Semilattice

- a domain of values V, i.e. the domain is a set of possible values
- a distinguished "top" "T" value
- a binary operator "meet" "へ" (V, V) -> V

1. $x^{\wedge} \mathrm{x}=\mathrm{x} / /$ idempotent
2. $x^{\wedge} y=y^{\wedge} x / /$ commutative
3. $\left(x^{\wedge} y\right)^{\wedge} z=x \wedge\left(y^{\wedge} z\right) / /$ associative
4. T needs to be such that $T^{\wedge} x=x$

Optionally, a semilattice may have a "bottom" value, where bot ${ }^{\wedge} \mathrm{x}=\mathrm{bot}$

Partial order

- a binary relation "<=" on a set X such that

1. $x<=x / /$ reflexive
2. $x<=y$ and $y<=x$ implies $x=y / /$ anti-symmetric
3. $x<=y$ and $y<=z$ implies $x<=z / /$ transitive

Over the integers
$-x<=y$ iff $x \mid y$

- NOT $5<=7$ or $7<=5$

For a lattice
$-x<=y$ iff $x^{\wedge} y=x$
\#2 assume $\mathrm{x}<=\mathrm{y}$ and $\mathrm{y}<=\mathrm{x}$
$x^{\wedge} y=x$
$y^{\wedge} x=y$
Greatest lower bound

- given a partial order and x, y in our domain
- if $g=g l b(x, y)$

1. $g<=x$
2. $g<=y$
3. if $z<=x$ and $z<=y$, then $z<=g$

For lattices, $x^{\wedge} y=g l b(x, y)$

- set $g=x^{\wedge} y$
\#1
$g^{\wedge} x$
$\left(x^{\wedge} y\right)^{\wedge} x$
$x^{\wedge}\left(y^{\wedge} x\right)$
$x^{\wedge}\left(x^{\wedge} y\right)$
$\left(x^{\wedge} x\right)^{\wedge} y$
$x^{\wedge} y$
g
So $g<=x$
\#3
assume $z<=x$ and $z<=y$
$z^{\wedge} x=z$
$z^{\wedge} y=z$
$z^{\wedge} g$
$z^{\wedge}\left(x^{\wedge} y\right)$
$\left(z^{\wedge} x\right)^{\wedge} y$
$z^{\wedge} y$
z
So $z<=g$

Monotonicity
A function $\mathrm{f}: \mathrm{X}->\mathrm{X}$, given a partial order, is monotonic if $-x<=y$ implies $f(x)<=f(y)$

A dataflow analysis framework is:

- direction D which is "forwards" or "backwards"
- a semillatice V with top value T and meet operator ${ }^{\wedge}$
- a family of transfer functions \{ f_s \} where f_s: V->V and is monotonic with respect to the partial order on lattices
- boundary conditions (initial values)

Available expressions

- D = forwards
$-\mathrm{V}=$ \{ all possible sets of expressions $\}$
- ^ = intersection
- $\mathrm{T}=$ \{ all expressions $\}$

Live variables

- D = backwards
$-\mathrm{V}=\{$ all possible sets of variables $\}$
$-\wedge=$ union
- $\mathrm{T}=\{ \}$

Forwards pseudocode
OUT[entry] = // starting value
for each node B other than entry, OUT[B] = T
while any changes to any OUT \{
for each node B other than entry \{
IN[B] = meet_\{P a predecessor of B $\}$ OUT[P] OUT[B] = f_B(IN[B])

Backwards pseudocode
IN[exit] = // starting value
for each node B other than exit, $\operatorname{IN}[B]=T$
while any changes to any IN \{
for each node B other than exit \{ OUT[B] = meet_\{S a successor of B \} IN[S] $\mathrm{IN}[\mathrm{B}]=\mathrm{f} _\mathrm{B}(\mathrm{OUT}[\mathrm{B}])$

Constant propagation

- forwards analysis
$-\mathrm{V}=\{32$ bit integers $\}$ union \{ undefined, not-a-constant \}
- Top is "undefined"
- meet $(x, y)=x$ if $x==y$ (x, y are integers) $=$ nat if $x!=y(x, y$ are integers $)$
$=$ undefined if any x, y are undefined
$=$ ac if x or y are ac (and not undefined)
- $f_{-} s(v)$ if s is " $x=y+z$ "
$=(y+z, y, z) / /$ if both y and z are integers
$=$ (undefined, y, z) // if any y and z are undefined $=$ (nad, y, z) // otherwise
- $f _s(v)$ if s is " $x=c$ " $=c$

We have a copy of V for each local variable ($\mathrm{V}, \mathrm{V}, \mathrm{V}$)
$(x 1, x 2, x 3) \wedge(y 1, y 2, y 3)$
$=\left(x 1^{\wedge} y 1, x 2^{\wedge} y 2, x 3^{\wedge} y 3\right)$
$y=3$ our undef, 3 , undef
$y=4$ ontundef, 3,4

$$
x=y+z \text { an } 1,3,4
$$

