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Learning subject-specific spatial and temporal filters for

single-trial EEG classification
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There are a wide variety of electroencephalography (EEG) analysis

methods. Most of them are based on averaging over multiple trials in

order to increase signal-to-noise ratio. The method introduced in this

article is a single trial method. Our approach is based on the

assumption that the ‘‘response of interest’’ to each task is smooth,

and is contained in several sensor channels. We propose a two-stage

preprocessing method. In the first stage, we apply spatial filtering by

taking weighted linear combinations of the sensor measurements. In

the second stage, we perform time-domain filtering. In both steps, we

derive filters that maximize a class dissimilarity measure subject to

regularizing constraints on the total variation of the average estimated

signal (or, alternatively, on the signal’s strength in time intervals where

it is known to be absent). No other spatial or spectral assumptions with

regard to the anatomy or sources were made.
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Introduction

Since the discovery of electroencephalography (Berger, 1929),

people have speculated that EEG might be used as an alternative

communication channel that would allow the brain to bypass

peripheral nerves and muscles. The first simple communication

systems, that were driven by electrical activity recorded from the

head, appeared about three decades ago (Vidal, 1973). In past years,

it has been shown that it is possible to recognize distinct mental

processes from online EEG (see, for example, Kalcher et al., 1996;

Pfurtscheller et al., 1997; Anderson et al., 1998; Obermaier et al.,

2001). By associating certain EEG patterns with simple commands,

it is possible to control a computer, thereby creating an alternative

communication channel that is usually called a Brain–Computer

Interface (BCI) (Vidal, 1973; Wolpaw et al., 1991).

One of the most complicated problems with BCI systems is

the classification of very noisy EEG signals obtained by
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registering the brain activity of the subject. An approach for

dealing with this problem is to require extensive training,

whereby the subject is taught to acquire self-control over certain

EEG components, such as sensorimotor A-rhythm (Wolpaw et al.,

1991) or slow cortical potentials (Kubler et al., 1999). This

ability, to create certain EEG patterns at will, is translated by a

BCI system into cursor movement (Wolpaw et al., 1991, 1997) or

into the selection of letters or words on a computer monitor

(Birbaumer et al., 1999; Kubler et al., 1999).

A second approach is the development of subject-specific

classifiers to recognize different cognitive processes from EEG

signals (Pfurtscheller et al., 1997; Anderson et al., 1998; Blankertz

et al., 2002). In this case, the typical BCI procedure consists of two

stages. First, the person trains the system by concentrating on

predefined mental tasks. Usually, two different tasks are used in the

training. The BCI registers several EEG samples of each task.

Then, the training data are processed in order to construct a

classifier. In the second stage, the subject concentrates on one of

the tasks again, and the system automatically classifies the EEG

signals. The key for successful classification is effective prepro-

cessing of the raw data. The objective of this paper is to develop

preprocessing methods, based on spatial and temporal filtering, that

improve classification accuracy.

The use of spatial filtering in order to improve classification is

not a new discovery. The method introduced in Parra et al. (2002)

proposed to treat each time sample individually, and to find the

spatial integration weights by logistic regression. However, this

approach does not take into account the time courses of EEG

signals, and thus assumes, implicitly, that the coupling vector

between the source and sensors is constant over the time of the

response. Moreover, this method tries to maximally discriminate

between signals of two classes using no regularization. Thus, the

resulting spatial filter is very prone to noise.

A more advanced method for learning spatial filters is Common

Spatial Patterns (CSP) (Müller-Gerking et al., 1998; Ramoser et al.,

2000). It tries to find several projections that optimally discriminate

based on the variances of the projected data of two classes. The

Common Spatio-Spectral Patterns (CSSP) (Lemm et al., 2005)

method aims to improve upon CSP by incorporating a temporal

filter in addition to a spatial one. However, neither approach makes

http://dx.doi.org/10.1016/j.neuroimage.2006.04.224
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use of the time course of the signals and, as a result, they

discriminate based on some measure of the sources, rather than the

sources themselves.

In this paper, we propose yet another method for spatial and

temporal filtering of multi-channel EEG signals. The proposed

approach is based on the assumption that the response to the mental

task is smooth (e.g., has limited total variation) and/or is expected

to be small in certain time windows, where the task is not

performed. Coefficients of both spatial and temporal filters are

learned by optimizing a class dissimilarity measure subject to

smoothness constraints on the average signal estimate. No other

information about the signals of interest is assumed to be available.

We have evaluated the proposedmethod on several data sets. Our

experiments show that the proposed preprocessing significantly

improves classification performance as compared to unprocessed

data (i.e., to the simple summation of channels or to choosing the

best sensor) as well as data preprocessed by CSP (Ramoser et al.,

2000) and CSSP (Lemm et al., 2005) methods.

We have also developed a lower bound on signal recon-

struction performance using spatial filtering that is applicable in

experiments with synthetic signals. This bound applies to signal

reconstruction (and hence classification) performance based on

spatial integration only. In our simulation results, we find that in

most cases, this bound is nearly or exactly attained. If we use

time-domain filtering in addition to spatial integration, then

even better trends in performance are observed.
Spatial integration method

Data description

In our experiments, we used several data sets, recorded with

different numbers of sensors, sampling rates, etc. The details of

these data sets are available in Computational experiments. Here

we provide the general description of the data format that we use in

our preprocessing methods.

Suppose EEG data are recorded using S channels. Single trial

signals, corresponding to one of two mental tasks, are extracted

from raw data, synchronized by some external stimuli or cue.

Suppose each signal is T samples long. Then the signal samples

from each single trial can be stored in a T � S matrix. Let us

denote by Xl
1, 1 � l � L, the trials that belong to the first class, and

Xm
2, 1 � m � M, the trials that belong to the second class.

If we average over the trials, we obtain

X 1
avg ¼

1

L
~
L

l ¼ 1

X 1
l X 2

avg ¼
1

M
~
M

m ¼ 1

X 2
m

where Xavg
1 and X avg

2 are T � S matrices.

The method

In our model, we assume that each sensor records the following

signal:

xi tð Þ ¼ ais
j tð Þ þ ni tð Þ ð1Þ

where ai is the coupling coefficient for sensor i, ni(t) denotes the

noise and background activity recorded by the sensor and s j(t),

j ˛ {1,2} is the response to one of the two possible mental tasks.
We will consider linear estimates of the single trial signals

ŝs1i ¼ X 1
i w; ŝs

2
j ¼ X 2

j w ð2Þ

where w is an S � 1 weighting vector.

The averages of the estimated signals are:

ŝs1avg ¼ X 1
avgw; ŝs

2
avg ¼ X 2

avgw ð3Þ

Using the above notation, we can formulate our objective as

that of finding the weighting vector w that will maximally

discriminate between the average estimated signals ŝ avg
1 and ŝavg

2 ,

while keeping the single trial estimated signals ŝl
1 and ŝm

2 (1 � l �
L, 1 � m � M) smooth. The smoothness can be measured, for

example, by the total variation, defined as

U ŝsð Þ ¼ ~
L

l ¼ 1

~
T � 1

t ¼ 1

z1l tð Þ þ ~
M

m ¼ 1

~
T � 1

t ¼ 1

z2m tð Þ

where z1l tð Þ ¼ jŝs1l t þ 1ð Þ � ŝs1l tð Þj; 1V t V T � 1

and z2m tð Þ ¼ jŝs2m t þ 1ð Þ� ŝs2m tð Þj; 1V t V T � 1:

ð4Þ

This leads to the following optimization problem:

min
w
� jjŝs1avg � ŝs2avgjj

2
2 þ lU ŝsð Þ

s:t: jjwjj2 ¼ 1
ð5Þ

where l is a tradeoff parameter, intended to balance between signal

smoothness and class discrimination. In problem (5), we constrain

the norm of the weighting vector w to avoid degenerate solutions

where ||w|| Y V or ||w || Y 0.

If we substitute the expressions for ŝavg
1 , ŝavg

2 and U(ŝ) from

Eqs. (2), (3) and (4), then after a few simple algebraic steps,

problem (5) becomes:

min
w
� jjXavgwjj22 þ l jjYwjj1ð Þ

s:t: jjwjj2 ¼ 1
ð6Þ

where || I ||1 is the :1-norm, Xavg = Xavg
1 � Xavg

2 and Y is a block-

matrix obtained by stacking the matrices Yl
1, 1 � l � L and Ym

2 ,

1 � m � M, defined as

Y 1
l t;ið Þ ¼ X 1

l t þ 1;ið Þ � X 1
l t;ið Þ; 1V tV T � 1

Y 2
m t;ið Þ ¼ X 2

m t þ 1;ið Þ � X 2
m t;ið Þ; 1V tV T � 1;

on top of one another. Thus, if matrices Yl
1 and Ym

2 are of size

T � 1 � S, then the matrix Y will be of size (L + M)(T � 1) � S.

Note that zl
1 = Yl

1w, zm
2 = Ym

2w.

Eliminating the tradeoff parameter

In problem (6), there is a need to choose a value for the tradeoff

parameter l. Although we have found in our simulations that the

optimization result is quite robust to changes in l, the need to

subjectively assess the tradeoff parameter is still an essential

drawback. In what follows, we reformulate the problem in a way

that eliminates the l parameter.

To begin with, let us point out that the norm and the sign of

the vector w have no significance. We are interested only in the

relative values of its elements. In other words, we want to find

a w that will satisfy two conditions. Firstly, it must minimize
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the value of the second term in Eq. (6), when the value of the

first term is fixed. Secondly, it must minimize the value of the

first term, when the value of the second term is fixed. With this

in mind, we rewrite the problem as follows1:

min
w
jjYwjj1

s:t: jjXavgwjj22 ¼ 1:
ð7Þ

A solution to the above satisfies the first condition by

definition. The second condition is also satisfied. This can be

proved in the following way. Suppose wTV is a solution of Eq. (7).

Aiming for a contradiction, assume that there exists a wnew, such

that ||Ywnew||1 = ||YwTV||1 and ||Xavgwnew||2 = c2 < 1. In this case,

w ¼ 1
c
wnew would satisfy the constraint, while ||Yw ||1 < ||YwTV||1.

This contradicts the assumption that wTV is a solution of Eq. (7).

Thus, the second condition also holds.

Although problems (6) and (7) are not completely equivalent,

problem (7) can be viewed as one that optimally (and automatically)

chooses the tradeoff parameter l. Indeed, if wl is a solution of Eq.

(6) for some value of l and wTV is a solution of Eq. (7) then, after

rescaling wTV, we have proven that: ||YwTV||1 < ||Ywl||1 if ||XavgwTV||2
2 =

||Xavgwl ||2
2 and ||XavgwTV||2

2 > ||Xavgwl||2
2 if ||YwTV||1 = ||Twl||1. This is

true for any value of l. Thus, wTV is really the optimal solution. In

Appendix A.1, we discuss the approximate solution of Eq. (7) using

numerical optimization methods.

An alternative to problem (7) can be obtained from a Basis

Pursuit perspective (Chen et al., 1998). The matrix Y in Eq. (7)

may contain the coefficients for representing the signal in some

basis or ‘‘over-complete’’ dictionary matrix W (e.g., Fourier or

wavelet bases). Thus, we can write Y = WTX, where W is

expected to be sparse (see, for example, Zibulevsky and Zeevi,

2002). Another alternative is to construct the matrix Y from

signals at predefined time windows, where their energy is

expected to be small.
Learning spatial integration weights through eigenvalue

decomposition

In this section, we propose to approximate the solution of Eq.

(7) with the solution of

max
w
jjXavgwjj22

s:t: jjYwjj22 ¼ 1
ð8Þ

The approximate problem (8) is equivalent to a version of

problem (7) in which the :1-norm is replaced by the :2-norm.

Put another way, it is equivalent to approximating the Total

Variation measure in Eq. (4) with an :2-based non-smoothness

measure.

We now normalize the constraints in Eq. (8) by making a change

of variables. Let us rewrite the constraint: ||Yw||2
2 = wTYTYw. If the

matrix Y has full column rank (which is very likely for noisy data),

then the matrix C = YTY is positive definite and has a Cholesky

factorization2 C = UTU. Now, the constraint can be written as
1 Alternatively, we may reverse the roles of the objective and the

constraint in problem (7).
2 If the matrix Y is not full rank, we may use a regularization C = YTY +

aI, where a is a small constant, and I is an identity matrix.
||Yw||2
2 = wTYTYw = wTUTUw. If we introduce a new variable x =

Uw (w = U�1x), then the objective (8) can be written as:

max
x
jjXavgU

�1xjj22
s:t: jjxjj22 ¼ 1

ð9Þ

The mathematical program (9) is the classical problem of

finding the induced :2 norm of a matrix, in this case the matrix

A = XavgU
�1. Its solution is x* = mmax, where mmax is the

eigenvector corresponding to the largest eigenvalue, kmax, of the

matrix ATA = (XavgU
�1)T XavgU

�1 = U�1TXavg
T XavgU

�1. Hence,

the solution of Eq. (8) is w = U�1mmax.

An important advantage of this approximation is that it does not

require iterative optimization. Rather, it requires mainly Cholesky

and eigenvalue decomposition steps, which can be done very

efficiently. The drawback, however, is that non-smoothness is no

longer measured in terms of the Total Variation. Nonetheless, our

simulations show that using the approach described in this

subsection, we achieve similar results to those obtained by

numerically optimizing Eq. (7).
Time-domain filtering

Signals reconstructed by spatial filtering methods still suffer

from noise contamination. This contamination can be reduced by a

second stage of preprocessing, namely, time-domain filtering of the

estimated signals (Eq. (2)).

The problem with applying filtering is that we do not know in

advance which filter to use, because the signals of interest, as well

as the background activity noise, are unknown. Thus, we propose

to derive a suitable filter according to the same learning scheme on

which the spatial filter was based: maximize a class dissimilarity

measure, while keeping the resulting signal smooth (or, alterna-

tively, small in predefined time windows).

With this in mind, we propose to find a filter h[n], 1 � n �
Nfilt, which will further discriminate between reconstructed signals

ŝavg
1 [n] and ŝavg

1 [n] according to,

max
h n½ �
jj ŝs1avg n½ � � ŝs2avg n½ �
� �

4h n½ �jj22

s:t: ~
L

l ¼ 1

jjẑz1l 4h n½ �jj2 þ ~
M

m ¼ 1

jjẑz2m4h n½ �jj2 ¼ 1
ð10Þ

where * denotes convolution.

Since we are considering discrete time, time-limited signals, let us

construct a (T � Nfilt + 1) � Nfilt convolution matrix X̃avg
1 , the j-th

column of which will contain ŝavg
1 [n], j � n � (T � Nfilt + j) (i.e.,

the j-th column of X̃ contains a replica of the signal ŝavg
1 [n] shifted

by ( j � 1), which is also truncated by ( j � 1) taps at the beginning

and (Nfilt � j) taps at the end). In the same manner, we can define

convolution matrix X̃avg
2 , the columns of which will contain shifted

replicas of ŝavg
2 [n]. Finally, we define the matrix X̃avg = X̃avg

1 � X̃avg
2 .

Similarly, we can construct convolution matrices X̃l
1, X̃m

2 for

single trials and derive from them a matrix Ỹ in the same manner as

the matrix Y was derived from Xl
1, Xm

2 in Eq. (6).

We can now rewrite problem (10) as,

max
wfilt

jjX̃X avgwfiltjj22
s:t: jjỸY wfiltjj22 ¼ 1

ð11Þ



Fig. 1. (a) Illustration of a (single-channel) EEG recording, which contains

background activity only. If we start to register the response well in advance

then, at the beginning, we will record background activity only. The signal

to the left of the dashed vertical line can be treated as background noise.

The actual response appears after the dashed vertical line. (b) Cross-

validation error rate for different values of Nfilt. Note that the real test error

(dashed line) is highly correlated with the CV error. This enables us to

choose the optimal order for the FIR filter.
Fig. 2. Flow chart of the classification process. The temporal filtering stage

is omitted for wTV and wEVD.

Table 1

Classification results (error rate in %) for the BCI competition 2002 data set

CSP CSSP wTV wEVD wTV + wfilt ~ best ch.

10-fold CV 21

(4.1)

12

(3.3)

12

(3.8)

12

(3.5)

13

(3.9)

51

(11)

32

(10)

Test 27 21 5 5 5 53 30

Each column corresponds to a different method of preprocessing. Both

10-fold Cross-Validation (STD is given in parenthesis) and test error

results are provided. For the CSP method, we used m = 4. For CSSP, we
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which has the same form as problem (8) Thus, the solution

developed in previous section can be used to solve the problem

(11). Note that the solution of problem (11), wfilt, is in fact a

temporal filter, rather than a spatial one.

There is an alternative choice for the matrix Ỹ. It can represent

background activity noise,3 which we also want to minimize,

instead of Total Variation. This idea may even be more appealing

because, with this alternative, we minimize the background noise

directly, in contrast to Total Variation, which is an indirect noise

measure. This is an effective approach when the background

activity is stationary. Our simulations show that this alternative

choice of the matrix Ỹ performs better for real EEG recordings,

while for synthetic data, the original choice seems preferable.

The only remaining question is how to choose the optimal order

Nfilt of the FIR filter h[n]. We have no analytical solution for this

issue. In our experiments, we chose its value based on cross-

validation of the training data. We calculated the CV error for

different values of Nfilt, and then chose the one that gave the lowest
3 It can be obtained, for example, if we start to register the response well

in advance (Fig. 1(a)).
error rate. Fig. 1(b) illustrates that the CV error rate and test error

rate are highly correlated.
Computational experiments

We have conducted several experiments, using both synthetic

and real signals, in order to show the feasibility of the proposed
used m = 8, s = 16. A filter length of Nfilt = 100 was used for the wTV +

wfilt method. All of these parameters were chosen to minimize cross-

validation error.



Table 2

Classification results (error rate in %) for the BCI competition 2003 data set

CSP CSSP wTV wEVD wTV + wfilt ~ best ch.

10-fold CV 18

(4.9)

10

(4.9)

21

(4)

24

(4.3)

22

(4)

43

(14)

37

(9)

Test 30 22 22 22 22 41 39

Each column corresponds to a different method of preprocessing. Both

10-fold Cross-Validation (STD is given in parenthesis) and test error

results are provided. For the CSP method we used m = 6. For the CSSP

method, we used m = 6, s = 22. A filter length of Nfilt = 110 was used

for the wTV + wfilt method. All of these parameters were chosen to

minimize cross-validation error.

Table 4

Test error rate (in %) for the visual stimuli data set

CSP CSSP wTV wEVD wTV + wfilt ~ best ch.

NM 3.3 3.3 3.3 1.7 0.0 40 35

k-nn 10 8.3 0.0 1.7 3.3 35 20

FLD/SVM 6.7 5 1.7 1.7 3.3 45 42

Each column corresponds to a different method of preprocessing. The

results of applying 3 different classifiers are shown: Nearest Mean (NM),

k-nn (with k = 3) and FLD/SVM with exponential kernel. See Table 3 for

further details.
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approaches and to compare them with other spatial integration

methods. These other methods included CSP (Ramoser et al.,

2000) and CSSP (Lemm et al., 2005). Furthermore, the comparison

included the direct use of unprocessed data, namely the simple

summation of channels (‘‘~’’) and the practice of choosing the best

channel (‘‘best ch.’’). The latter were included to emphasize the

benefits of proper spatial integration. In what follows, we describe

the results of our simulations.

Real EEG signals

In these experiments, we used the data obtained from two BCI

competitions, held in 2002 (Sajda et al., 2003) and 2003 (Blankertz

et al., 2004). The goal of these competitions was to validate signal

processing and classification methods for Brain Computer Inter-

faces. The data set consisted of trials of spontaneous EEG activity,

one part labeled (training data) and another part unlabeled (test

data). The goal was to infer labels for the test set by preprocessing

the training data. Inferred test labels aim to optimally fit the true

test labels (which were unknown to the contestants).

BCI competition 2002

This data set (Sajda et al., 2003) consisted of EEG signals that

were recorded from a single subject in sessions with a few minutes

break in between. The subject was sitting in a normal chair, arms

relaxed and resting on the table, and with fingers in a standard

typing position at the computer keyboard (index fingers at Ff_, Fj_
Table 3

10-fold Cross-Validation error rate in % (STD is given in parenthesis) for

the visual stimuli data set

CSP CSSP wTV wEVD wTV + wfilt ~ best ch.

NM 8.9

(2.1)

5.8

(1.5)

2.2

(0.7)

2.2

(0.6)

2.3

(0.6)

39

(5.5)

26

(4.5)

k-nn 8.3

(2)

5.6

(1.4)

2.2

(0.7)

1.7

(0.6)

3.3

(0.7)

27

(6)

16

(5)

FLD/SVM 7.3

(1.8)

3.9

(1.7)

2.2

(0.6)

2.6

(0.9)

2.9

(0.8)

41

(13)

29

(14)

Each column corresponds to a different method of preprocessing. Results of

applying 3 different classifiers are shown: Nearest Mean (NM), k-nn (with

k = 3) and FLD/SVM with an exponential kernel. Fisher’s Linear

Discriminant (FLD) was applied with the CSP and CSSP methods as

proposed in previous papers. Since FLD is not applicable if signals of both

classes are zero-mean, we used SVM in the remaining methods instead. For

the CSP method, we used m = 4. For the CSSP method, we used m = 6, s =

12. A filter length of Nfilt = 40 was used for the wTV + wfilt method. All of

these parameters were chosen to minimize cross-validation error. The same

parameters were used later in the test stage.
and smallest fingers at Fa_,F;_). The task was to press two chosen

keys with the corresponding fingers in a self-chosen order and at a

self-chosen pace (Fself-paced key typing_). A total of 516 key-

strokes were made at an average speed of 1 keystroke every 2.1 s.

Brain activity was measured with 27 Ag/AgCl electrodes at a 1000

Hz sampling rate using a band-pass filter from 0.05 to 200 Hz.

Additionally, windows of length 1500 ms were extracted from

the continuous raw signals, each ending at 120 ms before the

respective keystroke. The reason for choosing the endpoint at

�120 ms is that, prior to this instant, the classification based on

measurements of EMG activity only is essentially arbitrary. For the

test set, 100 trials equally spaced over the whole experiment were

taken leaving 413 labeled trials for training. For classification, we

used only the last 700 ms of each trial. The first 800 ms was treated

as background noise and used in the calculation of wfilt.

The learning methods derived in the previous sections were

applied to the training data only. The respective weighting vectors

are denoted wTV (computed as outlined in Appendix A.1), wEVD

(computed using eigenvalue decomposition, as outlined in

Section 3) and wTV + wfilt (the case where time-domain filtering

is added). Next, we classified the filtered test data. Fig. 2

illustrates the classification process. We tried several classifiers

using the ‘‘pr-tools’’ classification toolbox (Duin, 2000), includ-

ing Nearest Mean, k nearest neighbor (k-nn) (Cover and Hart,

1967) and Support Vector Machines (SVM) with different kernels

(Burges, 1998). All classifiers provided similar results with the

BCI2002/3 data sets. Therefore, we chose to use the simplest one,

namely the Nearest Mean classifier. The resulting classification

errors, both of 10-fold Cross-Validation (Duda et al., 2001) and

the test set error,4 are summarized in Table 1. The best error rate

reported by the competition organizers was 4%. The classification

error rates using the CSP and CSSP methods with Fisher’s Linear

Discriminant were 27% and 21%, respectively (which was similar

to the Nearest Mean classification results).

BCI competition 2003

The data set for this competition (Blankertz et al., 2004) was

similar to the previous one. In particular, it was based on a self-

paced key typing task. This time, the average typing rate was 1

keystroke per second. In total, there were 416 epochs of 500 ms

length each ending 130 ms before a keystroke. For the training set,

316 epochs were labeled. The remaining 100 epochs were

unlabeled (test set). For classification purposes, we used only the

last 360 ms of data. The first 140 ms were treated as background

noise and used in the calculation of wfilt.
4 Test set error was calculated once the true labels were published by the

competition organizers.



Fig. 3. Experiment with visual stimuli. The dotted line represents the signal with background activity only, while the solid line corresponds to the signal that

contains the response. (a) Averaged signals reconstructed by wTV; (b) averaged signals reconstructed by wTVand then filtered by wfilt; (c, d) examples of single-

trial signals reconstructed by wTV and then filtered by wfilt. Note that the two classes are easily distinguishable even in single trials. Also, note the similarity

between single-trial and averaged signals.

Table 5

Experiment with artificial signals and white Gaussian background noise:

classification error rate in %

w w w + w w ~ best ch.
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We used the training data for preprocessing, trying all proposed

approaches (wTV, wEVD and wTV + wfilt, . . .). Again, we used a

Nearest Mean classifier. The classification error of 10-fold Cross-

Validation and the test set error are summarized in Table 2. The

best error rate reported by the competition organizers was 16%.

The classification error rates using the CSP and CSSP methods

with Fisher’s Linear Discriminant were 29% and 19% (which was

similar to the Nearest-Mean classification results).

Response to visual stimuli

The EEG data for this experiment were acquired according to

the following procedure.5 The subject was shown a sequence of 3

different images at a preselected pace that was constant across

trials. Afterwards, the subject had to respond by pressing a button.

The trials were repeated with a periodicity of 7 s. The delay

between the first and the second images in the sequence was 1.5 s,

and 2.5 s between the second and the third image. Next, the subject

was given 3 s to respond. Each session consisted of approximately

30 trials. There were several sessions with a few minutes break in

between. The EEG data were recorded by 23 electrodes with a

sampling rate of 256 samples per second.
5 The EEG data described here were recorded in the Laboratory for

Evoked Potentials in the Technion-Israel Institute of Technology in

association with work done in Bigman and Pratt (2004). We are grateful

to Hillel Pratt for providing us with these recordings.
Our aim here was to distinguish the response to visual stimuli

from the response to the absence of stimuli, i.e., to regular

background activity. We derived two classes of signals from the

raw data. The first class represented the response to visual stimuli

(i.e., to the display of an image) and the second class represented

the response to background activity. In order to derive the first

class, we extracted segments from the raw data, each of which

started at the times when the first image was displayed and ran for

180 time samples. The second class was derived from segments

starting 300 time samples before the third image was displayed and

ending 120 time samples before the time when the third image was

displayed.

We randomly chose 180 trials to be the training set. The

remaining 60 trials were taken as the test set. We then applied all of

our approaches to these data. We tested the classification
TV EVD TV filt th

SNR = �10 dB 0.0% 0.0% 0.0% 0.0% 43.7% 14.0%

SNR = �15 dB 3.5% 3.3% 1.4% 2.7% 44.1% 36.7%

SNR = �20 dB 20.3% 20.4% 13.7% 17.1% 49.0% 41.7%

The first column shows average SNR, measured at each sensor.



Fig. 4. Experiment with artificial signals and Gaussian background noise: (a) artificial signals; (b) signals restored by the simple summation of channels; (c)

signals restored by wTV; (d) signals restored by wTV and further filtered by wfilt.
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performance of NM, k-nn and SVM with an exponential kernel.

The results of 10-fold cross-validation are summarized in Table 3.

The test set error is reported in Table 4. Reconstructed signals are

shown in Fig. 3.

Artificial signals

In this section, we discuss experiments on synthetic data,

generated by mixing smooth signals sart
1 and sart

2 (each belonging to

a different class) into background noise N. The data synthesis

model was as follows:

X 1
l ¼ s1arta

T þ Nl

X 2
m ¼ s2arta

T þ Nm ð12Þ
Here, each sart is a T � 1 vector of signal time samples and

a is an S � 1, randomly chosen mixing vector, where S
Table 6

Experiment with artificial signals and real EEG recordings as background

noise: classification error rate in %

wTV wEVD wTV + wfilt wth ~ best ch.

SNR = �20 dB 2.5% 1.3% 1.1% 0.0% 51.6% 43.3%

SNR = �25 dB 10.5% 10.3% 10.0% 0.7% 50.5% 50.1%

SNR = �30 dB 25.7% 22.6% 21.9% 1.3% 52.9% 49.5%

The first column shows average SNR, measured at each sensor.
denotes the number of channels. The single trial data and noise

matrices (denoted Xi and Ni respectively) are each T � S.

White Gaussian background noise

In this experiment, we used T = 150 time samples and S = 25

channels. Each 150 � 25 noise matrix Ni was generated

independently in each trial from samples of a white Gaussian

noise process. The elements of the mixing vector a were drawn

according to a uniform distribution from the interval [�1;1]. We

have generated 1200 trials. The first 200 trials (approximately 100

from each class) were used for preprocessing (i.e., for finding the

unmixing vector w). The remaining 1000 trials were used for

classification by the Nearest Mean algorithm (Duda et al., 2001).

As in previous sections, we compared the classification

performance of the different methods (wTV, wEVD and wfilt and

unprocessed data). In addition, baseline performance figures were

obtained by applying w th (Eq. (A.9)), which is derived in

Appendix A.2. As discussed in the Appendix, w th gives an upper

bound on signal denoising performance obtainable via spatial

filtering. Classification performance (based on the Nearest Mean

classifier) is shown in Table 5 for different SNR.6 Reconstructed

signals are shown in Fig. 4.
6 Here, SNR refers to the average signal-to-noise ratio at each sensor in a

single trial. Since the mixing weights ai were randomly generated, we

based the SNR figures on the average value of ai = 0.5.



Fig. 5. Imagined hand movement data set (BCI competition 2002). Shown here are spatial filters corresponding to wTV and wEVD (left column) and CSP and

CSSP methods (two patterns each). Spatial filters corresponding to wTV and wEVD are almost identical. Spatial filters obtained using CSP and CSSP are

different, but concentrated in the same regions.
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Real EEG as background noise

In this experiment, we used T = 150 time samples, S = 22

channels, and real EEG signals as the background noise N. The rest

of the setup is identical to the previous experiment. Classification

results are reported in Table 6.
8 This comparison is the most fair since both wTV + wfilt and CSSP use

spatial – temporal filtering.

7 For CSP/CSSP methods, we chose the most similar filter among the

first 2 m that participated in the classification.
Discussion

The classification results presented in the previous section leave

no doubt that spatial integration improves classification accuracy. It

is interesting to compare the spatial filters obtained from wTV and

wEVD with the spatial patterns obtained from the CSP and CSSP

methods.

Figs. 5 and 6 show the spatial patterns obtained with the

different methods on imagined hand movement data sets. Note that

wTV and wEVD are similar in both data sets. The spatial filters

obtained from the CSP and CSSP methods are different, but are

concentrated in the same regions. If we take into account the

classification results from these data sets (the proposed methods

performed at least as well as the CSP and CSSP methods), these

observations suggest that wTV/wEVD were able to concentrate all

relevant spatial information in one single filter. It may also suggest

that after reconstructing the signal using a spatial filter, a better

strategy for classification would be to use its time course, rather

than to use some measure of it (e.g., the variance, as proposed by

the CSP/CSSP methods). Indeed, the response to two different

tasks can have different time courses, but the same variance.

The spatial filters for the visual stimuli data set can be

observed in Fig. 7. This time, all of the methods produced very
similar filters.7 If we look at the classification results and compare

wTV/wEVD with CSP and wTV + wfilt with CSSP,8 we can observe

that the proposed methods have similar (or even better)

performance. Thus, we can again argue that wTV/wEVD combine

the most relevant spatial information into a single filter.

Another interesting issue for discussion is the benefit of

temporal filtering to classification accuracy. Note that, in the

imagined hand movement data sets, the temporal filter did not

improve classification accuracy. However, for the visual data set, it

improved the classification accuracy considerably.

This phenomena can be explained as follows. In the imagined

hand movement data sets, signals of both classes correspond to

the movement task and have similar power spectra (see Fig. 8(a)).

In this case, the temporal filter turns out to be a simple low-pass

filter, which does not enhance the discrimination between classes.

(It may, however, improve the quality of estimation by rejecting

high-frequency noise.)

In the visual data set, signals of different classes have

different origin. The first contains background activity, while

the second is a response to the visual stimuli. As one can see

in Fig. 8(b), those signals have different frequency compo-

nents. In this case, the power spectra of the temporal filter

have dominant peaks over those frequency regions where the

power spectra of the two signals differ the most. Thus, such



Fig. 6. Imagined hand movement data set (BCI competition 2003). Shown here are spatial filters obtained from wTV and wEVD (left column) and from CSP and

CSSP methods (two patterns each). Spatial filters obtained from wTV and wEVD are almost identical. Spatial filters obtained using CSP and CSSP are different,

but concentrated in the same regions. Note the similarity to the filters in Fig. 5.
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filtering enhances class discrimination, resulting in classification

improvement.
Conclusions

We have presented a two-stage preprocessing algorithm, one

that extracts the desired response from multi-channel data by

means of spatial integration in the first stage and time-domain
Fig. 7. Visual stimuli data set. Spatial filters obtained from wTV, w
filtering in the second stage. This preprocessing is essential for

effective classification. Our experiments showed that the misclas-

sification rate achieved with the preprocessed data is significantly

lower than the error rate obtained by classifying unprocessed

signals (i.e., by the simple summation of channels, or choosing the

best channel). In addition, in our simulations on synthetic data, we

have shown that the error rate, achieved after the first stage of

preprocessing, reaches (or is very close to) a lower bound

developed for spatial integration methods. Moreover, when we
EVD, CSP and CSSP. Note the similarity of all spatial filters.



Fig. 8. Power spectra of estimated signals (solid lines) and resulting

temporal filter wfilt (dashed line): (a) imagined hand movement data set

(BCI competition 2003); (b) response to visual stimuli data set.

9 Our aim here is to perform de-noising by taking a weighted sum of

channels. Thus, the idea of subtracting the noise matrix is not relevant.
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add time-domain filtering, we obtain an even lower error rate than

given by this bound.

Appendix A

A.1. Numerical optimization

Here, we outline an approach to the (approximate) solution of the

mathematical problem (7) using the method of Lagrange multipliers.

An approximation is necessary because the objective function in Eq.

(7) is not differentiable at all w. Accordingly, we will use the

following smooth approximation of the absolute value function

w tð Þ ¼ c
jtj
c
� log 1þ jtj

c

� �� �
ðA:1Þ

Note that w V(t) is defined at t = 0:

w V tð Þ ¼ t

cþ jtj ðA:2Þ

The approximation reaches arbitrary accuracy as c Y 0.

Applying this approximation to Eq. (7), we obtain

min
w

~
L

l ¼ 1

1Tw Y 1
l w
��
þ ~

M

m ¼ 1

1Tw Y 2
mw
��

s:t: jjXavgwjj22 ¼ 1

ðA:3Þ
where 1 is a vector of ones and where the application of w(I) to a

vector is element-wise.

Let us denote the objective function in Eq. (A.3) as f(w), and

the constraint as

g wð Þ ¼ jjXavgwjj22 ¼ wTXT
avgX avgw:

The gradients of f(w) and g(w) are

3f wð Þ ¼ ~
L

l ¼ 1

Y 1
l

� �T
w V Y 1

l w
� �

þ ~
M

m ¼ 1

Y 2
m

� �T
w V Y 2

mw
� �

ðA:4Þ

3g wð Þ ¼ 2XT
avgX avgw: ðA:5Þ

Using these expressions, one can evaluate the gradient of the

Lagrangian of Eq. (A.3). The problem is solved by finding a point

where the Lagrangian’s gradient is zero, which can be done using

numerical tools.

A.2. Theoretically optimal spatial filtering

In some situations (relevant mainly to synthetic data studies),

we can solve a mathematical problem that defines, in a certain

sense, the optimal signal reconstruction performance possible

using spatial filtering. Suppose that the Fsensor measurement_ data
are synthesized in the following way:

X ¼ sarta
T þ N ðA:6Þ

In the above formula, the T � S Fsensor measurement_ matrix X

is obtained by mixing an artificial signal, represented as a T � 1

vector sart, with an S � 1 coupling vector a, and adding a T � S

noise matrix N.

If we know both the background noise covariance matrix R =

NTN and the mixing vector a in Eq. (A.6), we can find the best

weighting vector w solving the following problem9:

min
w
jjNwjj22 ¼ wTRw

s:t: jjsartaTwjj22 ¼ 1:
ðA:7Þ

The artificial signal sart can be normalized so that ||sart||2 = 1.

The constraint in Eq. (A.7) then simplifies, yielding,

min
w

wTRw

s:t: aTw ¼ 1:
ðA:8Þ

The above problem aims to find a vector w that maximally

suppresses noise while constraining the norm of the average result

to be constant. This task differs from the apparent task of problem

(7) However, since in both cases we want to de-noise the signal of

interest then, in a sense, the solution of Eq. (A.8) can be viewed as

a theoretically best achievable limit, and thus a good reference

point for comparison.

We can solve problem (A.8) using Lagrange multipliers:

min
w

wTRw� k aTw� 1Þ:
�

The gradient of the Lagrangian is given by: g(w) = 2Rw � kaT.
The solution is obtained by setting g(w) = 0 ` wth = 0.5ER�1a.
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Again, though, we are indifferent, in practice, to the scale/sign ofwth.

Hence, any real k m 0 can be chosen. If we take k = 2, the solution

wth ¼ R�1a ðA:9Þ

is obtained.
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