```
NULLABLE(terminal) = false
NULLABLE(sequence of symbols) = true iff none of the symbols are NOT NULLABLE
NULLABLE}(\mathrm{ production ) = NULLABLE (RHS)
NULLABLE(nonterminal) = any of its productions are NULLABLE
FIRST(terminal) = { terminal }
FIRST(X1 X2 _.. Xn) = union of FIRST(X1), FIRST(X2), ..., FIRST(Xk)
    where X1, X2, .. X_{k-1} are NULLABLE and Xk is NOT NULLABLE
FIRST}(\mathrm{ production ) = FIRST (RHS)
FIRST(nonterminal) = union of FIRST of RHS of its productions
```

$$
\text { grammar is } L(k) \text { iff }
$$

$$
\text { we cancreate an } L(k) \text { parser }
$$

langnage is LL(k) iff

$$
\exists \text { an } L L(K) \text { grammar for it }
$$

for each production P in the grammar \{

$$
\mathrm{A}=\mathrm{I} \mathrm{hs}(\mathrm{P})
$$

for each terminal a in FIRST (P) \{

$$
M[A, a]=P
$$

if NULLABLE(P) \{ // equivalently, epsilon in FIRST(P)
for each terminal b in $\operatorname{FOLLOW}(A)$ \{

$$
\begin{aligned}
& \mathrm{M}[\mathrm{~A}, \mathrm{~b}]=\mathrm{P} \\
& \begin{array}{l}
1 \mathrm{E}->\text { TE' } \\
\text { 2 } \mathrm{E}^{\prime}->+\mathrm{T} \mathrm{E}^{\prime} \mid \text { epsilon }
\end{array} \\
& \begin{array}{l}
4 \mathrm{~T}^{\mathrm{T}}->\mathrm{FT}^{\prime} \\
\mathrm{T}^{\prime}->\text { FT'lepsilon6 }
\end{array} \\
& >^{F->(E) \mid \text { id } \& ~} \\
& \text { nonterminal } \\
& \begin{array}{l}
\mathrm{E} \\
\mathrm{E}^{\prime} \\
\mathrm{T} \\
\mathrm{~T}^{\prime} \\
\mathrm{F}
\end{array} \\
& \text { FIRST } \\
& \text { (, id } \\
& \text { +, epsilon } \\
& \text { (, id } \\
& \text { *, epsilon } \\
& \text { (, id } \\
& \text { FOLLOW } \\
& \text {), \$ } \\
& \text {), \$ } \\
& +,), \$ \\
& +,), \$ \\
& +, *,), \$
\end{aligned}
$$

3
2

