
Dataflow Analysis

October 28 2022

Partial Order

Properties for meet operator

1. idempotent : x ∧ x = x

2. commutative: x ∧ y = y ∧ x

3. associative: x ∧(y ∧ z) = (x ∧ y) ∧ z

Partial order: x ≤ y iff x ∧ y = x

Properties for partial order

1. reflexive: x ≤ x

2. anti-symmetry : x ≤ y and y ≤ x then x = y

3. transitive: x ≤ y and y ≤ z then x ≤ z

Prove the transitivity property of the partial order

1



Monotonicity

1.What is the point of monotonicity?

2.Is the result optimal?

3.Prove the equivalence of equation (1) and (2)

x ≤ y implies f(x) ≤ f(y) (1)

f(x ∧ y) ≤ f(x) ∧ f(y) (2)

Note: The greatest lower bound for x, and y can only be x ∧ y

2



Dataflow Analysis

A uniform framework for computing properties of basic blocks useful for opti-
mization. A type of static analysis

Checklist

• Domain: Inputs for the analysis

• Direction:

– Forward Flow: What can happen before a given point

– Backward Flow: What can happen after the given point.

• May / Must:

– May Analysis: What property holds on some path

∗ Meet Operator: ∪
∗ Initial value: min

– Must Analysis: What property holds on all paths

∗ Meet Operator: ∩
∗ Initial value: max

• Transfer Function: How the value changes among the statement

– IN(b): What properties hold on entry to basic block b

– OUT (b): What properties hold on exit from basic block b

– Gen(b): The properties that are generated in basic block b

– Kill(b): The properties that are invalidated in basic block b

3



Reaching Definition

Problem Definition

• A definition d reaches a point p if there is a path from the point imme-
diately following d to p, such that d is not killed along that path

• Gen(B): Definitions made in B

• Kill(B): Definitions invalidate by B

Usage

• Determine possible usage of uninitialized value

Summary

Domain

Direction

Transfer Function

Meet Operator(∧)

IN Equation

OUT Equation

Initial Condition

Boundary Condition

Table 1: Summary for Reaching Definition

4



Example

5



Live Variable

Problem Definition

• A variable v is live at point p if the value of v is used along some path
starting at p

• Def(B): Variables defined in B

• Use(B): Variables whose values may be used in B

Usage

• Build inference graph in register allocation

Summary

Domain

Direction

Transfer Function

Meet Operator(∧)

IN Equation

OUT Equation

Initial Condition

Boundary Condition

Table 2: Summary for Live Variable

6



Example

7



Available Expression

Problem Definition

• An expression is available at a point p if every path leading to p
contains a definition of the expression which is not subsequently killed

• Gen(B): Expression generated in B

• Kill(B): Expression x ⊕ y is killed if it assigns x or y and does not
subsequently recompute x ⊕ y

Usage

• Determine sub-expression for global common sub-expression elimination

Summary

Domain

Direction

Transfer Function

Meet Operator(∧)

IN Equation

OUT Equation

Initial Condition

Boundary Condition

Table 3: Summary for Available Expression

8



Example

9



Busy/Anticipated Expression

Problem Definition

• An expression e is very busy at point p if not matter what path
is taken from p, the expression e will be evaluated before any of its
operands are redefined

Usage

• Determine candidates for hoisting

Summary

Domain

Direction

Transfer Function

Meet Operator(∧)

IN Equation

OUT Equation

Initial Condition

Boundary Condition

Table 4: Summary for Busy Expression

10



Example

11


