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Abstract

The immune system is a complex collection of interrelated and overlapping solutions to the problem of disease. To deal
with this complexity, researchers have devised multiple ways to measure immune function and to analyze the resulting
data. In this way both organisms and researchers employ many tactics to solve a complex problem. One challenge facing
ecological immunologists is the question of how these many dimensions of immune function can be synthesized to
facilitate meaningful interpretations and conclusions. We tackle this challenge by employing and comparing several
statistical methods, which we used to test assumptions about how multiple aspects of immune function are related at
different organizational levels. We analyzed three distinct datasets that characterized 1) species, 2) subspecies, and 3)
among- and within-individual level differences in the relationships among multiple immune indices. Specifically, we used
common principal components analysis (CPCA) and two simpler approaches, pair-wise correlations and correlation circles.
We also provide a simple example of how these techniques could be used to analyze data from multiple studies. Our
findings lead to several general conclusions. First, relationships among indices of immune function may be consistent
among some organizational groups (e.g. months over the annual cycle) but not others (e.g. species); therefore any
assumption of consistency requires testing before further analyses. Second, simple statistical techniques used in
conjunction with more complex multivariate methods give a clearer and more robust picture of immune function than
using complex statistics alone. Moreover, these simpler approaches have potential for analyzing comparable data from
multiple studies, especially as the field of ecological immunology moves towards greater methodological standardization.
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Introduction

Background: One problem, many solutions
The immune system is a complex collection of interrelated and

overlapping solutions to the problem of disease. In the vertebrate

immune system these solutions include relatively general and

constantly maintained (though variable) defences such as circulat-

ing leukocytes and antimicrobial proteins (constitutive innate

immunity), general but induced responses such as fever and

sickness behaviours (induced innate immunity), and more specific

and induced responses such as the production of antibodies by B-

cells (induced acquired immunity; [1]). Organisms employ these

multiple mechanisms to prevent and limit the effects of disease.

Immunological complexity, however, presents a problem for

researchers interested in studying immune function in an

ecological context because variation in immune function cannot

be meaningfully captured using a single measure [2,3,4,5].

Furthermore, incongruence is often found between different

immune indices, even within a single study. For example, in

house sparrows (Passer domesticus) phytohaemagglutinin (PHA)

induced wing web swelling is positively correlated with survival,

while specific antibodies to sheep red blood cell challenge (SRBC)

are negatively correlated with survival ([6] and see [7] for a review

of other examples). This incongruence hints at possible trade-offs

within the immune system (see examples in [3]). Over the past few

years, ecological immunologists have attempted to better under-

stand immunological complexity by developing and using multiple

methods to measure immune function and to analyze the resulting

data. In a sense, the researchers are mirroring nature by applying

multiple solutions to a complex problem. This approach has

resulted in exciting progress, but standardizing assays to measure

immune function and providing appropriate statistical tools to

analyse these data have proven difficult.

To understand how ecological immunology achieved its current

status, it is useful to review why ecologists study immunology and

what led them to devise multiple ways to measure immune

function. First, ecologists are interested in understanding natural

variation in immune function and evaluating this variation from a
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cost-benefit perspective within an ecological and evolutionary

context [8]. Second, because immune systems are so multidimen-

sional, ecologists often want or need to quantify multiple aspects of

immune function to fully answer a research question. Further-

more, for practical and philosophical reasons, ecologists are

interested in which immune defences (if any) can be examined

together as a single variable and which defences vary indepen-

dently and must be measured separately [5]. Third, ecologists are

interested in whether relationships among aspects of immune

function are consistent within and generalizable among different

organizational levels (e.g. from one individual, species, time point

or environment to another). Some researchers suggest that

selection or constraint may result in consistently correlated axes

of immune defence (sensu [9,10]), while others suggest that

flexibility may be paramount so that specific types of pathogens

can be targeted and different aspects of immune function can be

used in different circumstances [3,7]. In this paper, we explore the

usefulness of several statistical approaches for addressing the

second and third points above. These approaches test assumptions

about how multiple aspects of immune function are related among

different organizational levels.

The field of ecological immunology needs analytical tools that

can simultaneously summarize variation in multiple measures of

immune function. Few studies have empirically examined

relationships among immune indices. Instead, ideas about immune

system synergisms and trade-offs are often based on general

immunological knowledge from humans, domesticated animals

and other model systems (reviewed in [1,3,7,11]) or rooted in life-

history hypotheses (e.g. [9]). When undertaken, multivariate

studies in ecological immunology often apply different statistical

approaches and include different immune indices. For example,

simple correlations have been used to examine relationships

among aspects of immune function [12,13] and among measures

of immune function and antioxidants [14,15]. Principle compo-

nent analysis (PCA, see Table 1 for a summary of abbreviations)

has been used to examine relationships among immune indices

within an axis of immune function (e.g. constitutive immunity

[5,16,17,18]) and among multiple axes of immune function [19].

Thus, the field of ecological immunology lacks a statistical protocol

for analysing and summarizing variation in multiple measures of

immune function. This analytical gap is by no means unique to

this field. Similar gaps have been effectively bridged, for example

when relating multiple morphological traits (e.g. [20,21]) and

when relating multiple genotypic and phenotypic variables (e.g.

[22]).

In this age of powerful statistical techniques, one possible

solution to analyzing multiple datasets is the better and more

consistent application of multivariate tools. For example, PCA and

structural equation modelling (SEM; [23]) can be used to examine

how immune indices are correlated within a single group, and

common principal components analysis (CPCA; [24,25]) can be

used to examine whether indices correlate in the same way among

multiple groups. However, in order to employ these methods

across multiple studies, the same aspects of immune function need

to be measured. Furthermore, if PCA or SEM are to be used with

a single global dataset set (e.g. birds) that is composed of different

groups (e.g. species), it must be assumed that relationships among

immune indices are the same in the different groups. To our

knowledge SEM has not yet been used in the context of ecological

immunology, and although ecological immunologists have used

PCA; the next step – using CPCA to test whether immune indices

correlate in the same way among groups – has not yet been taken.

We explore the usefulness of CPCA in this paper, and we illustrate

the value of statistically simpler methods, such as pair-wise

correlations, as complements to complex multivariate techniques.

Although we do not use SEM, we end the paper with a brief

discussion of its future potential for moving the field forward.

Principal component analysis (PCA) and its assumptions
Principal component analysis is a method that derives linear

combinations of the original variables in a dataset to summarize

variation [26,27]. PCA can be used to reduce many variables to

fewer derived variables (principal components or PCs), which can

then be used in further analyses. PCA can also be used to identify

covariation among more than two variables. Ecological immunol-

ogists have used PCA to summarize data taken from multiple

measures of immune function and to examine how the PCs vary

over the annual cycle [16], between individuals or treatments

[5,16,18], and among species [5,19]. However, determining

relationships among indices at these different organizational levels

often requires pooling data from different groups (e.g. individuals

in different months).

PCA provides a multivariate description of data structure within

a single group, not among multiple groups [21]. Previously, this

statistical issue has been dealt with by partitioning variation into

different levels (i.e. among species and among individuals [5], or

among individuals and over time [16]). For example, variation in

indices of immune function has been described among units (i.e.

individuals or months) belonging to multiple groups (i.e. species [5]

or individuals [16]) by pooling across groups, in essence, ignoring

Table 1. Abbreviations used in the text, tables and figures.

Statistical Tools

PCA Principal components analysis

CPCA Common principal components analysis

SEM Structural equation modeling

Waterfowl species

ALCG Aleutian Canada goose

NABD North American black duck

CHPT Chilean pintail

SGPT South Georgia pintail

LATE Laysan teal

MUSC Muscovy duck

NENE Nene or Hawaiian goose

WWWD White-winged wood duck

Stonechat subspecies

KazXEur Cross between Kazakh and European stonechats

EurXKen Cross between European and Kenyan stonechats

Immune indices

Het Heterophil concentration

Eos Eosinophil concentration

Lym Lymphocyte concentration

Mon Monocyte concentration

MCSa Microbicidal capacity against S. aureus

MCCa Microbicidal capacity against C. albicans

MCEc Microbicidal capacity against E.coli

Lys Complement mediated lysis

Agg Natural antibody mediated agglutination

Hap Haptoglobin-like activity

doi:10.1371/journal.pone.0018592.t001
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group affiliation. However, this approach assumes that indices

covary similarly among all groups that make up a global dataset.

To our knowledge this assumption remains untested in the context

of ecological immunology. Testing this assumption will provide

new insight into immunological covariation. Consistent relation-

ships may indicate physiological constraints, while labile relation-

ships could have different interpretations depending on the

organizational level (e.g. species-specific selection pressures,

individual-specific immune strategies, season-specific responses).

Testing this assumption
Several methods are available for testing this assumption. First,

CPCA is a procedure that tests whether variables covary in a

similar way in different groups. CPCA determines whether the

variance-covariance matrices among groups are structurally

similar, and the method differentiates among degrees of matrix

similarity. Immune indices could covary in a similar way among

groups (i.e. the matrices are equal). Immune indices could covary

in a similar way, but with the strength of covariation differing

among groups (i.e. the matrices are proportional). Some immune

indices could covary in a similar way while others covary

differently among groups (i.e. the matrices share some but not

all PCs). Finally, the matrices could be completely unrelated

[24,25]. CPCA can serve as a powerful statistical tool, but several

caveats should be taken into consideration when making biological

interpretations based on CPCA [28]. CPCA, like PCA, assumes

that relationships among the PCs are orthogonal. However, in

ecology it is often unrealistic to assume that the underlying causes

of the data structure are completely independent. For example,

covariation in indices of immune function may be affected by

hormone concentrations, which may in turn be correlated with

one another. Furthermore, when CPCA determines that PCs are

not common among groups, the analysis does not identify which

or how particular relationships or variables are inconsistent [28].

In light of the limitations of CPCA, it is also useful to employ

simple pair-wise correlations. To summarize correlations, we plot

correlation coefficients using dot and boxplots. Plotting correlation

coefficients individually allows for visual evaluation of whether

particular groups are clustered or well-scattered. Plotting data as

boxplots allows for a simple visual examination of how pairs of

indices are related in general (the mean correlation) and whether

correlations are consistent among groups or over time (the width of

the boxes and whiskers).

A final approach is to carry out separate PCAs and plot separate

correlation circles for each group, for example species, subspecies,

individual or time points. In a correlation circle, all of the original

variables included in a PCA are plotted against two of the

principal components, which are represented as the x- and y-axes.

Using a simple, hypothetical dataset with only two immune indices

and two groups, Figure 1 demonstrates how these diagrams can be

interpreted. In (a) the relationships between the variables are

similar in the two groups, in (b) they differ somewhat, and in (c)

they are opposite. The fourth panel of Figure 1 highlights how

important patterns may be diluted (b) or missed (c) when groups

are pooled. Correlation circles allow for graphical examination of

the relationships among indices, and the consistency of these

relationships among groups and over time. This approach can

supplement the pair-wise correlation approach. While that

Figure 1. Simplified scenarios illustrating how correlation circles can be interpreted when relationships between variables among
groups are similar (a), dissimilar (b), or opposite (c). The first vertical panel consists of a scatterplot showing the correlation between two
indices in two groups (e.g. species, individuals or months). The next two panels show the resulting correlation circles for the two groups separately.
The fourth panel shows the relationship given when the two groups are combined, and highlights how important patterns may be diluted (b), or
missed (c). In the correlation circles, vectors are loadings for the two indices of immune function. The angle between two vectors gives the degree of
correlation (adjacent = highly correlated, orthogonal (90u) = uncorrelated, and opposite (180u) = negatively correlated).
doi:10.1371/journal.pone.0018592.g001
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approach allows simultaneous evaluation of bivariate relationships,

the separate PCAs and correlation circles allow for simultaneous

examination of covariation among multiple immune indices.

We used these three methods to test the assumption of

consistent relationships among immune indices at the species,

subspecies, individual and temporal levels. We analysed one

unpublished and two previously published multivariate datasets of

immune function: (1) multiple species of waterfowl at a single time

point [5], (2) multiple subspecies of a passerine [Versteegh et al.

unpublished data] during a single season and (3) multiple

individuals of a single shorebird species over the annual cycle [16].

Methods

Datasets
Matson et al. [5] measured 13 indices of immune function in 10

species of waterfowl using five general protocols: microbicidal

activity, leukocyte concentrations, hemolysis-hemagglutination

titers, haptoglobin-like concentration, and antioxidant capacity.

In Matson et al. [5] the data were split into plasma-based and

cellular indices, because sample sizes within each species did not

allow for PCA of all of the variables in a single analysis. In this

study we restricted our analyses to five indices immune function

derived from plasma samples: microbicidal capacity of plasma

against Escherichia coli and Staphylococcus aureus (anti-E.coli and anti-

S. aureus capacities); hemolysis and hemagglutination titers against

rabbit red blood cells; and haptoglobin-like concentration (see

Table 1 for abbreviations). We omitted hemolysis and hemagglu-

tination titers against trout blood since most researchers use only

rabbit blood and because trout and rabbit blood gave very similar

results [5]. We omitted antioxidant capacity in order to limit the

examined indices to those with a primarily immunological

function. We excluded two of the ten species because sample

sizes (n = 2 and n = 1) were not large enough to run within-species

PCA. Therefore, the final dataset included eight species: Aleutian

Canada goose, Branta canadensis leucopareica (ALCG, n = 7); North

American black duck, Anas rubripes (NABD, n = 6); Chilean pintail,

Anas georgica spinicauda (CHPT, n = 8); South Georgia pintail, Anas

georgica georgica (SGPT, n = 8); Laysan teal, Anas laysanensis (LATE,

n = 8); Muscovy duck, Cairina moschata (MUSC, n = 5); nene or

Hawaiian goose, Branta sandvicensis (NENE, n = 8); white-winged

wood duck, Cairina scutulata (WWWD, n = 8, Table 1). Although

we also analysed the cellular indices of immune function, these

results are presented in the supplementary material only.

Versteegh et al. (unpublished) measured six indices of immune

function in four subspecies and two hybrid populations of captive

stonechats, using three general protocols: microbial capacity

against E. coli, S. aureus and Candida albicans, hemolysis-hemagglu-

tination titers and haptoglobin-like activity. All individuals were

measured during a single quiescent period in the annual cycle

(winter). The geographically-distinct subspecies originated from

Kazakhstan (Saxicola torquata maura, n = 10), Europe (S. t. rubicola,

n = 15), Kenya (S. t. axillaris, n = 13) and Ireland (S. t. hibernans,

n = 16). The hybrids were crosses between Kazakh and European

stonechats (KazXEur, n = 12) and European and Kenyan

stonechats (EurXKen, n = 20, Table 1). Hybrid groups are

henceforth referred to as subspecies for simplicity.

Buehler et al. [16] measured 14 indices of immune function in

red knots (Calidris canutus) using three general protocols: microbi-

cidal capacity, leukocyte concentrations and hemolysis-hemagglu-

tination titers. We restricted our analyses to the 27 birds measured

over the entire study period of 11 consecutive months. We also

restricted our analyses to eight indices of immune function: a single

time point in three strains for microbicidal capacities (E. coli after

10 min, C. albicans after 60 min and S. aureus after 120 min);

concentrations of heterophils, lymphocytes and monocytes; and

hemolysis and hemagglutination titers against rabbit red blood

cells. Total leukocyte concentrations were excluded since they are

the sum of the differential concentrations; eosinophil concentra-

tions were excluded due to a large number of 0 values;

thrombocyte concentrations were excluded because these cells

are not commonly quantified by ecologists. We used the

transformed leukocyte concentration data to ensure normality

and to maintain consistency with Buehler et al. [16].

Anti-E. coli and anti-S. aureus capacities were measured in all

three datasets, but the results are not entirely comparable. Matson

et al. [5] used plasma, which indicates the microbicidal capacity

of soluble blood components alone. Buehler et al. [16] and

Versteegh et al. (unpublished) used whole blood, which potentially

reflects actions by both cellular (e.g. phagocytosis) and soluble

components.

Statistical methods
Common principal component analysis (CPCA): A

statistical test of matrix similarity. Common principal

component analysis is an extension of PCA that compares the

structure of two or more covariance matrices in a hierarchical

fashion. This hierarchy is built on the recognition that any two

matrices can relate to one another in a complex fashion and that

the two are not simply equal or unequal. CPCA determines

whether matrices are equal, proportional, share a number of

principal components, or are unrelated. The number of principal

components shared can range from one to p-2, where p is the

number of variables. CPCA relies on two approaches — the

model-building approach and the step-up approach — to identify

the most likely relationships among matrices. In the model

building approach, the best model is the model with the lowest

Akaike information criterion (AIC). In the step-up approach, a

null-hypothesis is iteratively compared to an alternative

hypothesis. The compared models are chosen from a hierarchy,

which begins with two unrelated matrices, and progresses through

matrices that share one PC, that share more than one (up to p-2)

PC, that are proportional, and, finally, that are equal. The null

model is always tested against an alternative model one step higher

in the hierarchy. A significant P-value means that the null model

better describes the data [25].

We used the program CPC [29], which performs the analysis

described by Flury [24], to carry out CPCA. We used correlation

matrices rather than covariance matrices because we were

interested in the relationship between indices independent of their

absolute values. We calculated correlation matrices for each

species, subspecies, individual and month. For the comparisons

among individuals and among months, the same data were used,

but the correlation matrices were constructed per bird or per

month respectively. The CPCA of plasma indices for waterfowl

species was based on seven matrices with six to eight observations

per matrix (the MUSC species was excluded due to low levels of

variability in one or more immune index); the CPCA of stonechat

subspecies was based on six matrices with 12 to 20 observations

each; the CPCA of individual red knots was based on 27 matrices

with 11 observations each; and the CPCA of red knots over time

was based on 11 matrices with 27 observations each.

Pair-wise correlations and boxplots. We calculated

Pearson correlation coefficients for all pairs of immune indices.

The correlation coefficients are presented as boxplots for each pair

of indices at a particular level of analysis (i.e. species, subspecies,

individual and months). For example, at the species level, each box

with whiskers represents the distribution of eight species-specific

Statistical Solutions for Ecological Immunology
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correlations and each correlation is based on 5 to 8 individuals.

Furthermore, we calculated 95% confidence intervals and

performed t-tests to examine whether the mean correlation

coefficients for each pair-wise comparison differed significantly

from zero (after accounting for multiple comparisons using a

sequential Bonferroni correction [30]). Because correlation

coefficients are not normally distributed, we transformed the

correlations into z-scores ([31] page 578) before carrying out the t-

tests. For waterfowl and stonechats, sample sizes differed among

species or subspecies. Therefore, we calculated weights based on

sample sizes in such a way that the group (or groups) with the

largest sample size were given a weight of 1 (adapted from [31]

page 42). We multiplied the z-transformed correlation coefficients

with these weights to obtain weighted correlations. Using these

weighted correlations, we calculated means and variances and

performed t-tests (n = the number of groups in the analysis). T-

tests performed on weighted and unweighted correlations resulted

in similar outcomes. The boxplots in combination with these t-tests

allowed us to gauge both the consistency of the correlations (width

of a box/whiskers) and whether or not mean correlations differed

significantly from zero. Finally, correlation coefficients were

plotted individually in dotplots and coded by species, subspecies,

or ‘‘subpopulation’’ (i.e. treatment group or month in the case of

knots [16]). These dotplots were examined for clustering of points,

which allowed us to explore the possibility of consistent

correlations in one or more subsets. For example, a mean

correlation coefficient near zero and a wide box and whiskers

could be the result of two indices being positively correlated in

some groups and negatively correlated (or consistently

uncorrelated) in other groups. Pearson correlations, plots and t-

tests were performed using R [32].

Within-group principal component analysis (PCA) and

correlation circles. We carried out separate PCAs and plotted

a separate correlation circle for each group at each organizational

level (species, subspecies, individual or time point), to concurrently

examine the relationships among indices and among groups. This

analysis allows the examination of multiple dimensions at once (i.e.

immune indices), but one potential limitation is that all indices

must be measured in all groups.

PCAs were performed and correlation circles were generated

using the ade4 package in R [33]. In every correlation circle, each

measured variable is shown as a vector, which signals the

combined strength of the relationships between the measured

variable and two PCs (vector length) and whether these

relationships are positive or negative (vector direction). The angle

between two vectors signals the degree of correlation between two

measured variables. A right angle indicates that two variables are

completely uncorrelated; zero or 180 degrees between two

variables indicates complete positive or negative correlation.

Consistent relationships among groups at a particular level (i.e.

species, individual, month) are indicated by similar angles among

the vectors in different correlation circles. While we only show

correlation circles with PC1 and PC2, we examined correlation

circles for all combinations of PCs 1 to 4 (not shown). Unless

otherwise stated, all correlation circles resulted in the same

conclusions as those showing PC1 and PC2 alone.

We based the PCAs on the same correlation matrices used for

the CPCA. Unlike Matson et al. [5] and Buehler et al. [16], we

chose not to do a varimax rotation because we wanted to facilitate

comparison between the PCAs and the CPCAs (which operate on

unrotated values). Nevertheless, we shaded immune index labels in

the group-specific correlation circles to reflect the PCs resulting

from the previous varimax-rotated PCA performed with all

species, individuals or months combined. Although this graphical

representation is not completely comparable because rotation can

affect PC composition, angles between vectors indicate the

relationship between the variables in both rotated and unrotated

PCAs. Therefore, if the previous analysis and the current analysis

are in agreement, then indices having the same shading should be

clustered together (if positively correlated) or in opposition (if

negatively correlated), at least in the majority of cases.

Results

Common principal component analysis (CPCA)
Among waterfowl species, both CPCA approaches indicated

complete shared structure with differing eigenvalues for both for

plasma (CPC; Table 2) and cellular components (CPC; Table S1).

Among stonechat subspecies, the two approaches indicated slightly

different structures for plasma components. The step-up approach

suggested complete shared structure with differing eigenvalues

(CPC), and the model building approach suggested equality

among matrices (Table 3). Among red knot individuals, the two

approaches to CPCA resulted in the most extreme possible

contradiction. The step-up approach suggested that the matrices

were unrelated, whereas the model building approach suggested

that the matrices were equal (Table 4). Finally, among months in

individual red knots, the step-up approach indicated that the

matrices shared all PCs but had different eigenvalues (CPC), and

the model-building approach indicated that the matrices were

equal (Table 5).

Pair-wise correlations and boxplots
Box and whisker plots of waterfowl species-specific correlation

coefficients were wide (median IQR = 0.47), box widths varied

(0.14,IQR,0.71), and the narrowest box exhibited an outlier

(Figure 2; see Table 1 for immune index abbreviations).

Furthermore, 95% confidence intervals and t-tests indicated that

none of the mean correlation coefficients differed significantly

Table 2. Common principal components analysis (CPCA) of
covariance matrices among waterfowl species for plasma-
based indices of immune function.

Hierarchy

Higher Lower x2 df P AIC

Equality Proport 0.570 6 0.9969 126.0

Proport CPC 62.021 24 ,0.0001 137.4

CPC CPC(3) 4.524 6 0.6062 123.4

CPC(3) CPC(2) 19.496 12 0.0772 130.9

CPC(2) CPC(1) 15.393 18 0.6348 135.4

CPC(1) Unrelated 23.977 24 0.4629 156.0

Unrelated — 180.0

The table shows Flury’s Decomposition of Chi Square using step-up and model
building approaches [24,25]. In the step-up approach at each step in the
hierarchy the hypothesis labeled ‘‘higher’’ is tested against the hypothesis on
the step below, ‘‘lower’’. The hierarchy is built in a step-wise fashion starting
with no relation between the matrices (Unrelated) and rising to CPC(1), then
CPC(2), etc, through CPC, Proportionality, and Equality. The likelihood that a
particular model is valid is given by the P-value, thus low P-values indicate a low
probability that the higher model is better than the lower model [25]. The best
solution can also be evaluated using the model building approach where the
best model is indicated as the ‘‘higher’’ model in the row with the lowest Akaike
information criterion (AIC). Both methods indicate that the matrices share all
PCs in common but have different eignevalues (CPC).
doi:10.1371/journal.pone.0018592.t002
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from zero (Table S2). Combined, these results suggest that in this

dataset pairs of immune indices are weakly and inconsistently

correlated among waterfowl species. Pair-wise correlations among

stonechat subspecies showed slightly less variability than among

waterfowl species (0.12,IQR,0.49, median IQR = 0.32;

Figure 3), but three boxes had outliers. Furthermore, only one

of the 15 mean correlation coefficients differed significantly from

zero (Agg-Lys; Table S3).

Pair-wise correlations among knot individuals showed a similar

degree of variability as was seen among species and subspecies

(0.20,IQR,0.61, median IQR = 0.41; Figure 4a). The most

positively (lymphocytes-monocytes) and negatively (hemolysis-anti-

E.coli capacity) correlated pairs had whiskers that did not include

zero, but even these pairs had outliers that crossed zero. However,

eight of the 28 relationships had mean correlation coefficients that

differed significantly from zero (Figure 4a and Table S4a). Within

individual knots over 11 months, box and whisker plots were

narrower than at any other level (0.09,IQR,0.55, median

IQR = 0.25; Figure 4b). Furthermore, 6 of the 28 relationships

were significantly different from zero (Table S4b) and of the 6

significant pairs, only one had whiskers that included zero and

none had outliers. Thus, some indices were consistently correlated,

either positively or negatively, over the year.

Dotplots of individual correlation coefficients (not shown)

indicated no clustering among subsets of waterfowl species or

stonechat subspecies. Furthermore, in red knots we found no

clustering by treatment (i.e. warm, cold, and variable) or by season

(migration, moult, wintering).

Within-group principal component analysis (PCA) and
correlation circles

The angles between vectors in the species-specific correlation

circles differed widely indicating that relationships among plasma

(Figure 5) and cellular (Figure S1) indices were generally

inconsistent among waterfowl species. For example, anti-E.coli

capacity and hemagglutination were uncorrelated (perpendicular)

in ALCG and highly correlated (parallel) in CHPT. An exception

is the uncorrelated relationship (perpendicular) between hapto-

globin and hemolysis, which was consistent among species (also

reflected by a narrow box in Figure 2). Shaded variable labels in

Figure 5 indicated that immune indices that were related in the

previous analysis [5] were not related when the PCA was

performed on each species separately.

Subspecies-specific correlation circles indicated that some im-

mune indices were consistently related among stonechat subspecies;

other indices were consistently related in some, but not all subspecies;

and yet other indices were not consistently related among subspecies

(Figure 6). For example, hemolysis and hemagglutination were

positively correlated in all subspecies. The angles between the vectors

of these indices were small in five of the six subspecies (Figure 6); and

in Kazakh birds, although the angle was perpendicular the vectors

were short, indicating that they were not strongly correlated with

PC1 or PC2. Examination of the first four PCs showed that they

were positively correlated with a high loading on the third PC (not

shown). Anti-E. coli and anti-S. aureus were positively correlated in

some, but not all subspecies. The angles between the vectors of these

indices were small in five of the six subspecies (Figure 6). In EurXKaz

subspecies the angle was perpendicular and the vectors were short.

Table 3. Common principal components analysis (CPCA) of
covariance matrices among stonechat subspecies.

Hierarchy

Higher Lower x2 df P AIC

Equality Proport 1.015 5 0.9614 103.7

Proport CPC 47.044 25 0.0048 112.7

CPC CPC(4) 8.443 5 0.1335 115.6

CPC(4) CPC(3) 4.514 10 0.9212 117.2

CPC(3) CPC(2) 10.241 15 0.8043 132.7

CPC(2) CPC(1) 13.959 20 0.8326 152.4

CPC(1) Unrelated 18.464 25 0.8221 178.5

Unrelated — 210.0

The step-up approach (where a low p-value indicates a low probability that the
higher model is better than the lower model) suggests that covariance matrices
among subspecies share all PCs, but have differing eigenvalues (CPC), and the
model building approach (where the lowest AIC value indicates the best model)
suggests that the matrices are equal (see Table 1 for a complete description of
the step-up and model building approaches).
doi:10.1371/journal.pone.0018592.t003

Table 4. Common principal components analysis (CPCA) of
covariance matrices containing indices of immune function
among individual red knots.

Hierarchy

Higher Lower x2 df P AIC

Equality Proport 6.978 26 0.9999 1464.2

Proport CPC 281.317 182 ,0.0001 1509.3

CPC CPC(6) 33.538 26 0.1471 1591.9

CPC(6) CPC(5) 64.881 52 0.1083 1610.4

CPC(5) CPC(4) 88.281 78 0.1998 1649.5

CPC(4) CPC(3) 152.434 104 0.0014 1717.2

CPC(3) CPC(2) 214.075 130 ,0.0001 1772.8

CPC(2) CPC(1) 304.889 156 ,0.0001 1818.7

CPC(1) Unrelated 317.835 182 ,0.0001 1825.8

Unrelated — 1872.0

doi:10.1371/journal.pone.0018592.t004

Table 5. Common principal components analysis (CPCA) of
covariance matrices containing indices of immune function
among 11 month within individual red knots.

Hierarchy

Higher Lower x2 df P AIC

Equality Proport 2.189 10 0.9947 362.8

Proport CPC 122.267 70 0.0001 380.6

CPC CPC(6) 17.194 10 0.0702 398.3

CPC(6) CPC(5) 22.560 20 0.3109 401.1

CPC(5) CPC(4) 18.012 30 0.9583 418.5

CPC(4) CPC(3) 29.036 40 0.9004 460.5

CPC(3) CPC(2) 50.667 50 0.4471 511.5

CPC(2) CPC(1) 47.340 60 0.8823 560.8

CPC(1) Unrelated 53.495 70 0.9286 633.5

Unrelated — 720.0

doi:10.1371/journal.pone.0018592.t005
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Examination of the first four principal components showed that

these two indices were negatively correlated on the third PC (not

shown). Finally, haptoglobin and hemagglutination showed com-

pletely different relationships in the different subspecies. They were

positively related in Irish birds, unrelated in EurXKen hybrids and

negatively related in Kazakh birds. Shaded variable labels (Figure 6)

indicated that immune indices that were related in a varimax rotated

PCA combining all subspecies (Table S5, see [5] for method)

clustered in some (e.g. European) but not all (e.g. KazXEur)

subspecies when the PCA was performed on each subspecies

separately.

Individual-specific correlation circles indicated that relationships

among some indices were consistent among most red knot individuals

(Figure S2a). However, not all indices were consistently related in all

individuals. For example, the angles between monocytes and

lymphocytes are small in most, but not all birds (see birds 19 and

24, Figure S2a). In this way, the correlation circle results supported

boxplot results. Immune index pairs with narrow boxes (Figure 4) are

Figure 2. Boxplots showing correlation coefficients for pair-wise Pearson correlations between plasma-based indices of immune
function among waterfowl species (n = 8, see Table 1 for abbreviations). Solid lines indicate the median, boxes the inter-quartile range,
whiskers the range and open circles outliers. Lower variation (smaller boxes, whiskers and few outliers) indicates more consistent correlations among
species.
doi:10.1371/journal.pone.0018592.g002

Figure 3. Boxplots showing correlation coefficients for pair-wise Pearson correlations between indices of immune function among
stonechat (Saxicola torquata) subspecies (n = 12 to 20, see methods for sample size details and Table 1 for abbreviations). Solid lines
indicate the median, boxes the inter-quartile range, whiskers the range and open circles outliers. Lower variation (smaller boxes, whiskers and few
outliers) indicates more consistent correlations among subspecies. Asterisks indicate weighted mean correlation coefficients [31] that differed
significantly from zero after sequential Bonferroni correction [30] (see Tables S3 for statistics).
doi:10.1371/journal.pone.0018592.g003
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the same indices that group together in most correlation circles (e.g.

lymphocytes and monocytes). Shaded variable labels in Figure S2a

indicated that immune indices that grouped together previously when

all birds were combined in a single analysis [16], once again cluster in

most birds (e.g. lymphocytes and monocytes), but exceptions remain

(see birds 19 and 24).

Finally, month-specific correlation circles indicated that rela-

tionships among indices were relatively consistent through the year

(Figure S2b). For example, the angle between lymphocytes and

monocytes is small in all months. Shaded variable labels showed

that immune indices that grouped together previously [16] again

clustered fairly consistently when all months were analyzed

separately (i.e. lymphocytes, monocytes; heterophils and anti-C.

albicans and anti-S. aureus capacities, Figure S2b).

Discussion

To deal with the complexity of the immune system, ecological

immunologists have devised multiple techniques to measure

different aspects of immune function in wild animals. In this

paper we address the question of how multivariate immunological

datasets can be meaningfully analyzed and interpreted among

distinct groups at a particular organizational level (e.g. species or

populations). Previously, researchers have applied multivariate

methods to data that are pooled after statistically neutralizing any

group-effect. However, the implicit assumption is that relation-

ships among the assayed immune indices are similar in all groups.

We tested this assumption using CPCA, and then employed pair-

wise correlations and correlation circles to delve deeper into the

Figure 4. Boxplots showing correlation coefficients for pair-wise Pearson correlations between indices of immune function (see
Table 1 for abbreviations) in red knots (Calidris canutus) among individuals (a, n = 27 birds), and over time (b, n = 11 monthly
measurements). Solid lines indicate the median, boxes the interquartile range, whiskers the range and open circles outliers. Lower variation (smaller
boxes, whiskers and few outliers) indicates more consistent correlations. Asterisks indicate mean correlation coefficients that differed significantly
from zero after sequential Bonferroni correction [30] (see Tables S4 for statistics).
doi:10.1371/journal.pone.0018592.g004
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consistency and inconsistency of these relationships among groups.

These statistical analyses range in complexity and in novelty, at

least in terms of their use with multivariate datasets concerning

immune function. Nonetheless, when packaged together and

treated as a statistical protocol, these methods can serve as an

important new tool, which can be applied to a variety of datasets

and organizational levels.

Fresh insights provided by this novel statistical approach
The current statistical protocol gave insight that was inaccessible

when using previous analytical approaches. As a result, the

presented protocol facilitates more-detailed conclusions than were

previously possible (e.g. [5] [16] [19]) and, thus, acts as a

foundation for new hypotheses. We highlight these new insights by

comparing and contrasting current and prior results at different

organization levels.

Overall, the extent to which multivariate patterns are consistent

among groups at different organizational levels varies. For

example, relationships among immune indices differed from

species to species, but relationships among immune indices were

fairly similar from month to month. This variability could depend

on qualities of the dataset, the organizational level, or both. Once

additional studies begin employing this statistical protocol, a

picture will emerge as to whether any generalities about specific

organizational levels can be made. For instance, patterns among

immune defenses might typically be similar among populations but

different among species. In fact, our results suggest that

relationships among immune indices become less consistent as

the complexity of the organizational level increases (i.e. from

individuals to subspecies to species). If this pattern holds as

additional datasets and analyses come to light, then it could serve

as a basis for new hypotheses. For example, over shorter timescales

physiological mechanisms might limit plasticity and variability in

how immune defences relate to one another, but over longer time

scales selection pressures might gradually reshape physiology and

lead to decoupled and reorganized immunological relationships

[34].

The current protocol allowed for the re-examination and

refinement of previous multivariate analyses of immune function.

Matson et al. [5] pooled individuals across species and reported a

general among-individual pattern, which parallels assay category.

The current approach, however, revealed that this use of pooling

individuals might unduly influence the results of the analysis, since

among-individual patterns differed by species. Buehler et al. [16]

pooled their data in two ways: 1) data points from a given

individual were pooled by statistically correcting for month to

examine among-individual patterns 2) data points from a given

month were statistically corrected for individual to examine

among-month patterns. Our current approach suggested that the

suitability of pooling differed between these two cases. On the one

Figure 5. Correlation circles for unrotated principal component
analyses (PCA) on plasma-based immune indices among
waterfowl species (see Table 1 for abbreviations). Vectors are
the loadings on PC1 (x-axis) and PC2 (y-axis). Vector length indicates the
strength of the relationship and the angle between two vectors gives
the degree of correlation (adjacent = highly correlated, orthogonal
(90u) = uncorrelated, and opposite (180u) = negatively correlated). Shad-
ing indicates how the indices of immune function were grouped in a
previous varimax rotated PCA performed with all species combined [5].
Indices having the same shading were associated with the same PC in
the previous analysis.
doi:10.1371/journal.pone.0018592.g005

Figure 6. Correlation circles for unrotated principal component
analyses (PCA) on immune indices among stonechat subspe-
cies (see Table 1 for abbreviations). Vectors are the loadings on
PC1 (x-axis) and PC2 (y-axis). Vector length indicates the strength of the
relationship and the angle between two vectors gives the degree of
correlation (adjacent = highly correlated, orthogonal (90u) = uncorrelat-
ed, and opposite (180u) = negatively correlated). Shading indicates how
the indices of immune function were grouped in a varimax rotated PCA
performed with all subspecies combined (see Table S5). Indices having
the same shading were associated with the same PC in the combined
PCA. Anti-C. albicans capacity correlated equally across two PCs in the
pooled analysis (Table S5), therefore it has darker grey shading with
white lettering.
doi:10.1371/journal.pone.0018592.g006
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hand, statistically correcting for month revealed among individual

patterns that appear to be well-supported since we demonstrate

that relationships among immune indices were consistent from one

month to the next. On the other hand, statistically correcting for

individual to examine annual patterns might inappropriately shape

the global relationships among immune indices since we

demonstrate that these relationships varied from individual to

individual. To summarize, if correlations are consistent among

groups of an organizational level, then both our novel approach

and the approach of pooling data across groups give similar

results. However, if correlations are inconsistent across among

groups of an organizational level, then a single combined analysis

can obscure patterns.

Differences between the two approaches also hinge on issues of

inference space and sample size. The general patterns derived

from the analyses of pooled study subjects can potentially offer

greater inference (e.g. the order Anseriformes as opposed to the

species Anas platyrhynchos). One caveat is that in pooled analyses

disparities in sample sizes among groups can affect patterns: a well-

represented group with more measurements will exert greater

influence on the global pattern than a poorly represented group

with few measurements. While the groups we compared were

generally similar in sample size, checking the consistency of

correlations among groups is particularly important when sample

sizes vary in such a way that one or a few groups dominate over

many others. In the latter case, any evaluation of global patterns

should be preceded by group-by-group evaluations. Another

caveat is that the value of a general pattern based on a pooled

analysis is dictated by the diversity of the representative groups.

Ultimately, this too is an issue of sample size, albeit one concerning

the number of groups, as opposed to the number of measurements

per group.

Immunological consistency and inconsistency among
groups

The statistical protocol outlined in this paper provided insights

into consistencies and inconsistencies in the way that immunolog-

ical indices interrelate among groups. The usefulness of the

protocol, however, extends beyond these particular datasets. The

currently-analyzed organizational levels are meant to exemplify

the applicability of this protocol to other organizational levels and

possibly even to other multivariate datasets unrelated to immune

function. Nevertheless, to provide a robust foundation for the

future use of this protocol, we discuss briefly the results at each

analyzed level.

Among waterfowl species, the CPCA indicated complete

common principal component structure. This result suggests that

covariance matrices are not statistically different among species.

That is, immune indices interrelate similarly among species, and

therefore pooling individuals into a single PCA is valid [5]. On the

contrary, pair-wise correlation boxplots and species-specific

correlation circles provided no evidence for consistent immuno-

logical relationships among species. The conflicting results might

stem from small within-species sample sizes (n = 6–8 individuals),

which can increase the likelihood of recovering shared covariance

structure with CPCA even when little similarity actually exists

[35]. Consequently, we cannot unequivocally conclude that

immunological relationships are consistent within the tested

species, and, the results seemingly invalidate the approach of

pooling individuals of different species into a single PCA.

Among stonechat subspecies, the CPCA indicated either

equality or complete common PC structure. That is, immunolog-

ical relationships are consistent among subspecies. However, pair-

wise correlation boxplots and subspecies-specific correlation circles

cast some doubt on this result. While some immune indices were

consistently related among subspecies, others were not. Conclu-

sions similar to those at the species level can be drawn. Although

the CPCA indicated shared PCs, the other methods cautioned

against pooling all individuals across subspecies into a single PCA

analysis.

Among individual red knots, the two CPCA approaches gave

highly divergent results. The step-up approach indicated that

relationships among immune indices differed among individuals;

the model-building method suggested equality. The pair-wise

correlation boxplots and the correlation circles showed that some

immune indices are positively or negatively correlated in some, but

not all, individuals. These inconsistent relationships are docu-

mented by large amounts of variation (i.e. wide boxes and

whiskers) in the boxplots and by different angles between vector

pairs in the array of correlation circles. These inconsistent

relationships, apparent upon graphical examination, seemed to

influence the step-up approach, and they may explain why this

approach resolved that the matrices were different. Overall, the

concurrence between the graphical approaches and the CPCA

step-up approach suggested that immunological relationships were

inconsistent at the individual level.

Among months, the two CPCA approaches and the two

graphical approaches suggested that immunological relationships

were consistent. Furthermore, immunological relationships that

were previously identified via PCA on data pooled among months

[16] were similarly identified in individual months. These results

indicate that although absolute levels of immune indices are

flexible over the annual cycle [16], relationships among these

indices are relatively consistent. For example, index A can be high

on average in one month and low on average in another, but

within each month, indices A and B always correlate without

regard to absolute levels.

Future analyses: opportunities and challenges
The datasets we analyzed focused on indices of constitutive

levels of innate immunity. Conducting similar analyses on datasets

that include additional immune indices will be instructive. For

example, Martin et al. [19] present a dataset that includes indices

of constitutive innate immunity, acquired immunity, and induced

responses. Potentially, this array of indices could be useful for

examining whether relationships among types of immune

defences, which represent putative ‘‘arms’’ of the immune system,

are consistent among species. However, application of the protocol

presented here requires separate species-specific PCAs, so all

immune indices must be measured in the same individuals within

each species. Unfortunately in Martin’s dataset different individ-

uals were used [19].

Our analyses demonstrated the value of graphical examination

of pair-wise correlations. In addition to serving the overall

statistical protocol, the graphical examination of pair-wise

correlations may also serve as a starting point for meta-analysis

and the synthesis of several published datasets. Of the statistical

methods we present, plots of pair-wise correlations are best suited

to meta-analysis. The other techniques (CPCA and group-specific

correlation circles) require that the same indices be measured in all

individuals or groups. This is a particular challenge in ecological

immunology. Oftentimes, the number of measurements that can

be taken from each individual is limited by the volume of blood

that can be collected from a study subject of small body size.

Moreover, many studies still employ different assays or at least

different protocols to measure immune function.

We illustrate the potential value and pitfalls of graphical

examination of pair-wise correlations for meta-analysis by
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combining the three datasets presented in this paper (Figure 7). In

this case, we plotted each correlation coefficient individually rather

summarizing the overall variation with a boxplot. Datasets taken

from the different studies were coded accordingly. The analysis

confirmed that there was very little consistency in relationships

among immune indices both among species (dots) and among

datasets (shading). T-tests on mean correlation coefficients,

weighted for sample size [31], demonstrated that only two

relationships (hemagglutination and hemolysis, anti-E. coli and S.

aureus capacities) differed significantly from zero; and even these

relationships were not consistently positive (e.g. in the hemagglu-

tination and hemolysis pair, one waterfowl species has a

correlation coefficient of zero (SGPT) and another of -0.6

(ALCG)).

Inconsistencies in the relationships between immune indices

identified by this exercise further emphasize immunological

complexity. However, immunological interpretations are limited

by other factors. Even this small group of datasets, which were

collected by the authors over approximately a five-year period,

lacked complete methodological uniformity. First, recall that

microbicidal capacity was measured differently in waterfowl

(plasma only) versus stonechats and knots (whole blood).

Complicating matters further, methodology was confounded with

taxonomy—similar species were measured similarly. This compli-

cation, however, reflects the reality of the broader ecological

immunology community, in which research groups often focus on

particular study species and customize immunological assays in

one way or another. Second, recall that for the knot dataset we

have multiple samples from each individual over an annual cycle.

Because Buehler et al. [16] found significant variation among

months we selected only measurements that were recorded during

a quiescent winter period, which was most comparable to the

other datasets. Intra-annual patterns demonstrate the importance

of explicitly stating when in the annual cycle samples were

collected, if independent studies are to be combined in meta-

analyses.

Overall, the need for and utility of multivariate statistical methods

is clear. Currently, methods like the protocol we describe are most

useful and informative when applied within individual studies.

Analytical integration among datasets remains a challenge; meeting

this challenge will require judicious standardization of methodol-

ogies related to the collecting, processing and assaying of samples.

When considering the future of ecological immunology

analyses, the potential importance of methods that can unite

several multivariate datasets also comes to light. Additional

datasets might, for example, include pathogen load variables,

immunogenetic variables, and environmental (biotic and abiotic)

variables. Thus, structural equation modelling (SEM) is a

potentially powerful analytical method for ecological immunology.

This method can be used to examine relationships between latent

variables, which comprise multiple measured variables. A latent

variable may itself be unmeasured (or even un-measurable; [23]).

For example, multiple immune indices (i.e. the measured variables)

could be used to estimate immune function (i.e. a latent variable)

or several different ‘‘arms’’ of immune function (different latent

variables for innate, acquired, etc.). Measures of pathogen richness

and abundance could be similarly used to estimate pathogen

pressure. SEM examines how each measured variable contributes

to each latent variable (the measurement model) and how the

latent variables relate to one another (the structural model).

However, the field of ecological immunology will probably have to

develop further before this method becomes a realistic option. In

SEM, models must be specified a priori, but current limitations on

our knowledge mean specifying a model for even a single latent

variable, such as immune function, is unrealistic for most wild

species. Nonetheless, once a stronger foundation has been

established, the application of SEM might be an instructive

research trajectory for ecological immunology.

Figure 7. Dotplot showing correlation coefficients for pair-wise Pearson correlations between indices of immune function (see
Table 1 for abbreviations) in an analysis combining waterfowl, stonechat and knot datasets. Each correlation coefficient for each species
or subspecies is shown as a dot with its dataset of origin indicated in the shading. Waterfowl correlations are based on 5 to 8 individuals, stonechat
correlations are based on 10 to 20 individuals, and knot correlations are based on 27 individuals. Asterisks indicate where weighted mean correlation
coefficients [31] differed significantly from zero after sequential Bonferroni correction [30].
doi:10.1371/journal.pone.0018592.g007
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Supporting Information

Figure S1 Correlation circles for unrotated principal component

analyses (PCA) on cellular indices of immune function among

species of waterfowl (see Table 1 for abbreviations). Vectors are the

loadings on PC1 (x-axis) and PC2 (y-axis). Vector length indicates

the strength of the relationship and the angle between two vectors

gives the degree of correlation (adjacent = highly correlated,

orthogonal (90u) = uncorrelated, and opposite (180u) = negatively

correlated). Shading indicates how indices of immune function were

grouped in a previous varimax rotated PCA performed with all

species combined [5]. Indices having the same shading were

associated with the same PC in the previous analysis.

(TIF)

Figure S2 Correlation circles for unrotated principal component

analyses (PCA) on indices of immune function (see Table 1 for

abbreviations) measured in 27 individuals (a) and over 11 months

(b) in red knots (Calidris canutus). Vectors are the loadings on PC1

(x-axis) and PC2 (y-axis). Vector length indicates the strength of

the relationship and the angle between two vectors gives the

degree of correlation (adjacent = highly correlated, orthogonal

(90u) = uncorrelated, and opposite (180u) = negatively correlated).

Shading indicates how the indices of immune function were

grouped in a previous varimax rotated PCA performed with all

individuals (a) or all months (b) combined [16]. Indices having the

same shading were associated with the same PC in the previous

analysis. Among individuals (a), monocytes correlated nearly

equally across two PCs in the previous analysis [16], therefore it

has darker grey shading with white lettering.

(TIF)

Table S1 Common principal components analysis (CPCA) of

covariance matrices among waterfowl species for cellular indices of

immune function. The table shows Flury’s Decomposition of Chi

Square using step-up and model building approaches (see Table 2

for details). Both methods indicate that covariance matrices among

species share all PCs, but have differing eigenvalues (CPC). This

CPCA is based on five matrices with six to eight observations per

matrix because two species (NABD and MUSC) were excluded

due to low levels of variability in one or more immune index.

(DOC)

Table S2 Mean correlation coefficients for pairwise Pearson

correlations between plasma-based (a), and cellular (b), indices of

immune function (see Table 1 for abbreviations) among species of

waterfowl (n = 8 for plasma-based and n = 7 for cellular immune

function). No mean correlation coefficients were significantly

different from zero after sequential Bonferroni correction [30] (see

text for statistical details).

(DOC)

Table S3 Mean correlation coefficients for pairwise Pearson

correlations of indices of immune function (see Table 1 for

abbreviations) among six stonechat subspecies. P-values indicating

significant difference from zero after sequential Bonferroni

correction [30] are bold (see text for statistical details).

(DOC)

Table S4 Mean correlation coefficients for pairwise Pearson

correlations of indices of immune function (see Table 1 for

abbreviations) among 27 individuals (a), and over 11 monthly

measurements (b) in red knots (Calidris canutus). P-values indicating

significant difference from zero after sequential Bonferroni

correction [30] are bold (see text for statistical details).

(DOC)

Table S5 Loadings and eigenvalues for a varimax rotated

principal component analysis (PCA) on indices of immune

function measured in stonechat subspecies. The analysis was

performed on data combined from six subspecies after statistically

accounting for subspecies effects (see [5] for method).

(DOC)
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Limited access to food and physiological trade-offs in a long distance migrant

shorebird part II: constitutive immune function and the acute-phase response.

Physiological and Biochemical Zoology 82: 561–571.

19. Martin LB, Weil ZM, Nelson RJ (2007) Immune defense and reproductive pace

of life in Peromyscus mice. Ecology 88: 2516–2528.

Statistical Solutions for Ecological Immunology

PLoS ONE | www.plosone.org 12 April 2011 | Volume 6 | Issue 4 | e18592



20. Ackermann RR, Cheverud JM (2000) Phenotypic covariance structure in

tamarins (genus Saguinus): a comparison of variation patterns using matrix
correlation and common principal component analysis. American Journal of

Physical Anthropology 111: 489–501.

21. McCoy MW, Bolker BM, Osenberg CW, Miner BG, Vonesh JR (2006) Size
correction: comparing morphological traits among populations and environ-

ments. Oecologia 148: 547–554.
22. Houle D (2010) Numbering the hairs on our heads: The shared challenge and

promise of phenomics. Proceedings of the National Academy of Sciences USA

107: 1793–1799.
23. Tomarken AJ, Waller NG (2005) Structural Equation Modeling: Strengths,

Limitations, and Misconceptions. Annual Review of Clinical Psychology 1:
31–65.

24. Flury BN (1988) Common principal components and related multivariate
models. New York: Wiley.

25. Phillips PC, Arnold SJ (1999) Hierarchical comparison of genetic variance-

covariance matrices. I. Using the Flury hierarchy Evolution 53: 1506–1515.
26. Abdi H, Williams L (2010) Principal component analysis. Wiley Interdisciplinary

Reviews: Computational Statistics 2: in press.

27. Quinn GP, Keough MJ (2002) Experimental design and data analysis for

biologists. Cambridge: Cambridge University Press.
28. Houle D, Mezey J, Galpern P (2002) Interpretation of the results of common

principal components analyses. Evolution 56: 433–440.

29. Phillips PC (2000) CPC: common principal components analysis program.
Software available at http://www.uoregon.edu/̃ pphil/programs/cpc/cpc.htm.

30. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43: 223–225.
31. Sokal RR, Rolf FJ (1995) Biometry: the principles and practice of statistics in

biological research. 3rd edition. New York: Freeman and Company.

32. R Development Core Team (2008) R: A language and environment for
statistical computing. Vienna, Austria: R Foundation for Statistical Computing,

http://www.R-project.org.
33. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram

for ecologists. Journal of Statistical Software 22: 1–20.
34. Duckworth RA (2010) Evolution of personality: Developmental constraints on

behavioral flexibility. Auk 127: 752–758.

35. Steppan SJ (1997) Phylogenetic analysis of phenotypic covariance structure. I.
Contrasting results from matrix correlation and common principal component

analysis. Evolution 51: 571–586.

Statistical Solutions for Ecological Immunology

PLoS ONE | www.plosone.org 13 April 2011 | Volume 6 | Issue 4 | e18592


