
1. shift an input token (as a terminal) on to the stack
2. reduce the top n symbols on the stack by a production

- replace them with the LHS nonterminal of a production with the same n symbols on its RHS





// I is a set of items
fn closure(I) {

while changed {
for (P, d) in I {

if d == len(P) {
continue;

} else if P[d] is a terminal {
continue;

} else { // P[d] is a nonterminal
for each production Q targetting P[d] {

insert(I, (Q, 0));
}

}
}

}
}



// I is a set of items
// X is a symbol
fn goto(I, X) {

result = {}
for (P, d) in I {

if d == len(P) {
continue;

} else if P[d] == X {
insert(result, (P, d + 1));

}
}
return result;

}



// G is a grammar
fn compute_states(G) {

start_state = closure({ (start' -> start, 0) });
all_states = { start_state };
while changed {

for state in all_states {
for symbol in G {

next_state = closure(goto(state, symbol));
insert(all_states, next_state);

}
}

}
return all_states;

}




