Turing machine

- a finite alphabet
- a finite set of states
- a single, current state
- a single pointer to the current cell on the tape
- a table specifying an action given a (current) state and the (current) value under the tape
- designated "blank" symbol in the alphabet, which is the only symbol which may appear infinitely many times as input to the machine
- has an infinite tape of discrete cells, each of which contains a single symbol from a finite alphabet

An action involves writing a symbol on the current cell, transitioning to a new state, and either:

- moving the tape left
- moving the tape right
- halting.

Turing machine for DFA

- States will be the same
- Alphabet: same + a special "blank" symbol
- Input: ... blank blank blank input string blank blank ...

For each arrow in our DFA diagram:

- action[state, symbol] = write "blank", goo next state (of the arrow), advance the input

For each final state in our DFA:

- action[state, blank] = write any non-blank symbol, stay on the same state, halt

All other actions/entries in the table = write blank, stay on the same state, halt

Have a turing machine with alphabet Sigma, \mid Sigma $\mid>2$.
We want to make a conceptually equivalent turing machine that uses an alphabet of $\{0,1\}$.
$\mathrm{n}=\log _{2} 2(\mid$ Sigma|) // round up
n bits can represent $2^{\wedge} \mathrm{n}>=\mid$ Sigma \mid distinct things.

Every turing machine has an equivalent turing machine that uses an alphabet of \{ 0,1$\}$.
Every turing machine (reduced to an alphabet of $\{0,1\}$) can be represented uniquely as a sequence of bits

Suppose there exists a turing machine with the following properties ("HALT"):

- conceptually it takes two inputs (on a single tape)
- the first input will be interpreted as a description of a turing machine
- the second input will be the input to the described turing machine
- always halt (in finite steps)
- halt with 1 if the first input is a valid description of a turing machine, and the described TM would halt given what was the second input
- halt with 0 otherwise

Then HALT' exists, that functionally computes the following.
$\operatorname{HALT}^{\prime}(x)=\operatorname{HALT}(x, x)$

1. What we want is to turn the input tape conceptually consisting of a single sequence of bits into an input tape consisting of a pair of sequence of bits.
2. Then we "just have" the original HALT TM.

Then a 3rd TM exists as follows:

- Copy the table of HALT'.
- Create a new state (row) "spin".
- "spin" will always transition to itself.
- Any entry in the original HALT' that was "halt with 1", transition to "spin".
- Any entry in the original HALT' that was "halt with 0 " can be left as is.

Call this machine "SPOILER".

What happens when we give (SPOILER, SPOILER) as an input to HALT?

- If HALT returns 1, then that means SPOILER(SPOILER) should halt.
$-\operatorname{HALT}^{\prime}(S P O I L E R)=1$
- SPOILER(SPOILER) would end up not halting.
- Contradiction.
- If HALT returns 0, then that means SPOILER(SPOILER) doesn't halt.
$-\operatorname{HALT}^{\prime}(S P O I L E R)=0$
- SPOILER(SPOILER) would also halt with 0.
- Contradiction.

No such TM "HALT" can exist.
"Busy Beaver" function is defined as follows.
$\mathrm{BB}(\mathrm{n}, \mathrm{m}):=$ the largest number of non-blank characters a TM with n symbols and m states can produce (after halting). Initially the tape is all blank.
$\mathrm{BB}(2,1)=0$
$\mathrm{BB}(2,2)=4$
$\mathrm{BB}(2,3)=6$
$\mathrm{BB}(2,4)=13$
For $\mathrm{n}=2$ (symbols): for $\mathrm{m}>4$ the $\mathrm{BB}(\mathrm{n}, \mathrm{m})$ is not known.
The current lower bound for $\mathrm{BB}(2,6)$ is $10^{\wedge}\{18627\}$.
$\mathrm{BB}(2,744)$ is unimaginably large.

- jump(offset)
- branch(state, symbol, offset)
- left(symbol, next_state)
- right(symbol, next_state)
- halt(symbol)

