 point) Complete the rest of the proof. The statements in parts (a) and (b) are true by assumption/definitions. The statement in part (c) is (equivalent to) what we want to prove.

- Set $x=a$ and $y=b$.
- By (b), $f(a \wedge b) \wedge f(a) \wedge f(b)=f(a \wedge b)$.
- By $(\mathrm{a}), f(a) \wedge f(a) \wedge f(b)=f(a)$.
- By idempotency of meet, $f(a) \wedge f(b)=f(a)$.
- By (c), this is equivalent to $f(a) \leq f(b)$, as desired.

7. (3 points) A partition P of a set S is a set of subsets of S, such that every element $x \in S$ appears in one and only one subset of S in the partition P.
For example, given the set $\{a, b, c, d, e\}$, the following are possible (but not all) partitions:

- $\{\{a, b\},\{c, d\},\{e\}\}$.
- $\{\{a\},\{b\},\{c\},\{d\},\{e\}\}$.
- $\{\{a, b, c, d, e\}\}$.
(Recall a partition is a set of (sub)sets.) Given two partitions P_{1} and P_{2} of a set S, we first define a partial order:

$$
P_{1} \leq P_{2} \text { iff every element of } P_{1} \text { is a subset of an element of } P_{2}
$$

Given two elements $x, y \in S$ and a partition P of S, we say $x \cong_{P} y$ (x and y are equivalent with respect to the partition P) iff x and y are in a single set in the partition P (an element of P is a set).
(a) (1 point) Write down any lower bound for the following two partitions based on the partial order defined.

- $P_{0}=\left\{\left\{i_{0}, j_{0}, i_{1}, j_{1}\right\}\right\}$,
- $P_{1}=\left\{\left\{i_{0}, j_{0}\right\},\left\{i_{1}, j_{1}\right\}\right\}$.
- No penalty for error.
P_{1} is a lower bound for $P_{0}\left(P_{1} \leq P_{0}\right)$ and $P_{1}\left(P_{1} \leq P_{1}\right)$.
(b) (2 points) Consider a new data-flow analysis for a program in SSA form. Recall that each variable/name in SSA form is unique; a name is defined by a single expression. Let S be the set of all names (and their corresponding expressions) in the program.
- A value in the domain is a partition of S.
- The analysis is forwards.
- The meet of two values P_{1}, P_{2} in the domain is the greatest lower bound of P_{1} and P_{2} (you can imagine computing this by brute force).
- Assume every name/defining expression s takes the form of $s=\operatorname{op}(u, v)$ where op is a deterministic, side-effect-free function in the program. The transfer function $f_{s}(P)$ is as follows.
$-s$ is a name/expression in the program. So it is in S. So it is in exactly one set in the partition P. Designate that set containing s as X.
- The result $f_{s}(P)$ will be a partition containing all elements of P except X, and instead of X we will have X_{1} and X_{2}, where we split X into the two sets X_{1} and X_{2}.
- We split X as follows: start by placing s in X_{1}. Then for all other names/expressions $s^{\prime}=\mathrm{op}^{\prime}\left(u^{\prime}, v^{\prime}\right) \in X$:
- We place s^{\prime} in X_{1} only if s and s^{\prime} have the same operator, $u \cong_{P} u^{\prime}$, and $v \cong_{P} v^{\prime}$ (all three hold). We place s^{\prime} in X_{2} otherwise. (We loop over X once and that's it.)
- For example, if $s=a-b$ and P is the set containing $\{s=a-b, y=c-d, z=e-f\}$, $\{a=\ldots, c=\ldots, f=\ldots\}$, and $\{b=\ldots, d=\ldots, e=\ldots\}$:
- Then $f_{s}(P)$ contains $\{a=\ldots, c=\ldots, f=\ldots\}$ and $\{b=\ldots, d=\ldots, e=\ldots\}$ verbatim, and $\{s=a-b, y=c-d, z=e-f\}$ needs to be split.
- We first put $s=a-b$ in X_{1}.
- Consider $y=c-d$. It has the same operator. c (the first operand of y) was in the same set as a (the first operand of s) (referring back to P). d was in the same set as b. So we put $y=c-d$ in X_{1}.
- Consider $z=e-f$. It has the same operator. But e (z 's first operand) is not in the same set as a (s 's first operand). So we put $z=e-f$ in X_{2}.
- Our result $f_{s}(P)$ is the set containing $\quad\{s=a-b, y=c-d\}, \quad\{z=e-f\}$, $\{a=\ldots, c=\ldots, f=\ldots\}$, and $\{b=\ldots, d=\ldots, e=\ldots\}$.

Finally, consider the following program (suppose a, b, c are some previously defined values).

Consider + to be the usual integer operator/function, and note that φ_{2} and φ_{5} are different from each other (but the two φ_{2} in the same basic block are the same operator, and similarly for φ_{5} in the other basic block).
Break the basic blocks into individual nodes per instruction.
Initialize OUT for all nodes to be the partition $\left\{\left\{i_{0}, j_{0}, i_{2}, j_{2}, x_{0}, y_{0}, x_{2}, y_{2}, i_{1}, j_{1}, x_{1}, y_{1}\right\},\{a\},\{b\},\{c\}\right\}$.

For forwards analysis:

```
// initialization
while changed {
        for each node s in the CFG {
            IN[s] = meet OUT[s'] for all predecessors s';
            OUT[s] = f_s(IN[s]);
        }
}
```

Carry out the data-flow analysis for the first 4 nodes (after splitting the basic blocks) (you should have 4 INs and 4 OUTs).

- 0.5 if you leave it blank, otherwise
- -0.3 points per error.

0 . entry

1. $\mathrm{iO}=\mathrm{a}+\mathrm{b}$
2. $\mathrm{j} 0=\mathrm{a}+\mathrm{b}$
3. $i 1=$ phi2(i0, i2)
4. $j 1=\operatorname{phi2}(j 0, j 2)$

Note that the transfer function only splits one element/set of the partition at a time.

- $\mathrm{IN}_{1}[1]=\mathrm{OUT}_{0}[0]=\left\{\left\{i_{0}, j_{0}, i_{2}, j_{2}, x_{0}, y_{0}, x_{2}, y_{2}, i_{1}, j_{1}, x_{1}, y_{1}\right\},\{a\},\{b\},\{c\}\right\}$.
- $\mathrm{OUT}_{1}[1]=\left\{\left\{i_{0}, j_{0}, x_{0}, y_{0}\right\},\left\{i_{1}, j_{1}, x_{1}, y_{1}, i_{2}, j_{2}, x_{2}, j_{2}\right\},\{a\},\{b\},\{c\}\right\}$.
- $\mathrm{IN}_{1}[2]=\mathrm{OUT}_{1}[1]$.
- $\mathrm{OUT}_{1}[2]=\mathrm{IN}_{1}[2]$ (no change).
- $\mathrm{IN}_{1}[3]=\mathrm{OUT}_{1}[2]$ (the initial value meet $\mathrm{OUT}_{1}[2]$ is $\mathrm{OUT}_{1}[2]$).
- $\mathrm{OUT}_{1}[3]=\left\{\left\{i_{0}, j_{0}, x_{0}, y_{0}\right\},\left\{i_{1}, j_{1}\right\},\left\{x_{1}, y_{1}, i_{2}, j_{2}, x_{2}, j_{2}\right\},\{a\},\{b\},\{c\}\right\}$.
- $\mathrm{IN}_{1}[4]=\mathrm{OUT}_{1}[3]$.
- $\mathrm{OUT}_{1}[4]=\mathrm{IN}_{1}[4]$ (no change).
(c) (1 bonus points) What does this data-flow analysis compute?
- No penalty for error.

Names/expressions in the same set at the end of the iterative algorithm must have equivalent values.
(d) (1 bonus points) Why must the φ in different basic blocks be considered different operators/functions $\left(\varphi_{2}\right.$ and $\left.\varphi_{5}\right)$? Hint: think about how the algorithm could produce incorrect results.

- No penalty for error.

The "action" of a phi function depends on the control-flow. The control-flow is different in different basic blocks. So phi functions in different basic blocks have different semantics.
If φ_{2} and φ_{5} are treated as the same operator, then the algorithm would think that $i_{1}=j_{1}=x_{1}=$ y_{1}, even though the loops they are in are different and could execute a different number of times.

