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Abstract

This thesis consists of two contributions in the field of multi-channel signal

processing. The first topic of this thesis is a developing of multiple-source

reconstruction and localization technique for wide-band signals in sensor ar-

rays. The proposed approach may handle both straight-path-only and re-

verberant model of signal propagation, based on the knowledge of impulse

responses for all location-sensor pairs. We assume that source signals are

spatially sparse, as well as have sparse (say, wavelet-type) representation

in time domain. This prior is expressed via a large scale convex optimiza-

tion problem, which involves l1 and non-squared l2 norm minimization. The

optimization is carried out by the Truncated Newton method, using precon-

ditioned Conjugate Gradients in inner iterations. Presented numerical ex-

periments demonstrate an advantage of our approach comparing to existing

source localization methods in such aspects as super-resolution, robustness

to noise and very limited data size. Our approach doesn’t require accurate

initialization, and also can recover correlated sources.

The second contribution of this thesis is the developing of Electro-Encepha-

lography (EEG) signals analysis methods. This is done in the framework of

1



Brain-Computer interface (BCI), in which our goal is to distinguish between

two mental tasks a person is concentrating on. In order to improve the clas-

sification performance, we use two stage preprocessing of multi-sensor data.

At first, we perform spatial filtering, by taking weighted linear combination

of sensors. At the second step, we perform time-domain filtering. Filter co-

efficients are learned from the data by maximizing the between class discrim-

ination and minimizing the total variation of result average or, alternatively,

suppressing the signal at the windows, where it is known to be absent. No

other information on signals of interest is assumed to be available. This leads

to a constrained optimization problem, which involves l1-l2 norm minimiza-

tion. We also suggest solution using eigen-value decomposition approach. We

evaluate our method both on synthetic and real EEG data, and demonstrate

the advantage of our approach comparing to the existing methods.
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Chapter 1

Introduction

In this thesis we address the problem of improving multi-channel data pro-

cessing, exploring prior knowledge of some specific properties of signals, such

as sparsity or smoothness. We present two algorithms. The first is in the

field of source localization and reconstruction with sensor array. The second

is in a field of single-trial Electro-Encephalography (EEG) signals classifica-

tion. The purpose of this chapter is to introduce the problems addressed in

this thesis, motivate the need for a new approach, and describe the main

contribution and the organization of the thesis.

1.1 Overview of the Problems Addressed in

this Thesis

Two problems addressed in this thesis have completely different applica-

tion: the problem of source localization and reconstruction using sensor

6



Chapter 1. Introduction 7

arrays is of great importance in the fields of wireless communication [1],

radar [2],sonar [3], and exploration seismology [4], while the problem of EEG

signals classification by spatial and spectral filtering is of great interest for

neuroscience community [5] and Brain-Computer Interface (BCI) systems [6].

However, in both cases the goal is to process the noisy multi-channel data

in order to reconstruct single or multiple sources. As byproduct of source

reconstruction, this may yield the source localization in the first case, and

improvement of classification accuracy in the second. For the solution of both

problems we adopt regularized numerical optimization approach, which ends

up in similar problem formulations in both cases. Thus we find it appropriate

to include both algorithms in the same thesis.

Sparse Multi-Channel Signal Reconstruction and Local-

ization

Among the desired properties of source reconstruction method are the ro-

bustness to the measurement and ambient noise, limited amount of data

samples and the ability to distinguish closely located sources. We suggest

the technique which improves these properties for the special case, when the

sources can be sparsely represented in time domain in some know basis or

frame.

Many different approaches address the problem of detecting multiple

wide-band sources and estimating their angle of arrival (locations), based

on the signals received by a sensor array. The maximum-likelihood estima-

tion [7] is potentially the most precise technique; it assumes however that the
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number of sources and the source spectral density matrix are known. More-

over, the likelihood function is generally non-convex, and may have spurious

local solutions. Another approach for multiple source localization combines a

special ARMA parameter estimation method with a non-linear optimization

procedure to estimate the relative time delays [8]. However, this approach

cannot effectively treat correlated sources and requires prior knowledge of

the number of sources.

The signal-subspace processing approach, was first proposed for the narrow-

band case [9]. Under the condition that the observation period is long and

signal-to-noise ratio is not too low, this approach has been shown to have

substantially higher resolution in estimating the directions of arrival of the

signals, than conventional beamformer [10], Capon’s MLM [11], and autore-

gressive spectral estimators [12].

The concept of signal-subspace processing can also be used in the wide-

band case. The technique given in [13] can be referred to as incoherent signal-

subspace processing: the angle estimation is first done with each narrow-band

component individually, followed by combination of these estimates for the

final result. As is common in any detection and estimation system, at low

signal-to-noise ratios the threshold effect prevents the final combination to

be effective [14]. Another problem with the incoherent signal-subspace pro-

cessing is its inability to handle completely correlated sources even if SNR is

infinitely high and the observation time is infinitely long. Several techniques

have been developed based on coherent signal-subspace processing [14]. They

demonstrate better performance than corresponding incoherent techniques,

but still require rather long observation time and high SNR ratio for for good
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estimation of covariance matrices.

A conventional framework for source reconstruction is Blind Source Sep-

aration (BSS) using Independent Component Analysis (ICA) (see for exam-

ple [15] for review). Conventional ICA of instantaneous mixtures exploits

the non-Gaussianity of source signals to perform separation. Similar meth-

ods for ICA have been developed from a number of different view points:

minimizing Kulback-Liebler divergence, Infomax or Maximum Likelihood es-

timation [16, 17, 18, 19]. Some methods look for the most non-Gaussian com-

ponents, using kurtosis [20] or negentropy as non-Gaussian measures [21, 22].

Other approach estimates the unmixing matrix by performing approximate

diagonalization of a cumulant tensor of the mixtures [23]. A more advanced

methods (e.g. [24, 25]) exploit the idea of sparse source representation for a

very efficient blind source separation.

However above methods assume instantaneous mixture model, i.e. as-

suming that simple multiplicative term may describe the propagation from

source to sensor. This is applicable only for systems without propagation

delays or narrow-band signals in frequency domain.

Moreover, the instantaneous BSS model leads to non-convex optimiza-

tion problem. Hence the optimization procedure can converge to spurious

local minima. This problem becomes especially challenging when a noise is

incorporated explicitly into statistical model [26].

The convolutional ICA problem, on the contrary to instantaneous one,

assumes convolutive model of signal propagation. Many methods have been

proposed to solve it. Some of them suggested to work directly in the time-

domain [27]. Working in the time domain has the disadvantage of being
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rather computational hard, due to large number of variables. Other ap-

proaches suggested moving to the frequency domain in order to transform

the convolution into multiplication and apply ICA methods for instantaneous

mixtures for each frequency bin [28], [29]. However, there is an inherent per-

mutation problem in all frequency-domain ICA methods, which doesn’t exist

in time-domain methods.

The method introduced in this thesis also assumes multipath (convolu-

tive) model of signal propagation but differs from conventional ICA tech-

niques, because it assumes that the forward (mixing) operator is known i.e.

impulse responses for all location-sensor pairs are assumed to be known1. It

uses the approach similar to [30] by assuming several point sources, which

can be sparsely represented in space, by dividing the area of interest into a

discrete grid of potential source locations.

Since the number of possible source locations is often much greater than

the number of sensors, the corresponding inverse-problem is ill-posed. The

technique described in [30] suggests to regularize the solution by enforcing

spatial sparsity using non-squared l2 norm regularization. Since we explore

the case, when the signals can be also sparsely represented in time domain, we

suggest to impose temporal sparsity in addition to spatial one. This can be

done using the l1 norm, which is commonly used to enforce sparsity [31, 24].

In order to solve the problems of source reconstruction and localization,

we estimate the source matrix S, which contains estimated signals from all

possible locations (not just actual sources) in it rows. By calculating the

energy of signals in all location (rows of S), we receive the spatial spectra, i.e.

1which may be unpractical for some reverberation environment.
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an estimate of source locations. The rows, which correspond to dominating

energy peaks will actually contain the reconstructed sources.

We conduct numerical experiments in which we compare the performance

of our technique with the source localization method [30]. This comparison

demonstrates the advantages of enforcing temporal sparsity along with spa-

tial sparsity, such as improved robustness to noise and to very limited data

size.

Learning Spatial and Temporal Filters for Single-Trial

EEG Classification

The second contribution of this thesis addresses the problem of multi-sensor

EEG signal classification, in order to facilitate Brain-Compute Interface

(BCI). People have speculated that EEG might be used as alternative com-

munication channel, which allows the brain to act bypassing peripheral nerves

and muscles, since electroencephalography was first described by Hans Berger

in 1929 [32]. First simple communication systems, that were driven by elec-

trical activity recorded from the head, appeared about three decades ago [6].

In the past years, it has been shown that it is possible to recognize distinct

mental precesses from online EEG (see, for example [33, 34, 35, 36]). By as-

sociating certain EEG patterns to simple commands, it is possible to control

a computer, creating an alternative communication channel, which is usually

called Brain-Computer Interface (BCI) [6, 37].

One of the most complicated problem of the BCI is classifying very noisy

EEG signals, obtained by registering the brain activity of the subject. The
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first approach suggests dealing with this problem by requiring extensive

training, in order to teach the subject to acquire self-control over a certain

EEG components, such as sensorimotor µ-rhythm [37] or slow cortical po-

tentials [38]. This ability to create certain EEG patterns at will is translated

by BCI system to cursor movement [37, 39] or selection of letters or words

on computer monitor [40, 38].

The second approach suggests developing subject-specific classifiers to rec-

ognize different cognitive processes from EEG signals [34, 35, 41]. In this case,

the typical BCI procedure consists of two stages. First, the person trains the

system by concentrating on predefined mental tasks. Usually two different

tasks are used in the training. BCI registers several EEG samples of each

task. Then, the training data is being processed in order to build a classifier.

In the second stage, the subject concentrates on one of the tasks again, and

the system automatically classifies the EEG signals. The key for success-

ful classification is a good preprocessing of raw data. The objective of this

chapter is to develop a preprocessing methods based on spatial and spectral

filtering, which will improve the classification accuracy.

The use of spatial filtering in order to improve the classification is not

a new discovery. The method introduced in [42] propose to treat each time

sample individually, and find the spatial integration weight by logistic regres-

sion. However this approach does not take into account the time courses of

EEG signal, making implicit assumption that the coupling vector between

the source and sensors is constant over the time of the response. Moreover,

this method tries to maximally discriminate between signals of two classes,

using no regularization. Thus, the resulting spatial filter is very prone to
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noise.

A more advanced method for learning spatial filters is CSP [43, 44]. It

suggests to find several projections, that maximally discriminate the vari-

ances of projected data of two classes. The CSSP [45] method suggest an

improvement to CSP, by incorporating a spectral filter in addition to spatial

one. However, both approaches take no usage of time-course of signals, and as

result discriminate some measure of sources, rather than sources themselves.

We propose yet another method for spatial and spectral filtering of multi-

channel EEG signals. The proposed approach is based on the assumption

that the response to the mental task is temporary smooth (e.g. has limited

total variation) and/or is expected to be small in certain time windows, where

the task is not performed. Coefficients of both spatial and spectral filters are

learned by optimizing the between class discrimination and the smoothness

of result average. No other information on signals of interest is assumed to

be available.

We have evaluated proposed method on several data sets. Our simula-

tions show, that the proposed preprocessing significantly improves the clas-

sification rate, with respect to unprocessed data (simple sum of channels

or choosing the best sensor) as well as data preprocessed by CSP [44] and

CSSP [45] methods (which are currently considered the state-of-the-art in

the field).
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1.2 Outline and Contributions

The main contribution of this thesis is two algorithms. The first is a method

for source localization and reconstruction, which is presented in Chapter 2.

The second is a method for spatial and spectral filtering of multi-channel

EEG signals. It is introduced in Chapter 3.

Chapter 2

In this chapter we present the method which is intended to solve multiple

source reconstruction and localization problems by exploring both temporal

and spatial sparsity. We follow the approach of [30] by assuming several point

sources, which can be sparsely represented in space, by dividing the area of

interest into a discrete grid of potential source locations. In addition, we

assume that impinging signals can be sparsely represented in an appropriate

basis or frame [46, 47] (e.g., via the short time Fourier transform, Wavelet

transform, Wavelet Packets, etc.). The combination of spatial and temporal

sparsity assumptions leads to an improved performance, as demonstrated by

our simulations.

Chapter 3

In this chapter we propose several methods for spatial and spectral filtering

of multi-channel EEG signals, which is intended to improve classification of

EEG signals corresponding to different mental tasks. The proposed approach

is based on the assumption that the response to the mental task is temporary

smooth (i.e. has limited total variation) and/or is expected to be small
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in certain time windows, where the task is not performed. Coefficients of

both spatial and spectral filters are learned by optimizing the between class

discrimination and the smoothness of result average. No other information

on signals of interest is assumed to be available.

We have evaluated proposed method on several data sets. Our simu-

lations shows, that the proposed preprocessing significantly improves the

classification rate, with respect to unprocessed data (simple sum of channels

or choosing the best sensor) as well as data preprocessed by CSP [44] and

CSSP [45] methods (which are currently considered the state-of-the-art in

the field).

We have also developed misclassification rate lower bound, which is ap-

plicable for the experiments with synthesized signals. This bound shows how

well can we perform signal reconstruction (and further classification) based

on spatial integration only. Our simulations shows, that in majority of cases

we reach the bound or stay very close to it. If we use time-domain filtering

in addition to spatial integration, then we perform even better.



Chapter 2

Sparse Multi-Channel Signal

Reconstruction

In this chapter we present a method of multiple wideband source localization

and reconstruction. We suggest the technique which improves the robustness

to noise, limited data and the ability to distinguish closely located sources

by modifying the algorithm proposed in [30] for the case, when the sources

can be sparsely represented in time domain in some know basis or frame.

This chapter is organized as follows. We start with a short introduction

to Sensor Array Processing in Section 2.1. Then we present the observation

model in Section 2.2. The algorithm, which is the main contribution of this

chapter, is introduced in Section 2.3. And, finally, we conduct computation

experiments and make the conclusions in Section 2.4.

16
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2.1 Overview of Sensor Array Processing

The usage of sensor arrays instead of single sensor provides numerous ben-

efits, such as improvement in signal-to-noise ratio, possibility of electronic

steering and jammer suppression among others. But more important, the

task of source localization with single omnidirectional sensor is impossible.

We can estimate the source locations only when several sensors are used.

Another task, which becomes feasible when sensor array is used, is a recon-

struction of multiple sources. The above tasks of source localization and

reconstruction are in the main focus of this thesis. But, before we describe

our method of Sensor Array processing, it is necessary to present the math-

ematical model for the problem. This is done in the current section.

2.1.1 Sources in the far-field of the array

We start with the most basic case, assuming sources in the far-field of a

uniform linear array, which consists of M omnidirectional sensors, lined up

along the x-coordinate axis, with equal spacing L, see Fig. 2.1.

For the sources in the farfield of the array, the curvature of the wavefront

is insignificant across the aperture of the array, and the plane wavefront

approximation holds. The propagation of the source signal sk(t) satisfies the

equation sk(t−pT α), where p is the position, and α is the so called slowness

vector aligned with the direction of propagation of the wavefront. The vector

α has a magnitude equal to the inverse of propagation speed, i.e. ‖α‖2 = 1/v.

The distance attenuation factor is not considered in the farfield model, since

it will be almost constant across the array.



Signal reconstruction in sensor arrays using sparse representations 18

Figure 2.1: An illustration of uniform linear array. A source sk(t) is impinging on the

array at angle Θk. The i-th sensor produces the output yi

The wavefront sk(t) arrives from the direction that makes an angle of Θk

with an x-axis (Fig. 2.1). When the wavefront reaches the M -th sensor, it

has to travel the distance dk = L cos Θk, before it appears at the next sensor.

If no noise is present, and there is only one active source, then the output of

the (M − 1)-th sensor, yM−1, is delayed1 by Dk = dk/v with respect to yM ,

the M -th sensor output , i.e. yM−1(t) = yM(t − D). Furthermore, taking

into consideration that the sensors are equally spaced, we can conclude that

the first sensor output, y1, will be delayed by (M − 1)Dk with respect to

the last sensor output, i.e. y1(t) = yM(t − (M − 1)Dk). Note, that we are

not interested in an absolute delay from a source to a sensor, but rather in a

relative delay between different sensors.

1We are dealing with a general wideband signals, hence we are working with time delays

and not with a phase shifts as in narrowband case.
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It is more convenient to calculate all delays with respect to the first sensor,

hence if we say a delay of the m-th sensor output, we mean a delay of the m-

th sensor output with respect to the first sensor output. In order to formalize

and summarize all of the above, we provide the equation for calculation of the

delay, Dkm, of m-th sensor output for the k-th source signal, which impinges

on the array from the Θk direction:

Dkm = −(m− 1)
L cos Θk

v
(2.1)

The above equation holds for the linear equally spaced sensor array, but it

doesn’t mean that our model is limited to this case only. Actually, the only

thing required, is that the array geometry should be known. Once we know

the sensor array structure, we are able to calculate the relative Time-Delays-

Of-Arrival (TDOA).

The source localization task is not limited to a single source. Actually,

it is assumed that several source signals {s1(t), . . . , sK(t)} imping on the

array from the directions {Θ1, . . . , ΘK}. Due to the linearity of the system

the superposition principle holds, and the output of the m-th sensor can be

expressed as:

ym(t) =
K∑

k=1

δ(t−Dkm) ∗ sk(t) + nm(t) (2.2)

where δ(t) is a Dirac delta function, ∗ denotes convolution, and nm(t) is an

additive noise - which is present in every practical system.

Note, that in the farfield case, the source location is characterized by

the Direction-of-Arrival (DOA) only, which should be estimated by solving

source localization problem.
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2.1.2 Sources in the nearfield of the array

The generalization of the model to the case where the sources lie in the

nearfield of the array has a number of applications, for example audio source

localization using microphone array. In the nearfield case the plane-wave

approximation no longer holds, and we use the spherical wave equation in-

stead. At the distance r from a single source sk(t) the wavefront is equal to

(1/r)sk(t−r/v). If we denote rkm the distance from the k-th source to the m-

th sensor, then the m-th sensor output will be ym(t) = (1/rkm)sk(t− rkm/v).

Since we are interested in the relative TDOA, the delay of the k-th source to

m-th sensor will be Dkm = (rkm/v)− (rk1/v). Now, the nearfield model will

look pretty similar to the farfield model, except for the attenuation factor

1/rkm. If K signals {s1(t), . . . , sK(t)} impinge on the array, using superposi-

tion we receive the following equation for the output of the m− th sensor:

ym(t) =
K∑

k=1

(1/rkm)δ(t−Dkm) ∗ sk(t) + nm(t) (2.3)

Note, that in the nearfield case, the source locations are characterized both

by the DOA and by range2, and thus our task is to reveal both of these

parameters.

2.1.3 Reverberant Environment

Till now we supposed that the sources arrive to the sensors at the straight

line and no reflections are present. However, this assumption is not always

valid, for example for acoustic signals in closed environment. In the presence

2In polar coordinate system. In the cartesian coordinate system, the source location is

characterized by (x, y)
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Figure 2.2: An illustration of reverberant environment. The source signal sk is captured

by the i-th sensor as a convolution of the source signal sk with thr FIR filter hki

of multi-path, the propagation of the k-th source to the m-th sensor can no

longer be described by the delay Dkm and the attenuation 1/rkm only. Rather,

the signal captured by the sensor can be well represented by a convolution of

the source signal with the FIR filter, modelling the transfer function between

the source and the sensor (see for example [48])(Fig. 2.2).

Let us denote hkm(t) the transfer function between the k-th source and

the m-th sensor. Then, the k-th source will appear by the m-th sensor as

hkm(t) ∗ sk(t). We can now rewrite the equations (2.2) and (2.3) as:

ym(t) =
K∑

k=1

hkm(t) ∗ sk(t) + nm(t) (2.4)

Note, that the above equation fits both the farfield and the nearfield models,

if the transfer functions hkm(t) are appropriately chosen.
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2.2 Problem Formulation

2.2.1 Observation Model

Assume K discrete time signals sk[n] impinge on a sensor array, consisting

of M sensors. The multipath propagation of k-th source toward m-th sensor

can be represented by a convolution with the transfer function hkm[n] (see

for example [48])(Fig. 2.2). Thus, we can describe the output of the m-th

sensor, ym[n], as:

ym[n] =
K∑

k=1

hkm[n] ∗ sk[n] + nm[n] (2.5)

where ∗ denotes convolution, and nm[n] is an additive noise registered by the

sensor. The above equation is also valid for far-field direct path model if we

set hkm[n] = δ(n−Dkm):

ym[n] =
K∑

k=1

δ(n−Dkm) ∗ sk[n] + nm[n] (2.6)

Here, Dkm is a delay of the k-th source toward the m-th sensor. The delay

Dkm is relative to the first sensor, i.e. Dk1 = 0 ∀k.

2.2.2 Discretized Spatial Model

In our approach, we assume that the properties of the environment (signal

propagation model, sensors positions) are known. Given the geometry of the

problem, we can divide the whole area of interest in some discrete set of

potential locations. It could be a set of pixels/voxels in the near field case,

or a grid of Directions-of-Arrival angles in the far field case. We will usually
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have much more potential locations than active sources, and our task is to

identify which locations do actually contain sources.

Denote the potential source signal at l-th location as sl[n], 1 6 n 6 T .

Suppose, we have L potential locations, and the signals are limited in time to

T samples. Let introduce a L×T matrix S, which contains in its rows source

signals at all potential locations. The matrix S is the unknown we wish to

estimate. When the solution will be achieved, we expect only few rows of S,

corresponding to the active sources, to be significantly large. The energies

of signals at each location will serve us as the spatial spectra estimation.

Assume we have M sensors in our array. We introduce the sensors mea-

surement matrix Y , which contains in the m-th row the output signal ym[n]

of the m-th sensor.

Since we know the positions of sensors and the wave propagation model,

we can pre-calculate the transfer functions hlm[n] from any grid node l to

any sensor m.

Let us define the Forward Operator A by its action U = AS on an

arbitrary matrix S :

um[n] =
L∑

l=1

hlm[n] ∗ sl[n] (2.7)

where um[n] is the m-th row of U . Note, that we treat all locations (rows

of S) equally, as if they all contain an active source. This representation of

A is sufficient for our computations, and we do not need its explicit matrix

form.

Our problem is to find S given the observation

Y = AS + N (2.8)
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where N is an additive noise matrix, m-th row of which contains the noise

registered by m-th sensor. Despite the operator A is known, the problem

cannot be solved without additional priors, because we have much more grid

locations than sensors.

The adjoint operator A∗, which will be needed for the gradient computa-

tion, is given by its action X = A∗Y : the i-th row of X is

xi[n] =
m∑

j=1

(hji[−k] ∗ yj[k])[n] (2.9)

Note the ”minus” sign near the argument of hji.

2.2.3 Interpolation

As mentioned above, we work with the discrete-time signals. Therefore, a

problem arises when Dji is not integer. A straightforward solution is to re-

place the fractional delays with the rounded ones. However, this approach

significantly limits the spatial resolution. A better approach suggests upsam-

pling of signals prior to applying the A operator. The upsampling may be

produced using some interpolation kernel.

Let INup denote upsampling by factor Nup operator, and if S is an L× T

matrix, then Sup = INupS will be L × TNup matrix. Note, that the 1 +

Nup(i − 1) -th column of Sup is equal to the i-the column of S (1 ≤ i ≤ T ).

Other columns should be calculated using interpolation.

Suppose, we want to calculate the j-th column, Sj
up, of the matrix Sup.

This column corresponds to the time point, laying between the samples k =

d j
Nup
e and k + 1 of the original signal (d e is the ceiling operator). The

distances between the above time point and the closest samples of original
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signal are d− = (j − (k− 1)Nup− 1)/Nup to the left sample and d+ = 1− d−

to the right sample (measured in sampling periods Ts). Finally, if ρ is the

interpolation kernel, Nio is an interpolation order and Sk is the k-th column

of S, then:

Sk
up =

Nio∑

l=−Nio+1

ρ(l − d−)Sk+l (2.10)

We also need to calculate the adjoint operator I∗Nup
, which translates an

L× TNup matrix Sup into L× T matrix Sr = I∗Nup
Sup.

Using the above notations, we can write the following formula for the Sk
r

- the k-th column of matrix Sr:

Sk
r =

Nio∗Nup∑

l=−Nio∗Nup

ρ

(
l

Nup

)
SNup(k−1)+l

up (2.11)

Now, in our model we will use the modified operators

Â = A · INup Â∗ = I∗Nup
· A∗ (2.12)

instead of A and A∗, but for simplicity, we will continue to denote the mod-

ified operators as A and A∗. Note, that after upsampling, we should adjust

Dji to be DjiNup. We will still need to round DjiNup to the closest integer,

but now the rounding error is Nup times less.
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2.3 Algorithm Description

2.3.1 Sparse Regularization

We solve the problems of source separation and localization in the inverse

problem framework: we want to find source matrix S, such that after apply-

ing to it the forward operator A, the result will be as much close as possible

to the actual sensors measurement matrix Y , i.e. Y ≈ AS. In another words,

we want to find minimizer Ŝ = arg minS ‖Y −AS‖. This measure of prox-

imity is connected to maximum-likelihood model. The choice of particular

norm is done according to noise model. We assume white gaussian noise,

thus we use Frobenius matrix norm, defined by: ‖X‖F =
√∑

ij X2
ij.

However, the direct solution of above problem does not lead to good

estimate of source matrix S, since the problem is ill-possed: there much

more possible locations than sensors. In order to regularize a solution, we

use a sparse prior: we assume that the sources S are sparsely representable in

some basis or overcomplete system of functions e.g. Gabor, wavelet, wavelet

packet, etc. (see for example [31]). Particularly, there exists some operator

Φ and the sparse matrix of coefficients, C, such that:

S = CΦ (2.13)

The matrix Φ contains elements of the chosen basis in its rows. The rows

of matrix C will contain the coefficients of decomposition of time-domain

source signals in a chosen basis.

In addition to temporal sparsity, we will enforce a spatial sparsity, as

proposed in [49]. This sparsity indeed exists in our problem formulation.
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Recall, that we’ve divided the space into a set of possible locations, and

there are much more locations than active sources.

All of the above leads to the following objective function, which has to

be minimized in C:

F (C) =
1

2
‖Y −A(CΦ)‖2

F + µ1

∑
i,j

|cij|+ µ2

m∑
i=1

‖ci‖2 (2.14)

where ci denotes the i-th row of the matrix C (the i-th source’ coefficients),

and cij is the j-th element in ci. The scalars µ1 and µ2 are used to regulate

the weight of each term.

The first term in (2.14) is the Frobenius-norm-based data fidelity. The

second term intends to prefer sparsely representable signals in time; it is

based on the l1-norm, which had been previously proven to be effective in

enforcing sparsity [31, 24]. The third one is the spatial sparsity regularizing

term, which is intended to prefer solutions with the source signals concen-

trated in a small number of locations. It is easy to see that moving some

coefficient from an active source location to an empty one, will strictly in-

crease this term.

Note, that we have chosen C (and not S), to be the variable of proposed

objective function. This choice is intentional: the transformation from C to S

always exists, and it is defined in (2.13). However the inverse transformation

is not always defined (for example when the chosen system of functions is

overcomplete).

Note also, that quite often matrix Φ does not need to be stored explicitly.

Multiplication by Φ and Φ∗ corresponds to the synthesis and analysis oper-

ation in some signal dictionary, and may be performed very efficiently (like
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for example fast wavelet or wavelet packet transform), see [31] for details

and more examples.

In order to minimize the objective (2.14) numerically, we use a smooth

approximation of the l2-norm, having the following form3:

ψ(x) =

√∑
i

x2
i + ε ≈ ‖x‖2 (2.15)

the approximation becomes more precise as ε → 0. It can be easily seen, that

if ψ is applied to a single element of x - it becomes the smooth approximation

of absolute value:

ψ(xi) =
√

x2
i + ε ≈ |x| (2.16)

Using (2.15) and (2.16), we obtain the following objective function:

F (C) =
1

2
‖Y −A(CΦ)‖2

F + µ1

∑
i,j

ψ(cij) + µ2

m∑
i=1

ψ(ci) (2.17)

2.3.2 Choosing Optimization Technique

We can efficiently calculate both the AS and the A∗Y products, which en-

ables us to calculate the gradient matrix G and the product of the Hes-

sian operator H with an arbitrary matrix X (see subsection 2.3.3). Hence,

the objective (2.17) can be minimized by one of the numerical optimization

methods, for example the Quasi Newton method. A problem arises when

the dimension of the problem grows. The memory consumption and iter-

ation cost grow as (mT )2. This circumstance leads us to the usage of the

Truncated Newton method [50],[51]. In the Truncated Newton method the

3An alternative would be to solve the problem in the Conic Programming framework;

we leave this option for the future
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Newton direction D is found by the approximate solution of the system of

linear equations HD = −G. This is done by the linear Conjugate-Gradients

method. We use diagonal preconditioning in order to further speed up the

optimization [52]. Note that in Truncated Newton method, the memory con-

sumption grows linearly with the number of variables. This enables us to

solve large problems with fair performance. See next subsection for detailed

calculation of objective function derivatives and Appendix A.2 for detailed

description of Truncated Newton and preconditioned Conjugate-Gradients

algorithms.

2.3.3 Objective Function Derivatives

In order to use the Truncated Newton method, we need to calculate the

gradient G of the objective (2.17), as well as to implement the product of the

Hessian H with an arbitrary matrix X. We also derive multiplication by the

diagonal of H, required for preconditioned Conjugate-Gradients. Note that

H is a tensor, but if we parse the matrix variable C into a long vector, then

a Hessian will be represented by a matrix H. We will use these notations

throughout this section. We will also use Gi and Hi to denote gradient and

Hessian of respective terms of the objective function (2.17).

Let us start with the first term in (2.17). We will define a new operator

B in the following way:

BC = A(CΦ) B∗X = (A∗X)Φ∗ (2.18)

This enables us to write the first term in (2.17) as: F1 = 1
2
‖BC − Y ‖2

F . If

we introduce new variable U = BC − Y , then F1 = 1
2
‖U‖2

F = 1
2
Tr(UT U).
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Hence, dF1 = 1
2

(
Tr(UT dU) + Tr(dUT U)

)
= Tr(UT dU). Substituting U

and dU = BdC yields dF1 = Tr
(
(BC − Y )TBdC

)
= 〈BC − Y,BdC〉 =

〈B∗(BC − Y ), dC〉. Recall that dF = 〈G, dC〉, and we get the gradient

G1(C) = B∗(BC − Y ) (2.19)

In order to calculate the multiplication of the Hessian operator H by an ar-

bitrary matrix X we need to recall that dG(C) = HdC. By (2.19) dG1(C) =

B∗(BdC), and thus for an arbitrary X

H1X = B∗(BX) (2.20)

parentheses are used to ensure correct order of multiplications.

In order to proceed with the second and the third terms of objective

(2.17), we need to use the gradient and Hessian of (2.15):

∇ψ(x) =
1

ψ(x)
x (2.21)

(∇2ψ(x)
)

ii
= − 1

ψ3(x)
x2

i +
1

ψ(x)
(2.22)

(∇2ψ(x)
)

ij
= − 1

ψ3(x)
xixj (i 6= j)

where (∇2ψ(x))ii and (∇2ψ(x))ij are diagonal and off diagonal elements el-

ements of ∇2ψ(x) respectively. Now, by straightforward calculations we can

write down the gradients of the second and the third term in (2.17):

(G2)ij = µ1
1

ψ(cij)
cij (2.23)

(G3)ij = µ2
1

ψ(ci)
cij (2.24)
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note, that the gradient of (2.17) is a matrix, because our variable C is also a

matrix (hence G1,G2 and G3 are also matrices). It can be noticed in (2.23),

that all elements of G2 are independent, and thus the H2 matrix will be

diagonal. It is convenient to ’pack’ the diagonal of H2 into a matrix with the

same size as C row by row. Let us denote the packed matrix as H̃2:

H̃2ij
= µ1

(
− 1

ψ3(cij)
c2
ij +

1

ψ(cij)

)
. (2.25)

It is obvious, that

H2X = H̃2 ¯X (2.26)

where ¯ is element-wise multiplication.

In order to define the multiplication H3X we need to rewrite the equa-

tion (2.22):

∇2ψ(cT
i ) =

1

ψ3(cT
i )

cT
i ci +

1

ψ(cT
i )

I (2.27)

where I represents the identity matrix. Now it is easy to define the i-th row

of H3X:

(H3X)i = µ2

(
− 1

ψ3(cT
i )

ci(cix
T
i ) +

1

ψ(cT
i )

xi

)
(2.28)

where xi is the i-th row of matrix X.

This calculus is sufficient for the Truncated Newton method. However, in

order to use Preconditioned Conjugate Gradients method for inner iterations,

we need to define the diagonal of the Hessian of (2.17).

We will calculate the elements in the diagonal of H1 in the following

manner: let E be a zero matrix with only one non-zero element equal to 1

at an arbitrary location - i-th row and j-th column. Then:

(
H̃1

)
ij

= 〈E,H1E〉 (2.29)
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where H̃1 is a diagonal of H1 packed in the same manner as a diagonal of H2

in (2.25).

It follows from (2.20) that 〈E,H1E〉 = 〈E,B∗(BE)〉 = 〈BE,BE〉 =

‖BE‖2
F .

The diagonal of H2 is already defined in (2.25). Finally, the diagonal of

H3, packed in the same manner as a diagonal of H2, is given by:

(H̃3)ij = µ2

(
− 1

ψ3(ci)
c2
ij +

1

ψ3(ci)

)
(2.30)
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2.4 Computational Experiments

In this section we evaluate the proposed SMSR algorithm. Conducted sim-

ulations demonstrate the feasibility of our method. Moreover, we show that

the proposed approach is robust to noise and very limited data size. In ad-

dition, it doesn’t require an accurate initialization. Another strength of our

algorithm is that it is able to resolve closely spaced sources, i.e. it is able to

achieve supper-resolution. However, the disadvantage of our approach is a

high computation complexity.

In our simulations we did not use signals recorded in a real-word environ-

ment, rather we have generated the source signals S and sensors’ measure-

ment matrix Y . However, we have tried to keep our simulations as close as

possible to the real-word problems. Thus, we’ve chosen the following gener-

ation procedure: first, we have generated the sparse coefficients matrix C.

Next, the source signals were created by S = CΦ. In this way an existence

of sparse representation of source signals (the assumption of our approach) is

guaranteed by generation. In our simulations we have used Symlet8 Wavelets.

Finally, sensors’ measurement matrix is created by: Y = AS + N , where A
defined in (2.12) and N represents the additive zero-mean white Gaussian

noise. In this generation procedure, we have set parameters Nup,Nio and

ρ(t) in (2.10) to have different values, from those used later in reconstruction

procedure. This is done in order to introduce the ”model error”.
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Figure 2.3: (a) Noise Free Case. The proposed method correctly identifies

the location of sources.(b) Zoom-in picture, in which it can be clearly seen

that beamforming fails to separate closely spaced sources.

2.4.1 Far-Field Model

We start our simulations with basic scenario: we assume far field 2D model

and sensors lined up with constant distances. In this scenario, we divided

the space into discrete grid of angular locations. The delay of the j-th source

location toward the i-th sensor is easy to calculate, given the geometrical

position of each sensor and assuming that the source is far enough, so that

signal arrives as a planar wave (far field assumption).

2.4.1.1 Noise-Free Case

First, we decided to demonstrate the feasibility of our approach, starting

with noiseless environment. The experimental setup is as following: 4 sensors
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Figure 2.4: Source Separation (no noise). Top: sources from 2 active direc-

tions, bottom: restored sources. The normalized reconstruction error is less

than 1e-3.

are lined up with λmin

2
= 1

2
C

fmax
distance (we assume our signal to be band

limited, and fmax denoting the highest frequency). Signals are arriving from

45 possible directions, and they are 64 time samples-long.

We’ve chosen to have only 2 active sources, located very close to each

other - within 10o. In these conditions conventional methods, such as beam-

forming and MUSIC fail to super-resolve them (as shown in [53],[54]). The

experiment was successful. Using proposed algorithm, we have correctly esti-

mated the source positions (Figure 2.3(a)), while the conventional delay-sum

beamforming has failed to resolve the closely spaced sources (Figure 2.3(b)).

We have also correctly reconstructed the sources. The normalized recon-

struction error was less than 5 ∗ 10−3 (Figure 2.4) (the error was calculated

according to
∥∥∥ sinit

‖sinit‖2 −
srec

‖srec‖2

∥∥∥
2
).
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2.4.1.2 Noisy Environment

In the next experiment, we have added white Gaussian noise to the matrix

Y . The SNR at each sensor was 5dB. The contaminated by the noise matrix

Y was used as an input to our algorithm.

We have compared results based on our approach (based on spatial and

temporal sparsity), with the method based on spatial sparsity only, in spirit

of ([53],[54]). This can be done by setting µ1 = 0 in (2.17). We have also done

the DOA estimation by conventional delay-sum beamforming. Then we have

computed the energy of the restored signals at each direction for all methods

and compared the results. It can be seen from Figure 2.5 that proposed

method has correctly identified the active source directions, however if we

optimize on the spatial sparsity only, we fail to correctly detect the source

positions. The conventional delay-sum beamforming has also failed in DOA

estimation task. In the first experiment, it has failed to resolve the closely-

spaced sources (Figure 2.5(b)). In the second experiment, one of the signals

has about twice larger energy than the other. In this case, the beamforming

has found only the first source (Figure 2.5(d)).

We have also checked the signal reconstruction performance of our algo-

rithm in the noisy environment. We have compared original vs. reconstructed

signals from active directions. As one can see in Figure 2.6 the active sources

were restored rather accurately. The reconstruction error was about 5e-2.

This is a very good result, particularly if we take into consideration a high

noise level (SNR=5dB) of the sensor signals.

Figure 2.7 demonstrates the convergence of the algorithm vs. number
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Figure 2.5: Examples of DOA estimation by proposed and alternative meth-

ods (SNR=5 db). (a),(c) Solid line represents DOA estimation by proposed

method. Two peaks coincide with actual source positions (marked by solid

vertical line). However, DOA estimation based on spatial sparsity only (dash-

dot line) fails to correctly identify the sources. The beamformer (dotted line)

also fails to resolve the sources. (b),(d) Zoom-in pictures, in which details

can be seen more clearly.
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Figure 2.6: Source Separation (SNR=5dB). Top: sources from 2 active di-

rections, bottom: restored sources. The normalized reconstruction error is

about 5e-2.

of iterations. We have compared the computational load of the algorithm

for two cases: with and without preconditioning of Conjugate Gradients

(CG) (see Appendix A.2 for description of Truncated Newton (TN) and

CG algorithms). The number of Truncated Newton (outer) iterations was

slightly less for un-preconditioned version. However with preconditioning the

total number of CG iterations was reduced by a factor of ≈45 and the total

computation time by a factor of ≈28 (5.3 min vs. 150 min).

2.4.2 Near-Field Model

In this experiment we have evaluated the source localization and reconstruc-

tion capabilities of our algorithm in the near field scenario.

The problem setup was as following: we assume nearfield, 2D environ-
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Figure 2.7: Optimization convergence. The usage of preconditioning in CG

drastically reduces the computational load. The total number of iterations

were reduced by a factor of ≈45. The computation time was reduced by a

factor of ≈28 due to preconditioning.
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Figure 2.8: More examples of DOA estimation by proposed and alternative

methods (SNR=10 db). The proposed method has correctly identified the

source locations. However, the method based on spatial sparsity only has a

bias with respect to some source locations.

ment. The ”2D room” was chosen to have 1mX1m dimensions, and was

divided into equally spaced 400 locations. Then, we have randomly chosen

locations for 4 sensors and 3 active sources. Transfer functions from each

location to each sensor was assumed to reflect the direct path propagation

and 3 reflections from the walls. The generation of transfer functions was

done using the code available at public website [55]. The remaining setup

procedure was similar to previous cases.

First, we have checked the feasibility of our approach on the noiseless

case. We have successfully identified the source locations. The results can

be seen in the figure 2.9.

We have also tried to solve the problem in the noisy environment. When

applying our method for noisy environment, we have to make sure, that the
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Figure 2.9: 2D near-field, noiseless environment. (a) Sensors and active

sources positions. Four sensors are depicted by circles. Three active sources

are depicted by squares. (b) Estimated signal energy at each possible lo-

cation. The proposed algorithm has correctly identified locations of active

sources. (c),(d) example of impulse responses used to simulate the propaga-

tion of signals
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Figure 2.10: Two examples of source localization in near-field noisy environ-

ment (SNR=10dB). In both cases the true source locations were identified

correctly.

position of sensors and the noise level are appropriate: i.e. each of source

signals reaches at least two sensors with amplitudes larger than a noise. This

is necessary to avoid ambiguity in source localization.

When the above restriction is met, proposed SMSR method has fairly

good performance. Two examples of source localization in near-field noisy

environment are shown in Figure 2.10. The signal-to-noise ratio was 10dB.

The locations of active sources were identified correctly in both cases. The

source signals themselves were reconstructed with (normalized) error of about

6e-2.

2.4.3 Robustness to Noise and Model Errors

The proposed enforcement of temporal sparsity along with spatial sparsity

was shown by our simulation to have additive value. In most cases it helped
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to achieve lower side-lobes level in DOA estimation. In some cases it facil-

itated correct localization of sources, that the spatial-sparsity-only method

has failed to identify correctly. In this section, we will compare the robustness

of two approaches to model errors and noise.

2.4.3.1 Robustness to temporal non-sparsity

Although it is obvious, that aforementioned additive value of enforcement of

temporal sparsity along with spatial sparsity is achieved only when the as-

sumption of temporal sparsity of sources is valid, it is interesting to estimate

the robustness of proposed algorithm to this assumption.

In order to estimate the robustness of proposed algorithm to temporal

sparsity assumption, we have evaluated our algorithm in the basic scenario of

far-field, linear array of 4 sensors and two sources. The sources were chosen

each time with different degree of temporal sparsity (fraction of non-zero

elements).

First, we have estimated the location of sources by proposed and spatial-

sparsity-only methods. The sources were chosen to have temporal sparsity

equal to 0.1. As one can see on Fig. 2.11(a), proposed method achieves

lower side-lobe levels. Then, we have kept parameters µ1 and µ2 in (2.17)

unchanged4 and evaluated the proposed method on sources with different de-

gree of sparsity. As one can see on Fig. 2.11(b), the performance of proposed

algorithm is still good for temporal sparsity of 0.2. However, as temporal

sparsity growth to 0.5, the performance gradually degrades and we receive

4We did not change optimization parameters on purpose, since by setting µ1 = 0 we

can actually obtain spatial-sparsity-only DOA estimation
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Figure 2.11: Far-field scenario, 4 sensors, 2 sources. Illustration of DOA es-

timation by proposed algorithm for sources with different degree of temporal

sparsity (fraction of non-zero elements) (a) Doa estimation by proposed and

spatial-sparsity-only method. Temporal sparsity of sources is 0.1. Proposed

algorithm exhibits lower side-lobe levels. (b) Doa estimation by proposed

for different values of temporal sparsity of sources. As number of non-zero

elements grows, the assumption of temporal sparsity becomes invalid and

consequently the performance of proposed method degrades.
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Figure 2.12: Illustration of far field model with reflection. Infinite wall is

placed to the left of the linear sensor array. Signals arrive to the array in the

straight path, and as reflection from the wall.

spurious peaks. This experiment demonstrates that proposed algorithm has

some degree of robustness to incorrect assumption of temporal sparsity.

2.4.3.2 Robustness to incorrect estimation of impulse response

In order to estimate the robustness of proposed algorithm to incorrect esti-

mation of impulse responses, we have conducted the following experiment:

we still stick to the far-field 2D model and linear array, but this time we place

an infinite ”wall” to the left of the sensor array (figure 2.12). Signals that

arrive from angles 0 < α < 90 reach the array in the straight path and as

reflection from the wall. Signals that originate from directions 90 < α < 180

do not reach the array. We have generated the sensor measurement matrix

using ”full” transfer function (which takes into account the reflections from
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Figure 2.13: Examples of DOA estimation in reverberant environment. (a)

Convolutive reconstruction (SNR=5dB, reflection factor= 0.9). The pro-

posed algorithm has correctly estimated the DOAs. The side-lobes level

is about 15dB lower, with comparison to DOA estimation based on spatial

sparsity only (b)Convolutive reconstruction, zoom-in picture (c) straight-path

only reconstruction (SNR=5dB, reflection factor= 0.3). Source locations

were correctly identified by proposed method. However the DOA estimation

based on spatial sparsity only has failed to correctly locate the sources. (d)

straight-path only reconstruction, zoom-in picture.
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the wall). Then, we have performed the reconstruction in two ways: using the

”full” transfer function (Convolutive reconstruction) and using the straight-

path only approximation of the transfer function, which doesn’t include the

reflections from the wall (straight-path only reconstruction).

Our experiments show, that using Convolutive reconstruction, we are able

to correctly identify the source locations even in the case, when the echo has

the same amplitude as the straight-path signal (reflection factor equal to

1). However, using the straight-path only technique, we are able to restore

sources only in the light reverberation conditions (reflection factor equal or

less than 0.3), see Fig. 2.13. This results shows, that proposed algorithm was

able to deal with incorrect estimation of transfer function, when the omitted

reflection was 10dB lower than the direct path signal. The algorithm based

on spatial sparsity only, was able to correctly estimate location of sources

when the reflection factor was less then 0.15 (equivalent to omitted reflection

energy is lower by 16.5dB or more, with respect to the energy of direct path

signal)

2.4.3.3 Robustness to Noise

We have estimated the robustness to noise of proposed and spatial-sparsity-

only based methods by probability of correct estimation of source locations

and sources reconstruction error.

We have chosen the basic scenario: far-field, linear array of 4 sensors, 2

sources at 80o and 100o. We have run 20 simulation for different SNR values.

Figure 2.14(a) shows, that both algorithms accurately estimate DOA for high

SNR values. However for low SNR values, the enforcement of both temporal
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Figure 2.14: Far-field scenario, 4 sensors, 2 sources at 80o and 100o. Com-

parison of proposed and spatial-sparsity-only methods by (a) Probability of

correct DOA estimation. (b) average normalized source reconstruction error
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and spatial sparsity results in higher probability of correct DOA estimation.

Moreover, one can observe on Fig. 2.14(b), that even at high SNR values,

spatial-sparsity-only based algorithm has poor performance for source recon-

struction. The proposed approach, on the contrary, estimates the sources

rather accurately even at moderate SNR values.

2.4.4 Conclusions

Conducted simulations demonstrates the additive value of enforcement of

temporal sparsity along with spatial sparsity. In most cases, the proposed

SMSR algorithm achieves lower side-lobe levels, than the method based on

spatial sparsity only. In some cases, it is able to resolve sources, which the

spatial sparsity only method fails to resolve.

In addition, the proposed enforcement of both temporal and spatial spar-

sity makes the proposed approach capable to accurately reconstruct the

source signals even at high noise levels. Moreover, the proposed problem

formulation allows incorporation of reverberant (”full”) transfer functions in

the model, which leads to convolutive reconstruction. The later has much

better performance than the original straight-path only approach.

The weaknesses of our approach are high computational complexity and

the need to subjectively assess the trade-off parameters. These issues can

serve as challenging topics for further research.



Chapter 3

Learning Spatial and Spectral

Filters for Single-Trial EEG

Classification

In this chapter, we present our method for spatial and spectral multi-sensor

EEG signal filtering. Proposed method is based on the assumption that the

”response” to the mental task is smooth, and is contained in several sensor

channels. We find both spatial and spectral filters ”blindly”, by optimizing

the between class discrimination and the smoothness of result average. We

assume no other information on signals of interest is available.

This chapter is organized as follows. In Section 3.1 we describe the first

stage of our preprocessing method, which is based on spatial integration.

In Section 3.2 we develop additional method for spatial filtering based on

Eigenvalue Decomposition. In Section 3.3 we develop a bound, which shows

how well can we perform signal reconstruction (and further classification)

50
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based on spatial integration only. In section 3.4 we describe the second stage

of our algorithm, which is based on time-domain filtering. Section 3.5 is

devoted to computational experiments. Finally, we discuss the results in

Section 3.6.

3.1 Spatial Integration Method

3.1.1 Data Description

In this section we provide the general description of the data format, which

we use in our preprocessing method.

Suppose EEG data was recorded using S channels. Single trial signals,

corresponding to one of the two possible mental tasks were taken from the

raw data, synchronized by some external stimuli or cue, and they are T

samples long. Each single trial is stored in the T × S matrix. Let us denote

X1
l , 1 ≤ l ≤ L trials that belong to the first class, and X2

m , 1 ≤ m ≤ M

trials that belong to the second class.

If we produce the averaging among the trials, we obtain

X1
avg =

1

L

L∑

l=1

X1
l X2

avg =
1

M

M∑
m=1

X2
m

where X1
avg and X2

avg are T × S matrices.

3.1.2 The Method

In our model, we assume that each sensor records the following signal:

xi(t) = ais
j(t) + ni(t) (3.1)
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where ai is the coupling coefficient for sensor i, ni(t) denotes the noise and

background activity recorded by the sensor and sj(t) , j ⊂ {1, 2} is the

response to one of the two possible mental tasks.

We will use a linear estimate of single trial signals

ŝ1
i = X1

i w , ŝ2
j = X2

j w (3.2)

where w is the S × 1 weighting vector.

The average of the estimated signals is:

ŝ1
avg = X1

avgw , ŝ2
avg = X2

avgw (3.3)

Using the above notation, we can formulate our objective as finding the

weighting vector w such, that will maximally discriminate between the av-

erage estimated signals ŝ1
avg and ŝ2

avg, while keeping single trial estimated

signals ŝ1
l and ŝ2

m (1 ≤ l ≤ L , 1 ≤ m ≤ M) smooth. The smoothness can be

measured e.g. by total variation, defined as

Φ(ŝ) =
L∑

l=1

T−1∑
t=1

z1
l (t) +

M∑
m=1

T−1∑
t=1

z2
m(t) (3.4)

where z1
l (t) = |ŝ1

l (t + 1)− ŝ1
l (t)| , 1 ≤ t ≤ T − 1

and z2
m(t) = |ŝ2

m(t + 1)− ŝ2
m(t)| , 1 ≤ t ≤ T − 1

This leads to following objective function:

min
w
−

∥∥ŝ1
avg − ŝ2

avg

∥∥2

2
+ µΦ(ŝ) (3.5)

s.t. ‖w‖2 = 1

where µ is a tradeoff parameter, which is intended to balance between smooth-

ness of signals and between class discrimination. We are forcing the norm of
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weighting vector w to remain constant in order to prevent degenerate solution

of ‖w‖ → ∞ or ‖w‖ → 0.

If we substitute expressions for ŝ1
avg,ŝ

2
avg and Φ(ŝ) from equations (3.2),(3.3)

and (3.4), after few simple algebraic steps the objective function (3.5) be-

comes:

min
w
−‖Xavgw‖2

2 + µ (‖Y w‖1) (3.6)

s.t. ‖w‖2 = 1

where ‖·‖1 is the first norm, Xavg = X1
avg−X2

avg and Y is a block-matrix,

composed of matrices Y 1
l , 1 ≤ l ≤ L and Y 2

m, 1 ≤ m ≤ M placed one under

another; i.e. if matrices Y 1
l and Y 2

m have dimensions of T − 1 × S, then a

matrix Y will have dimensions of (L + M)(T − 1)× S.

Matrices Y 1
l and Y 2

m are defined as:

Y 1
l (t, i) = X1

l (t + 1, i)−X1
l (t, i) , 1 ≤ t ≤ T − 1

Y 2
m(t, i) = X2

m(t + 1, i)−X2
m(t, i) , 1 ≤ t ≤ T − 1

note that z1
l = Y 1

l w, z2
m = Y 2

mw.

3.1.3 Close look at the Objective Function

One can ask the following question: Why should we measure discrimination

between classes on average signals, while smoothness (TV ) is measured on

single trial signals? Why couldn’t it be vise versa, for example? In order

to answer this question, we need to analyze what we want to achieve by

minimizing the objective function.
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3.1.3.1 Between Class Discrimination

Let’s start with between class discrimination. We can measure it on average

signals (as we do in objective (3.6)), alternatively it could be done on single

trials. We have two reason to prefer our choice.

First of all, we should remember that EEG signals are extremely noisy.

Therefore, over trial averaging, which improves the SNR, is more reliable for

estimation of between class discrimination. On the contrary, if it is done on

signal trials, we are more likely to start measuring discrimination between

noise and noise.

Second, if we choose single trials, we should match one trial of the first

class to some trial of the second class. This matching can be arbitrary. Thus

we may choose different permutations, which may lead to different results.

This is undesired feature for the stability of the algorithm.

3.1.3.2 Total Variation

The Total Variation is measured in objective (3.6) on the single trials signals,

which is preferable to over-trials average, which smoothes the signals, and

doesn’t give a real estimate of TV .

This claim can be demonstrated by the following example. Let’s assume

that all sensors contain pure signal, except for the sensor #k, which registered

desired signal plus some noise n(t). If we choose to measure TV on over-trials

averaged signals, X1
avg and X2

avg, and if n(t) is zero mean, the SNR of the

sensor #k will go to infinity as number of trials increases. Hence, no care of

noisy sensor will be taken. However, if we choose to measure TV on single
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trail signals, the noise of sensor #k will influence the optimization procedure,

and that sensor will receive a zero weight in spatial integration.

3.1.4 Getting Rid of the Tradeoff Parameter

In objective (3.6) there is a need to choose a value for a tradeoff parameter µ.

Although we have found out by our simulations, that the optimization result

is quite robust to the change of value of µ, the need to subjectively asses

the tradeoff parameter is still an essential drawback. In this subsection, we

rewrite the objective function in such a way, that it will contain no parameter

any more.

For beginning, let us note, that the norm and the sign of the vector w

have no significance. We are interested only in relative to each other values

of its elements. In other words, we want to find such w, which will satisfy

two conditions. First, it will minimize a value of the second term of (3.6),

when a value of the first term is constant. Second, it will minimize a value

of the first term, when a value of the second term is constant. Now, let us

write the objective function which will satisfy the above conditions1:

min
w
‖Y w‖1 (3.7)

s.t. ‖Xavgw‖2
2 = 1

One can note, that above objective function satisfies the first condition

at the solution point by definition. The second condition is also satis-

fied. This can be proved in the following way. Suppose wTV is a solution

of (3.7). Let us assume by contradiction, that there exist wnew, such that

1Alternatively, we may switch role of main term and constraint of objective (3.7)
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‖Y wnew‖1 = ‖Y wTV ‖1 and ‖Xavgwnew‖2 = c2 < 1. In such a case, w = 1
c
wnew

would satisfy the constraint, while ‖Y w‖1 < ‖Y wTV ‖1. This contradicts the

assumption, that wTV is a solution of (3.7). Thus, the second condition also

holds.

Although the problems (3.6) and (3.7) are not completely equivalent, the

problem (3.7) can be viewed as such, that optimally (and automatically)

chooses the tradeoff parameter µ. Indeed, if wµ is a solution of (3.6) for

some value of µ and wTV is a solution of (3.7), then, after re-scaling of wTV ,

we have proven that: ‖Y wTV ‖1 < ‖Y wµ‖1 if ‖XavgwTV ‖2
2 = ‖Xavgwµ‖2

2 and

‖XavgwTV ‖2
2 > ‖Xavgwµ‖2

2 if ‖Y wTV ‖1 = ‖Y wµ‖1. This is true for any value

of µ, thus wTV is really the optimal solution. In Section 3.1.5 we provide

derivatives of objective function (3.7), which will help to minimize it using

numeric optimization.

An alternative to objective (3.7) can be obtained from Basis Pursuit per-

spective [31]. The matrix Y in (3.7) may contain the coefficients of signal

representation in some basis or ”overcomplete” dictionary Ψ (i.e. short-time

Fourier transform, wavelet transform, etc.), which is expected to be sparse:

Y = ΨT X (see for example [56]). Additional alternative, is to build the

matrix Y from signals at predefined time windows, where their energy is

expected to be small.

3.1.5 Numerical Optimization

Since the objective function (3.7) is a constrained optimization problem,

it is convenient to minimize it by Lagrange Multipliers technique. For this

purpose, we will need to calculate the gradient of the main and the constraint
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terms.

Before we proceed, we should notice, that the main term of (3.7) is not

differentiable. Hence, for optimization, we will use the smooth approximation

of absolute value function.

ψ(t) = c(
|t|
c
− log(1 +

|t|
c

)) (3.8)

Note that ψ′(t) is defined at t = 0:

ψ′(t) =
t

c + |t| (3.9)

The approximation becomes more accurate, when c → 0.

The modified problem will receive the following form:

min
w

L∑

l=1

1T ψ
(
Y 1

l w
)

+
M∑

m=1

1T ψ
(
Y 2

mw
)

(3.10)

s.t.
∥∥X1

avgw −X2
avgw

∥∥
2

= 1

where 1 is a vector of ones, and the application of ψ(·) to a vector is element-

wise.

Let’s denote the the main term of (3.10) as f(w), and rewrite the con-

straint to be

g(w) = ‖Xavgw‖2
2 = wT XT

avgXavgw

where Xavg = X1
avg −X2

avg.

Now, we can easily calculate the gradients of f(w) and g(w), using the

matrix derivations and the chain rules:

∇f(w) =
L∑

l=1

(
Y 1

l

)T
ψ′

(
Y 1

l w
)

+
M∑

m=1

(
Y 2

m

)T
ψ′

(
Y 2

mw
)

(3.11)

∇g(w) = XT
avgXavgw (3.12)

This calculus is sufficient for minimization of the objective function (3.10).
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3.2 Learning Spatial Integration weights through

Eigenvalue Decomposition

In this section, we propose a solution of a problem, which is similar somehow

to (3.7):

max
x
‖Ax‖2

2 (3.13)

s.t. ‖x‖2
2 = 1

where A is matrix, and x is a vector. If we rewrite the main term as ‖Ax‖2
2 =

xT AT Ax = xT
(
AT A

)
x, then it can be easily seen, that a solution for above

problem is an eigenvector, which corresponds to the largest eigenvalue of

matrix B = AT A.

Now, let us return to the problem (3.7), more precisely to its alternative2

:

max
w
‖Xavgw‖2

2 (3.14)

s.t. ‖Y w‖2
2 = 1

We can produce change of variables in (3.14) in order to make it look

like (3.13). Let us rewrite the constraint term: ‖Y w‖2
2 = wT Y T Y w. If

matrix Y is a full rank (which is very likely for the noisy data), the matrix

C = Y T Y has a Cholesky factorization3 C = UT U . Now, the constraint

2Note, that objective (3.14) is quadratic, quadratically constrained. A Φ(ŝ) term also

appears with a l2 norm, and thus can not represent Total Variation any more.
3If matrix Y is not full rank, we may use a regularization C = Y T Y + αI, where α is

a small constant, and I is an identity matrix
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can be written as ‖Y w‖2
2 = wT Y T Y w = wT UT Uw. If we introduce a new

variable x = Uw (w = U−1x), then the objective (3.14) can be written as:

max
x

∥∥XavgU
−1x

∥∥2

2
(3.15)

s.t. ‖x‖2
2 = 1

which exactly resembles the problem (3.13). Thus we know, that solution

of (3.15) is an eigenvector νmax, which corresponds to the largest eigenvalue,

λmax, of matrix B = (XavgU
−1)

T
XavgU

−1 = U−1T XT
avgXavgU

−1. Hence, the

solution of (3.14) is w = U−1νmax.

An important advantage of this approach, is that it doesn’t require it-

erative optimization, but needs only a few simple algebraic steps. However,

the difference of objective (3.14) is that in the Φ(ŝ) term, the l1 norm was

replaced by l2 norm. Thus it doesn’t measure Total Variation any more.

Nonetheless, our simulations shows, that using approach described in this

subsection, we achieve similar results, with comparison to those, achieved

using objective (3.14).

3.3 Theoretically Best Spatial Filtering

In some (unpractical) situations, we can evaluate the bound for the best

theoretically achievable separations of signal from noise, using spatial filter-

ing. This can be done if the ’sensor measurement’ data is synthesized in the

following way:

X = sarta
T + N (3.16)
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In above formula, the ’sensor measurement’ T × S matrix X is obtained by

mixing artificial signal, represented in T × 1 vector sart with S × 1 coupling

vector a, and and adding T × S noise matrix N .

If we know both background noise covariance matrix N and the mix-

ing vector a in (3.16), we can find the best weighting vector w solving the

following problem4:

min
w
‖Nw‖2

2 = wT Rw

s.t.
∥∥sarta

T w
∥∥2

2
= 1 (3.17)

where R = NT N is the noise covariance matrix.

The artificial signal sart can be normalized ‖sart‖2 = 1, hence the con-

straint in (3.17) can be simplified:

min
w

wT Rw (3.18)

s.t. aT w = 1

Note, that in above equation, we want to find w, which maximally sup-

press the noise, while keeping the norm of unmixing vector constant. And one

can state, that this task differs from the task of the objective function (3.10).

But actually in both cases we want to perform the de-noising of the signal of

interest. In this sense, the solution of (3.18) can be viewed as theoretically

best achievable limit and thus a good reference point for comparison.

We can solve the problem (3.18) using Lagrange Multipliers:

min
w

wT Rw − λ
(
aT w − 1

)

4Note, that we want to perform the de-noising by weighted sum of channels. Thus, the

idea of subtracting the noise matrix is not relevant.
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The gradient of above objective is given by: g(w) = Rw−λaT . The solution

is obtained if g(w) = 0 ⇒ wth = λR−1a. Note, that wth can be found up to

scaling and sign, hence every real λ 6= 0 can be chosen. If we take λ = 1 we

get the final formula for wth:

wth = R−1a (3.19)

3.4 Time-Domain Filtering

Signals, reconstructed by one of the spatial filtering methods, will still suffer

from noise contamination, which can be further reduced by the second stage

of preprocessing - time-domain filtering of the estimated signals (3.2).

The problem in applying filtering is that we do not know in advance

which filter to use, because the signals of interest as well as background

activity noise are unknown. Thus, we propose to find a suitable filter by

learning, based on the same criteria used for finding spatial filter: maximize

between class discrimination, while keeping the resulting signal smooth (or,

alternatively, small in predefined time windows).

So, we want to find filter h[n], 1 6 n 6 Nfilt, which will further discrim-

inate between reconstructed signals ŝ1
avg[n] and ŝ2

avg[n]:

max
h[n]

∥∥(
ŝ1

avg[n]− ŝ2
avg[n]

) ∗ h[n]
∥∥2

2
(3.20)

s.t.

L∑

l=1

∥∥ẑ1
l ∗ h[n]

∥∥
2
+

M∑
m=1

∥∥ẑ2
m ∗ h[n]

∥∥
2

= 1

where ∗ denotes convolution.

Since, we are working with discrete time, time-limited signals, let us build

(T − Nfilt + 1) × Nfilt convolution matrix X̃1
avg, j-th column of which will
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contain ŝ1
avg[n], j 6 n 6 (T −Nfilt + j), (i.e. the j-th column of X̃ contains

a shifted by (j − 1) signal ŝ1
avg[n], which is also truncated by (j − 1) taps

at the beginning and (Nfilt − j) taps at the end). In the same manner we

can define convolution matrix X̃2
avg, columns of which will contain shifted

replicas of ŝ2
avg[n]. And finally, matrix X̃avg = X̃1

avg − X̃2
avg.

Similarly, we can build convolution matrices X̃1
l ,X̃2

m for single trials and

construct from them matrix Ỹ in the same manner as matrix Y is constructed

from X1
l ,X2

m in (3.6).

After those preparations, we can rewrite the problem (3.20) in an familiar

form:

max
wfilt

∥∥∥X̃avgwfilt

∥∥∥
2

2
(3.21)

s.t.
∥∥∥Ỹ wfilt

∥∥∥
2

2
= 1

which exactly resemble the problem (3.14). Thus, the solution developed in

section 3.2 can be used to solve the problem (3.21). Note, that the solution

of (3.21), wfilt, is actually temporal filter, rather than spatial one.

There is an alternative choice of the matrix Ỹ . It can represent a back-

ground activity noise5, which we also want to minimize, instead of Total

Variation. This idea may be even more appealing, because we minimize the

background noise directly, and not some measure of it - Total Variation. This

is really a good approach, if the background activity is stationary. Our sim-

ulations shows, that an alternative choice of the matrix Ỹ is better for real

EEG recordings, while on the synthetic data, we have preferred the initial

5it can be obtained, for example, if we start to register the response well in advance

(Fig. 3.1(a)).
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Figure 3.1: (a) Illustration of (single-channel) EEG recording, which con-

tains a background activity only. If we start to register the response well in

advance, then at the beginning we will record a background activity only.

Signal left to the dashed vertical line can be treated as a background noise.

The actual response appear after the dashed vertical line. (b)Cross Valida-

tion error rate for different values of Nfilt. One can notice, that real test

error (dashed line) is highly correlated with CV error. This enables us to

choose the optimal order of FIR filter.
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choice.

Now, the only open question left, is how to choose the optimal order

Nfilt of FIR filter h[n]. We have no closed solution for this issue. In our

experiments, we have chosen its value based on cross validation on the train-

ing data: we have calculated the CV error for different values of Nfilt, and

then have chosen the one, which gives the lowest error rate. Figure 3.1(b)

illustrates, that the CV error rate and test error rate are highly correlated.

3.5 Computational Experiments

We have conducted several experiments, using both synthetic and real signals

in order to show the feasibility of the proposed approaches and make a com-

parison between them and other spatial integration methods: CSP [44] and

CSSP [45]. Also the comparison to direct use of unprocessed data, namely

simple sum of channels (”
∑

”) and choosing the best channel (”best ch.”),

was also performed to emphasize the contribution of proper spatial integra-

tion. In this section we provide a results of our simulations.

3.5.1 Real EEG Signals

In this experiment, we used the data obtained from two BCI competitions,

held in years 2002 [57] and 2003 [58]. The goal of above competitions was

to validate signal processing and classification methods for Brain Computer

Interface. Data set consists of trials of spontaneous EEG activity, one part

labelled (training data) and another part unlabelled (test data). The goal was

to infer labels for the test set, by prepossessing the training data. Inferred



Learning Spatial and Temporal Filters for Single-Trial EEG Classification65

test labels should have maximally fit the true (but unknown to participants)

test labels.

3.5.1.1 BCI competition 2002

This data set [57], consists of EEG signals, that were recorded from one

subject in sessions with few minute’s breaks in between. The subject was

sitting in a normal chair, relaxed arms resting on the table, fingers in a

standard typing position at the computer keyboard (index fingers at ’f’, ’j’

and little fingers at ’a’,’;’). The task was to press two chosen keys with

the corresponding fingers in a self-chosen order and timing (’self-paced key

typing’). A total of 516 keystrokes was done at an average speed of 1 key

every 2.1 seconds. Brain activity was measured with 27 Ag/AgCl electrodes

at 1000 Hz sampling rate using a band-pass filter from 0.05 to 200 Hz.

Further, windows 1500 ms long were cut out of the continuous raw signals

each ending at 120 ms before the respective keystroke. The reason for

choosing the endpoint at −120 ms is that before this point the classification

based on measuring EMG activity only is still close to chance. 100 trials

equally spaced over the whole experiment were defined to be the test set,

leaving 413 labelled trials for training. For classification we used only last

700 ms of a trail, the first 800 ms were treated as background noise used in

calculation of wfilt.

We used only the training data for learning spatial and temporal filters

by our methods described in previous sections - wTV , wEV D and wTV +wfilt.

Then, we have classified the filtered test data. Figure 3.2 illustrates the

classification process. We have tried several classifiers for classification us-
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find spatial filter

find  spectral filter
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Cross-Validation,
chose filter order
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minimize CV error

unprocessed
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perform spatial
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processed
test data

processed
training data
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processed test

data

perform spectral
filtering using filter

obtained using
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spatially filtered
training data

spatially filtered
test data

Figure 3.2: Flow chart of classification process. The temporal filtering stage

is omitted for wTV and wEV D methods.
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CSP CSSP wTV wEV D wTV +wfilt

∑
best ch.

10-fold CV 21(4.1) 12(3.3) 12(3.8) 12(3.5) 13(3.9) 51(11) 32(10)

Test 27 21 5 5 5 53 30

Table 3.1: Classification results (error rate in %) of BCI competition 2002

data set. Each column corresponds to a different method of preprocessing.

Both10-fold Cross-Validation(std is given in parenthesis) and test error re-

sults are provided. For CSP method we used m = 4, for CSSP m = 8,τ = 16,

Nfilt = 100 was used for proposed wTV +wfilt method. All these parameters

were chosen such that minimize cross-validation error.

ing ”pr-tools” classification toolbox [59]), including nearest mean, k nearest

neighbor (k-nn) [60] and Support Vector Machines (SVM) with different ker-

nels [61]. All classifiers have provided similar results with BCI2002/3 data

sets, therefore we have preferred to use the simplest one - nearest mean clas-

sifier. The result of classification error, both of 10-fold Cross-Validation [62]

and test error6, are summarized in Table 3.1. The best result reported by

competition organizers was 4% error rate. The classification results using

for CSP and CSSP methods using Fisher Linear Discriminant are 27% and

21% test error rate respectively (are similar to Nearest-Mean classification

results).

3.5.1.2 BCI competition 2003

The data set for that competition [58] is similar to the previous one (self-

paced key typing). This time the average typing rate was 1 key per second.

6Test error was calculated when real labels were published by competition organizers.
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CSP CSSP wTV wEV D wTV + wfilt

∑
best ch.

10-fold CV 18(4.9) 10(4.9) 21(4) 24(4.3) 22(4) 43(14) 37(9)

Test 30 22 22 22 22 41 39

Table 3.2: Classification results (error rate in %) of BCI competition 2003

data set. Each column corresponds to a different method of preprocessing.

Both10-fold Cross-Validation (std is given in parenthesis) and test error re-

sults are provided. For CSP method we used m = 6, for CSSP m = 6,τ = 22,

Nfilt = 110 was used for proposed wTV +wfilt method. All these parameters

were chosen such that minimize cross-validation error.

Totally, there are 416 epochs of 500 ms length each ending 130 ms before a key

press. 316 epochs are labelled (training set), the remaining 100 epoches are

unlabelled (test set).For classification we used only last 360 ms of data, the

first 140 ms were treated as background noise which were used in calculation

of wfilt.

We used the training data for preprocessing, trying out all proposed ap-

proaches - wTV , wEV D and wTV +wfilt. Again, we used nearest mean classifier

for classification. The result of classification error of 10-fold Cross-Validation

and test error are summarized in Table 3.2. The best result reported by com-

petition organizers was error rate of 16%. The classification results using

for CSP and CSSP methods using Fisher Linear Discriminant are 29% and

19% test error rate respectively (are similar to Nearest-Mean classification

results).
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3.5.1.3 Response to Visual Stimuli

This EEG data was obtained during the following procedure7. The subject

was shown a sequence of 3 different images, at some predefined and con-

stant over-trials pace. Afterwards, the subject had to respond, by pressing

a button. The trials were repeated with periodicity of 7 seconds. The delay

between the first and the second images in the sequence was 1.5 seconds, and

2.5 seconds between the second and the third image. Then, the subject was

given 3 seconds for respond. Each session consisted of approximately 30 tri-

als. There were several sessions, with few minutes break between them. The

EEG data was recorded by 23 electrodes, with sampling rate of 256 samples

per second.

In this experiment, we were interested in distinguishing a response to vi-

sual stimuli from the absence of response, i.e. regular background activity.

We have built two classes of signals from the row data: the first class rep-

resented the response to visual stimuli (image was shown), and the second

class represented the absence of visual stimuli (regular background activity).

In order to build the first class, we have cut from the row data the segments,

which start at the times when the first image is shown and are 180 time

samples in length. The second class was built from segments, started 300

time samples before the third image is shown, and ended 120 time samples

7For this experiment we have used the data, that was recorded in the laboratory for

Evoked Potentials in the Technion - Israel Institute of Technology. We have not conducted

the new experiment for our purposes, but rather we have used the data that were already

recorded for some other research [63]. We are grateful to Hillel Pratt for providing us with

these EEG recordings.
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CSP CSSP wTV wEV D wTV +wfilt

∑
best ch.

NM 8.9(2.1) 5.8(1.5) 2.2(0.7) 2.2(0.6) 2.3(0.6) 39(5.5) 26(4.5)

k-nn 8.3(2) 5.6(1.4) 2.2(0.7) 1.7(0.6) 3.3(0.7) 27(6) 16(5)

FLD/SVM 7.3(1.8) 3.9(1.7) 2.2(0.6) 2.6(0.9) 2.9(0.8) 41(13) 29(14)

Table 3.3: 10-fold Cross-Validation error rate in % (std is given in paren-

thesis) on Visual Stimuli data set. Each column corresponds to a differ-

ent methods of preprocessing. Results of applying 3 different classifiers are

shown: Nearest Mean (NM), k-nn (with k=3) and FLD/SVM with exponen-

tial kernel. Fisher Linear Discriminant (FLD) is applied on CSP and CSSP

methods as proposed in original papers. Since FLD is not applicable if signals

of both classes are zero-mean, in remaining methods we use SVM instead.

For CSP method we used m = 4, for CSSP m = 6,τ = 12, Nfilt = 40 was

used for proposed wTV +wfilt method. All these parameters were chosen such

that minimize cross-validation error. The same parameters were used later

in the test stage.

before the time when the third image is displayed.

We have randomly chosen 180 trials to be the training set and the re-

maining 60 trials were made to be the test set. Then, we have applied all our

approaches. We provide the classification results by NM, k-NN and SVM

with exponential kernel classifiers demonstrated different performance. The

results of 10-fold cross validation are summarized in the Table 3.3. The test

error is provided in Table 3.4. Reconstructed signals are shown in Figure 3.3.
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Figure 3.3: Experiment with visual stimuli data set. One can easily tell, that

the dotted line represents the signal with background activity only, while

the solid line corresponds to the signal which contains the response. (a) -

averaged signals reconstructed by wTV ; (b) - averaged signals reconstructed

by wTV and further filtered by wfilt; (c),(d) - examples of single-trial signals

reconstructed by wTV and further filtered by wfilt. Note, that two classes are

easily distinguishable even on single trials. Also note the similarity between

single-trial and averaged signals
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CSP CSSP wTV wEV D wTV +wfilt

∑
best ch.

NM 3.3 3.3 3.3 1.7 0.0 40 35

k-nn 10 8.3 0.0 1.7 3.3 35 20

FLD/SVM 6.7 5 1.7 1.7 3.3 45 42

Table 3.4: Test error rate (in %) on Visual Stimuli data set. Each column

corresponds to a different methods of preprocessing. Results of applying 3

different classifiers are shown: Nearest Mean (NM), k-nn (with k=3) and

FLD/SVM with exponential kernel. See table 3.3 for further details

3.5.2 Artificial Signals

We decided not to stop the evaluation of our approach after two previous

experiments, and generated synthetic data set, which should resemble the

real experiments. The idea was to mix some smooth signal (two different

signals, s1
art and s2

art, for two different classes) into background noise N .

We modelled our signals to be T time samples in length. Thus, artificial

signals, s1
art and s2

art, are T × 1 vectors. Moreover, we assumed S channel

data, hence the dimensions of single trial and noise matrices (Xi and Ni

respectfully) are T × S. The weights, with which the artificial signal sart

reaches each channel (column of Xi), were randomly chosen and organized

in S × 1 mixing vector a. This leads to the following data synthesis model:

X1
l = s1

arta
T + Nl

X2
m = s2

arta
T + Nm

(3.22)
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3.5.2.1 White Gaussian Background Noise

In this experiment, the noise matrix Ni was generated as white gaussian noise

(150×25 matrix, generated independently for each trial). The mixing vector

a was randomly generated (each element in a is uniformly distributed between

[−1; 1]). This experiment setup stands up for ”real” problem of 25 sensors

and 150 time samples in each trial. We have generated 1200 trials. First 200

trials (approximately 100 of each class) were used for preprocessing (finding

unmixing vector w). Remaining 1000 trials were used for classification by

the nearest mean algorithm [62].

We have compared results of classification of data preprocessed by differ-

ent methods - wTV , wEV D and wfilt and unprocessed data (simple sum over

all channels ”
∑

” and choosing the best channels ”best ch.”). In addition,

in experiments with the synthesized data, we have the good reference point

for comparison - results obtained by applying wth (3.19). As shown in Sec-

tion 3.3, this method serves as an upper bound of signal denoising by spatial

filtering. Classification results (by Nearest Mean Classifier) are displayed in

the Table 3.5. Three rows refer to three different SNR8.

3.5.2.2 Real EEG Background Noise

In the second experiment, we have used real EEG signals as the background

noise N (150× 22 matrix for each trial). The rest of the setup is identical to

the previous case. Classification results are displayed in the Table 3.6.

8SNR refer to average signal-to-noise ratio at each sensor in single trial. Since mixing

weights ai of artificial signal sart are randomly generated, we have taken the average value

of ai = 0.5
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Figure 3.4: Experiment with artificial signals and Random Gaussian back-

ground noise: (a) - artificial signals; (b) - signals restored by simple sum of

channels; (c) - signals restored by wTV ; (d) - signals restored by wTV and

further filtered by wfilt.
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wTV wEV D wTV + wfilt wth

∑
best ch.

SNR=-10dB 0.0% 0.0% 0.0% 0.0% 43.7% 14.0%

SNR=-15dB 3.5% 3.3% 1.4% 2.7% 44.1% 36.7%

SNR=-20dB 20.3% 20.4% 13.7% 17.1% 49.0% 41.7%

Table 3.5: Experiment with artificial signals and White Gaussian background

noise: Classification Error Rate in % . The first column shows an average

SNR, measured at each sensor.

wTV wEV D wTV + wfilt wth

∑
best ch.

SNR=-20dB 2.5% 1.3% 1.1% 0.0% 51.6% 43.3%

SNR=-25dB 10.5% 10.3% 10.0% 0.7% 50.5% 50.1%

SNR=-30dB 25.7% 22.6% 21.9% 1.3% 52.9% 49.5%

Table 3.6: Experiment with artificial signals and real EEG recordings as a

background noise: Classification Error Rate in %. The first column shows

an average SNR, measured at each sensor.
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wTV /wEV D CSP CSSP

Figure 3.5: Imagined hand movement data set (BCI competition 2002). Spa-

tial filters received by wTV ,wEV D (left column) and CSP,CSSP methods (two

patterns per each). Spatial filters received by wTV ,wEV D are almost identi-

cal. Spatial filters received using CSP,CSSP are different, but concentrate

over the same area

3.6 Discussion

Classification results presented in previous chapter leave no doubt that spa-

tial integration improves classification accuracy. An interesting issue is a

comparison of the spatial filters obtained by proposed wTV and wEV D tech-

niques with spatial patterns obtained by CSP and CSSP methods.

Figures 3.5 and 3.6 show the spatial patterns obtained by different meth-

ods on imagined hand movement data sets. One can notice, that wTV and

wEV D are similar in both data sets. Spatial filters received by CSP and CSSP

methods are different, however they concentrate on the same area. If we take

into account the classification results on these data sets (which for proposed

methods are at least as good as for CSP and CSSP methods) it hints that

wTV /wEV D were able to concentrate all relevant spatial information in one
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wTV /wEV D CSP CSSP

Figure 3.6: Imagined hand movement data set (BCI competition 2003). Spa-

tial filters received by wTV ,wEV D (left column) and CSP,CSSP methods (two

patterns per each). Spatial filters received by wTV ,wEV D are almost identi-

cal. Spatial filters received using CSP,CSSP are different, but concentrate

over the same area. Note the similarity to filters in figure 3.5

single filter. It may also hint, that after reconstructing the signal using spa-

tial filter, a better strategy for classification is using it time course, rather

than some measure of it - variance as proposed by CSP/CSSP methods. In-

deed, the response to two different tasks may have different time courses,

while having the same variance.

The spatial filters for the visual stimuli data set, can be observed in

Figure 3.7. This time, all the methods have produced very similar filters9.

If we look at the classification results and compare wTV /wEV D vs. CSP and

wTV + wfilt vs. CSSP10, we can observe that proposed methods have similar

(or even better) performance. Thus, we can again argue, that wTV /wEV D

9for CSP/CSSP methods we have chosen the most similar filter, among first 2m which

participate in classification
10this comparison is the most fair since both wTV +wfilt and CSSP use spatial-temporal

filtering
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wTV wEV D CSP CSSP

Figure 3.7: Visual stimuli data set. Spatial filters received by wTV ,wEV D (left

column) and CSP,CSSP methods. Note the similarity of all spatial filters.
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Figure 3.8: Power spectra of estimated signals (solid lines) and resulting

temporal filter wfilt(dashedline): (a) - imagined hand movement data set

(BCI competition 2003); (b) - response to visual stimuli data set.

contains the most relevant spatial information in a single filter.

Another interesting issue for discussion is the contribution of temporal

filtering to the classification accuracy. One can notice, that in imagined hand

movement data sets, temporal filter did not contribute to the classification

accuracy. However, on visual data set it has improved the classification

considerably.

This phenomena is easy to explain. In the imagined hand movement data
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sets, signals of both classes correspond to the movement task and has similar

power spectra (Fig. 3.8(a)). In this case, a resulting temporal filter turns to

be a simple low-path which doesn’t contribute to the further discrimination

of classes (it may, however, improve the quality of estimation by rejecting

high-frequency noise).

In the visual data set, signals of different classes has different origin: the

first contains background activity, while the second is a response to the visual

stimuli. As one can see on Fig. 3.8(b) those signals have different frequency

components. In this case, a power spectra of resulting temporal filter has

dominant peaks over frequency regions, were power spectra of two signals

differ the most. Thus, such filtering contribute to the further between-class

discrimination and classification improvement.



Chapter 4

Conclusion

Both algorithms presented in this thesis, have been shown by conducted

simulations to overperform the existing techniques by exploring the sparsity

of the signals in the first case, and the smoothness in the second.

Sparse Multi-Channel Signal Reconstruction

and Localization

The first algorithm, presented in this thesis, is a method of multiple wide-

band source localization and reconstruction. It is designed for the case, when

the sources can be sparsely represented in time domain in some know basis

or frame. It improves the algorithm proposed in [30] by exploring the tem-

poral sparsity along with spatial one. It was formulated as a regularized

optimization problem. Thus it does not require accurate initialization and

the convergence to global minima is guaranteed.
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Conducted simulations demonstrate the advantage of enforcement of tem-

poral sparsity along with spatial sparsity. In most cases, the proposed SMSR

algorithm achieves lower side-lobe levels, than the method based on spatial

sparsity only. In some cases, it is able to resolve sources, which the spatial

sparsity only method fails to resolve.

In addition, the proposed enforcement of both temporal and spatial spar-

sity makes the proposed approach capable to accurately reconstruct the

source signals even at high noise levels. Moreover, the proposed problem

formulation allows to use the algorithm in the presence of multi-path. This

requires, however, the knowledge of impulse responses for all location-sensor

pairs, which may be unpractical for some reverberation environment.

The weaknesses of our approach are high computational complexity and

the need to subjectively assess the trade-off parameters. These issues can

serve as challenging topics for further research. The computational load may

be reduced, for example, by introducing more efficient optimization proce-

dure, which is tailored for the problem formulation (2.17) and a structure of

the forward operator A.

An automatic choice of trade-off parameters may be based on discrepancy

principle: choose the trade-off parameter such, that the residual of the solu-

tion obtained using it will fit some known statistics of noise. The choice may

be done iteratively. However, it is preferably to develop a closed solution.

As a starting point one may use a procedure developed in [49] for a similar

problem with single trade-off parameter.
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Learning Spatial and Spectral Filters for Single-

Trial EEG Classification

We have presented a two-stage preprocessing algorithm. It extracts the de-

sired response from multi-channel data, by means of spatial integration in

the first stage, and time-domain filtering at the second stage. This pre-

processing is essential for the classification. Our experiments shows, that

the miss-classification rate achieved on the preprocessed data is significantly

lower, than an error rate obtained by classifying unprocessed signals (simple

sum of channels, best channel) as well as data preprocessed by CSP [44] and

CSSP [45] methods.

In addition, we show in our simulations on synthetic data, that the error

rate achieved after the first stage of preprocessing reaches (or is very close

to) the lower bound developed for spatial integration methods. Moreover, if

we apply the second stage of proposed algorithm - time-domain filtering, we

receive the error rate even lower than an above bound.

The comparison of spatial filters obtained by the proposed method to

those obtained by CSP and CSSP method shows, that all three filters con-

centrate in the same cortical area. Moreover, the proposed method has found

almost identical spatial filters for two different data set, both containing EEG

of imagined hand movement. This result illustrates that proposed method

may be valuable for neurology, and not only for improving classification ac-

curacy.

The application of proposed method for more data sets and exploring

the resulting spatial and spectral filters is an exciting subject for further



research. In particular, it is of a great interest to explore how does a choice

of mental tasks influence a classification performance, to compare spatial

filters of different subjects for the same mental tasks, and finally, to observe

an effect of feedback on spatial filters, when proposed method is used in

online BCI system.

Another topic for further research may be an extension of proposed method

for multi-class problem (more than 2 classes). This may be done, for example,

by modifying the objective function (3.7) to contain a sum of all combinations

of pair-wise signal differences.
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Appendix A

A.1 Adjoint Operator

We want to calculate the adjoint operator A∗ to the forward operator A
defined in equations (2.7) and (2.9).

The adjoint operator can be defined using the inner product: suppose we

have vectors1 x and y, then the adjoint operator is one, that satisfies the

equation:

〈yA∗, x〉 = 〈y,Ax〉 (A.1)

for all x and y.

Now, we will prove that:

1Here we do not really distinguish between vectors and matrices, since it affects only

the definition of inner product
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Proposition

If the forward operator A is defined as:

x[n] = As[n] = h[n] ∗ s[n] (A.2)

where ∗ denotes convolution. Then, the adjoint operator A∗ is defined as

y[n] = x[n]A∗ = h[−n] ∗ x[n] (A.3)

Note, that the only difference between forward and adjoint operators (A.2) and (A.3)

is a ”−” in the argument of h[n].

Proof

In order to show, that equations (A.2) and (A.3) satisfy the definition of

adjoint operator, we will calculate two inner products2 〈yA∗, x〉 and 〈y,Ax〉,
and show that they are equal for all x and y.

〈y,Ax〉 =
∑

n

y[n] (Ax) [n] =
∑

n

y[n] (h ∗ x) [n] (A.4)

〈yA∗, x〉 =
∑

n

(yA∗) [n]x[n] =
∑

n

(h[−m] ∗ y[m]) [n]x[n] =

=
∑

n

x[n]
∑
m

h[m− n]y[m] =
∑
m

y[m]
∑

n

x[n]h[m− n] =

=
∑
m

y[m] (h ∗ x) [m] (A.5)

One can notice, that expressions (A.4) and (A.5) are equal for all x and

y. Thus (A.3) is adjoint operator for (A.2).

2here we use the ordinary Euclidean inner product < a, b >=
∑

ij aibj

85



Now, it is straight forward to extend the proposition to the case, when

the forward operator is defined as a sum of convolutions :

x[n] = As[n] =
∑

i

hi[n] ∗ s[n] (A.6)

In this case, the adjoint operator is given by:

y[n] = x[n]A∗ =
∑

i

hi[−n] ∗ x[n] (A.7)

The proof is pretty trivial: if we define ht ,
∑

i hi[n], then we receive the

following definition of A:

x[n] = As[n] = ht[n] ∗ s[n]

which by the first proposition gives the following definition of A∗:

y[n] = x[n]A∗ = ht[−n] ∗ x[n] =
∑

i

hi[−n] ∗ x[n]

which proves that operator (A.7) is adjoint to (A.6).
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A.2 Truncated Newton Method

Here we provide a description of Truncated Newton algorithm. For more

details please refer to [51] and [52].

In the algorithm description we will use the following notations: f(C) -

the objective function. G and H are the gradient and the Hessian of f(C),

respectively. The Truncated Newton method applied to the objective has the

following iterative scheme:

1. Start with an initial estimate C0 of source coefficients

2. For k = 1, 2, ... until convergence

(a) Compute the current direction Dk by approximate solution of sys-

tem of linear equations HDk = −Gk

(b) Compute the step size αk by exact or inexact line search:

αk = arg minα f(Ck + αDk)

(c) Ck+1 = Ck + αkDk

3. End of loop

The step 2a is performed by the preconditioned linear Conjugate Gradients.

We use the diagonal operator W for preconditioning. W has the same size

and the diagonal as H - the Hessian of f(C). Since W is diagonal, the

calculation of W−1 is straightforward. Moreover, the optimization algorithm

doesn’t differ much from the regular CG :

1. Start with D0, R0 = HD0 + Gk, β0 = 0, P0 = 0
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2. For k = 1, 2, ...

(a) Pk = −W−1Rk + βk−1Pk−1

(b) γk =
〈Rk,W−1Rk〉
〈Pk,HPk〉

(c) Dk+1 = Dk + γkPk

(d) Rk+1 = Rk + γkHPk

(e) βk =
〈Rk+1,W−1Rk+1〉
〈Rk,W−1Rk〉

3. End of loop

where 〈A,B〉 = Tr
(
AT B

)
=

∑
ij aijbij is an inner product of two matrices

A and B.

Note, that we are not looking for the exact solution of step 2a of Trun-

cated Newton algorithm. Hence, we should stop our CG algorithm when we

are close enough to the solution. One of the stop criteria may be a fixed

number of steps. Other possible criteria is when the
‖Rk‖2
‖R0‖2 is low enough -

say 10−3.
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