
Dataflow Analysis

October 28 2022

Partial Order

Properties for meet operator

1. idempotent : x ∧ x = x

2. commutative: x ∧ y = y ∧ x

3. associative: x ∧(y ∧ z) = (x ∧ y) ∧ z

Partial order: x ≤ y iff x ∧ y = x

Properties for partial order

1. reflexive: x ≤ x

2. anti-symmetry : x ≤ y and y ≤ x then x = y

3. transitive: x ≤ y and y ≤ z then x ≤ z

Prove the transitivity property of the partial order.

1

Solution:
Given Facts:

x ⊢ y (0.1)

y ⊢ z (0.2)

WTS:
x ⊢ z (0.3)

By the definition of partial order:

x ⊢ y = x ∧ y = x (0.4)

Similarly
y ⊢ z = y ∧ z = y (0.5)

Then
x ∧ z = (x ∧ y) ∧ z (0.6)

By associativity of meet order

(x ∧ y) ∧ z = x ∧ (y ∧ z) (0.7)

By (0.5)
x ∧ (y ∧ z) = x ∧ y (0.8)

By (0.4)
x ∧ y = x (0.9)

Put all together
x ∧ z = x (0.10)

QED

2

Monotonicity

1.What is the point of monotonicity?

Solution:

The monotonicity guarantees that the result after applying the transfer function
will never increase. This approves that the algorithm can eventually converge.

2.Is the result optimal? (Note: This question is not covered in this week’s
material)

Solution:

If the framework is monotone, it yields to a fix-point solution.

A stronger version is the distributive framework, the distributive framework
yields to a maximum fix-point solution.

FP ≤ MXP ≤ MOP ≤ Ideal Solution

3.Prove the equivalence of equation (0.11) and (0.12)

x ≤ y implies f(x) ≤ f(y) (0.11)

f(x ∧ y) ≤ f(x) ∧ f(y) (0.12)

Note: The greatest lower bound for x, and y can only be x ∧ y

3

Solution:

From 0.11 to 0.12

Given facts:
x ⊢ y implies f(x) ⊢ f(y) (0.13)

WTS:
f(x ∧ y) ⊢ f(x) ∧ f(x) (0.14)

According to the definition of partial order

x ⊢ y implies x ∧ y = x (0.15)

Since x ∧ y is the glb(x, y)
x ∧ y ⊢ x (0.16)

x ∧ y ⊢ y (0.17)

Based on 0.13:
f(x ∧ y) ⊢ f(x) (0.18)

f(x ∧ y) ⊢ f(y) (0.19)

Since f(x) ∧ f(y) is the glb(f(x), f(y))

f(x) ∧ f(y) ⊢ f(x) (0.20)

f(x) ∧ f(y) ⊢ f(y) (0.21)

Put all together
f(x ∧ y) ⊢ f(x) ∧ f(y) (0.22)

QED

4

Solution:

From 0.12 to 0.11

Given Facts:
f(x ∧ y) ⊢ f(x) ∧ f(y) (0.23)

x ⊢ y (0.24)

WTS:
f(x) ⊢ f(y) (0.25)

According to the definition of partial order

x ⊢ y = x ∧ y = x (0.26)

Substitute it to 0.12
f(x ∧ y) ⊢ f(x) ∧ f(y) (0.27)

f(x) ⊢ f(x) ∧ f(y) (0.28)

Since f(x) ∧ f(y) is the glb(f(x), f(y))

f(x) ∧ f(y) ⊢ f(y) (0.29)

Put all together
f(x) ⊢ f(x) ∧ f(y) ⊢ f(y) (0.30)

QED

5

Dataflow Analysis

A uniform framework for computing properties of basic blocks useful for opti-
mization. A type of static analysis

Checklist

• Domain: Inputs for the analysis

• Direction:

– Forward Flow: What can happen before a given point

– Backward Flow: What can happen after the given point.

• May / Must:

– May Analysis: What property holds on some path

∗ Meet Operator: ∪
∗ Initial value: min

– Must Analysis: What property holds on all paths

∗ Meet Operator: ∩
∗ Initial value: max

• Transfer Function: How the value changes among the statement

– IN(b): What properties hold on entry to basic block b

– OUT (b): What properties hold on exit from basic block b

– Gen(b): The properties that are generated in basic block b

– Kill(b): The properties that are invalidated in basic block b

6

Reaching Definition

Problem Definition

• A definition d reaches a point p if there is a path from the point imme-
diately following d to p, such that d is not killed along that path

• Gen(B): Definitions made in B

• Kill(B): Definitions invalidate by B

Summary

Domain Definitions

Direction Forward

Transfer Function Gen ∪ (x−Kill)

Meet Operator(∧) ∪

IN Equation IN [B] = ∧P∈PredecessorOUT [P]

OUT Equation OUT [B] = f(IN [B])

Initial Condition OUT [Entry] = ∅

Boundary Condition OUT [All − ExceptEntry] = ∅

Table 1: Summary for Reaching Definition

7

Usage

• Determine possible usage of uninitialized value

// dummy d e f i n i t i o n added by ana lyze r
x = dummy
z = dummy

// source code s t a r t s
x = 1
x = x + 1
y = z // z = dummy reaches here a p o s s i b l e use o f undef ined
x = x ∗ 2
p r in t (x)

8

Example

9

Solution:

There are 3 iterations performed. I did not write the iteration3 since it is
the same as the iteration2.

Block IN Gen Kill OUT
Entry ∅
B1 ∅
B2 ∅
B3 ∅
B4 ∅
Exit ∅

Table 2: Iteration 0

Block IN Gen Kill OUT
B1 OUT [Entry]

∅ {d1} {d4, d7}
{d2} {d5}
{d3} {d6}

{d1, d2, d3} {d4, d5, d6, d7} {d1, d2, d3}
B2 ∧ OUT [B1], OUT [B4]

{d1, d2, d3} ∪∅
{d4} {d1, d7}
{d5} {d2}

{d4, d5} {d1, d2, d7} {d3, d4, d5}
B3 OUT [B2]

{d3, d4, d5}
{d6} {d3}
{d6} {d3} {d4, d5, d6}

B4 ∧OUT [B2], OUT [B3]
{d3, d4, d5} ∪ {d4, d5, d6}

{d7} {d1, d4}
{d7} {d1, d4} {d3, d5, d6, d7}

Table 3: Iteration 1

10

Block IN Gen Kill OUT
B1 OUT [Entry]

∅ {d1} {d4, d7}
{d2} {d5}
{d3} {d6}

{d1, d2, d3} {d4, d5, d6, d7} {d1, d2, d3}
B2 ∧ OUT [B1], OUT [B4]

{d1, d2, d3} ∪{d3, d5, d6, d7}
{d4} {d1, d7}
{d5} {d2}

{d4, d5} {d1, d2, d7} {d3, d4, d5, d6}
B3 OUT [B2]

{d3, d4, d5, d6}
{d6} {d3}
{d6} {d3} {d4, d5, d6}

B4 ∧OUT [B2], OUT [B3]
{d3, d4, d5, d6} ∪ {d4, d5, d6}

{d7} {d1, d4}
{d7} {d1, d4} {d3 d5, d6, d7}

Table 4: Iteration 2

11

Live Variable

Problem Definition

• A variable v is live at point p if the value of v is used along some path
starting at p

• Kill/Def(B): Variables defined in B

• Gen/Use(B): Variables whose values may be used in B

Usage

• Build inference graph in register allocation

Summary

Domain Variable

Direction Backward

Transfer Function Gen ∪ (x−Kill)

Meet Operator(∧) ∪

IN Equation IN [B] = f(OUT [B])

OUT Equation OUT [B] = ∧S∈SuccessorIN [S]

Initial Condition IN [EXIT] = ∅

Boundary Condition IN [ALL− EXIT] = ∅

Table 5: Summary for Live Variable

12

Example

13

Solution:

There are 2 iterations performed. I omitted the iteration 2 since it is the same
as the iteration 2.

Block OUT Gen Kill IN
Exit ∅
B6 ∅
B5 ∅
B4 ∅
B3 ∅
B2 ∅
B1 ∅

Entry ∅

Table 6: Iteration 0

14

Block OUT Gen/Use Kill/Def IN
B6 IN [EXIT]

∅
{d} {g}
{d} {g} {d}

B5 IN [B6]
{d}

{e, f} {d}
{e, f} {d} {e, f}

B4 IN [B6]
{d}

{e, f} {d}
{e, f} {d} {e, f}

B3 ∧IN [B3], IN [B4]
{e, f} ∪ {e, f}

{f, b} {f}
{f, b} {f} {e, f, b}

B2 IN [B2]
{e, f, b}

{b, c} {f}
{b, c} {f} {b, c, e}

B1 IN [B1]
{b, c, e}

{d, a} {e}
{d, a} {e} {a, b, c, d}

Table 7: Iteration 1

15

Usage

The result of liveness can be used to construct the inference graph. Live vari-
ables sit in the entry for every basic block cannot fit into the same register.

Figure 1: Inference Graph for previous question

Apply graph-coloring algorithm for assigning a color(register) to each node.

Figure 2: Resulting Graph

Note: Graph-coloring problem is a NP-Complete problem. The greedy algo-
rithm is an approximated result.

16

Available Expression

Problem Definition

• An expression is available at a point p if every path leading to p
contains a definition of the expression which is not subsequently killed

• Gen(B): Expression generated in B

• Kill(B): Expression x ⊕ y is killed if it assigns x or y and does not
subsequently recompute x ⊕ y

Usage

• Determine sub-expression for global common sub-expression elimination

Summary

Domain Expression

Direction Forward

Transfer Function Gen ∪ (X −Kill)

Meet Operator(∧) ∩

IN Equation IN [B] = ∧P∈PredecessorOUT [P]

OUT Equation OUT [B] = f(IN [B])

Initial Condition OUT [Entry] = ∅

Boundary Condition OUT [All − Entry] = U

Table 8: Summary for Available Expression

17

Example

18

Solution: Usually, the U can be replaced with a bit vector of 1s. As well as,
the ∅ can be replaced with a bit vector of 0s.

Block IN Gen Kill OUT
Entry 00000
B1 11111
B2 11111
B3 11111
B4 11111
B5 11111
Exit 11111

Table 9: Iteration 0

19

Block IN Gen Kill OUT
B1 OUT [Entry]

00000
{p− 1} {2 ∗ y, y + 3}
{p− 1} {2 ∗ y, y + 3} 10000

B2 ∧OUT [B4], OUT [B1]
11111 ∧ 10000

10000
{z/5}
{e7 ∗ x} {p− 1}

{z/5, e7 ∗ x} {p− 1} 01010
B3 OUT [B2]

01010
{y + 3} {z/5}
{y + 3} {z/5} 00011

B4 OUT [B2]
01010

{2 ∗ y} {e7 ∗ x}
{e7 ∗ x}

{2 ∗ y, e7 ∗ x} {e7 ∗ x} 01110
B5 ∧OUT [B3], OUT [B4]

00011 ∧ 01110
00010

{e7 ∗ x}
{z/5} {2 ∗ y, y + 3}

{e7 ∗ x, z/5} {2 ∗ y, y + 3} 01010

Table 10: Iteration 1

20

Block IN Gen Kill OUT
B1 OUT [Entry]

00000
{p− 1} {2 ∗ y, y + 3}
{p− 1} {2 ∗ y, y + 3} 10000

B2 ∧OUT [B4], OUT [B1]
01110 ∧ 10000

00000
{z/5}
{e7 ∗ x} {p− 1}

{z/5, e7 ∗ x} {p− 1} 01010
B3 OUT [B2]

01010
{y + 3} {z/5}
{y + 3} {z/5} 00011

B4 OUT [B2]
01010

{2 ∗ y} {e7 ∗ x}
{e7 ∗ x}

{2 ∗ y, e7 ∗ x} {e7 ∗ x} 01110
B5 ∧OUT [B3], OUT [B4]

00011 ∧ 01110
00010

{e7 ∗ x}
{z/5} {2 ∗ y, y + 3}

{e7 ∗ x, z/5} {2 ∗ y, y + 3} 01010

Table 11: Iteration 2

21

Busy/Anticipated Expression

Problem Definition

• An expression e is very busy at point p if not matter what path
is taken from p, the expression e will be evaluated before any of its
operands are redefined

Summary

Domain Expression

Direction Backward

Transfer Function Gen ∪ (X −Kill)

Meet Operator(∧) ∩

IN Equation IN [B] = f(OUT [B])

OUT Equation OUT [B] = ∧S∈SuccessorIN [S]

Initial Condition IN [EXIT] = ∅

Boundary Condition IN [ALL− EXIT] = U

Table 12: Summary for Busy Expression

22

Example

23

Solution:
There are two iterations, I omitted the iteration2 since it is the same as the
iteration1.

Block OUT Gen Kill IN
Exit ∅
B6 U
B5 U
B4 U
B3 U
B2 U
B1 U

Entry U

Table 13: Iteration 0

24

Block OUT Gen Kill IN
B6 IN [EXIT]

∅
{t ∗ u} {t ∗ u, t < u}
{t ∗ u} {t ∗ u, t < u} {t ∗ u}

B5 IN [B6]
{t ∗ u}

{a− b} {t ∗ u, t < u}
{a− b} {t ∗ u, t < u} {a− b}

B4 IN [B6]
{t ∗ u}

{a− b} {t ∗ u, t < u}
{a− b} {t ∗ u, t < u} {a− b}

B3 ∧IN [B4], IN [B3]
{a− b} ∩ {a− b}

{a− b}
{t < u}
{t < u} {t < u, a− b}

B2 IN [B3]
{t < u, a− b}

{a ∗ b} {t < u, t ∗ u}
{a ∗ b} {t < u, t ∗ u} {a ∗ b, a− b}

B1 IN [B2]
{a ∗ b, a− b}

{a+ b} {t < u, t ∗ u}
{a+ b} {t < u, t ∗ u} {a+ b, a− b, a ∗ b}

Table 14: Iteration 1

25

Usage

From the previous example, we know that at the basic block 1, all expressions
that involve a and b are busy in the future. We hoist those expressions to the
basic block1 with new definitions and replace the usage of them with the new
definitions. (This is similar to code refactoring)

Note: Typically, to perform the hoisting, you need to have additional dataflow
analysis passes along with the Anticipated Expression. The given example is
just a simple case where we can hoist all of them to the first basic block.

In reality, there are more constraints for code hoisting due to the safety concern
for optimization. A typical usage for Anticipated expression is on LICM (Loop
Invariant Code Motion). This will be covered later in the class.

26

