Semilattice

- a domain of values V, i.e. the domain is a set of possible values

- a distinguished "top" "T" value
- a binary operator "meet" "~" (V, V) ->V

4. T needs to be suchthat T ™~ x = x

1. x ™ x = x /[idempotent
2. X~y =y "™ x// commutative
3.(x"y) ~z=x"(y ™ z) /] associative

Optionally, a semilattice may have a "bottom" value, where bot ™ x = bot

Partial order

- a binary relation "<=" on a set X such that

1. x <= x // reflexive

Over the integers
-x<=yiffx|y
-NOT5<=70r7<=5

2.x <=y andy <= x implies x =y // anti-symmetric
3. x <=yandy <=zimplies x <= z// transitive

For a lattice
-x<=yiffx ~y=x

#2 assume x <=y andy <= X

Xy =X
y x=y

Greatest lower bound

- given a partial order and x, y in our domain

- if g = glb(x, y)

For lattices, x ~ y = glb(x, y)

-setg=x"y

assumez<=xandz<=y

ZxXx=2
y=2z

Forwards pseudocode

OUT[entry] = // starting value

xandz<=y,thenz<=g

Monotonicity
A function f: X -> X, given a partial order, is monotonic if
- x <=y implies f(x) <= f(y)

A dataflow analysis framework is:
- direction D which is "forwards" or "backwards"
- a semillatice V with top value T and meet operator ©
- a family of transfer functions { f_s } wheref s:V->V
and is monotonic with respect to the partial order on lattices
- boundary conditions (initial values)

Available expressions

- D = forwards

-V = { all possible sets of expressions }
- ©~ = intersection

- T = { all expressions }

Live variables

- D = backwards

-V = { all possible sets of variables }
~ = union

T={

Backwards pseudocode
IN[exit] = // starting value
for each node B other than exit, IN[B] =T

for each node B other than entry, OUT[B] =T while any changes to any IN {

while any changes to any OUT {
for each node B other than entry {

for each node B other than exit {
OUT[B] = meet_{S a successor of B} IN[S]

IN[B] = meet_{P a predecessor of B} OUT[P] IN[B] = f_B(OUT[B])

OUT[B] = f_B(IN[B])

Constant propagation
- forwards analysis ‘/’"O'PGhO 0’
-V = { 32 bit integers } union { undefined, not-a-constant }

- Top is "undefined" / \
- meet(x, y) = x if x ==y (X, y are integers)

nac if x '=y (x, y are integers)

undefined if any x, y are undefined \ ’/

= nac if x or y are nac (and not undefined)

fs(v)ifsis"x =y +2" AN //

=(y + 2z v, z) // if both y and z are integers V\c.c
(undefined, y, z) // if any y and z are undefined

(nap, Y Z,), 4 oth"erwise We have a copy of V for each local variable
-f s(v)ifsis"x=c"=c

(V,V,V)
(x1, x2, x3) ™ (y1, y2,y3)
= (x1 "~ yl, x2 ~y2,x3 "~ y3)

o
1]

\
-~
\}
o
L
Q
N
A~
(4
N

