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Abstract

We propose a technique of multisensor signal reconstruction based on the assumption, that source signals are

spatially sparse, as well as have sparse representation in a chosen dictionary in time domain. This leads to a large scale

convex optimization problem, which involves combined l1-l2 norm minimization. The optimization is carried by the

truncated Newton method, using preconditioned conjugate gradients in inner iterations. The byproduct of

reconstruction is the estimation of source locations.

r 2005 Published by Elsevier B.V.
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1. Introduction

Many different approaches address the problem
of detecting multiple wide-band sources and
estimating their angle of arrival (locations), based
on the signals received by a sensor array. The
e front matter r 2005 Published by Elsevier B.V.
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maximum-likelihood estimation [1] is potentially
the most precise technique; it assumes however
that the number of sources and the source spectral
density matrix are known. Also the likelihood
function is generally non-convex, and may have
spurious local solutions. Another approach for
multiple source localization combines a special
ARMA parameter estimation method with a non-
linear optimization procedure to estimate the
relative time delays [2]. However, this approach
cannot effectively treat correlated sources and
requires prior knowledge of the number of sources.
The signal-subspace processing approach was

first proposed for the narrow-band case [3]. Under
the condition that the observation period is long

www.elsevier.com/locate/sigpro
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and signal-to-noise ratio is not too low, this
approach has been shown to have substantially
higher resolution in estimating the directions of
arrival of the signals, than conventional beamfor-
mer, Capon’s MLM [4], and autoregressive
spectral estimators [5]. The concept of signal-
subspace processing can also be used in the wide-
band case. The technique given in [6] can be
referred to as incoherent signal-subspace proces-
sing: the angle estimation is first done with each
narrow-band component individually, followed by
combination of these estimates for the final result.
As is common in any detection and estimation
system, at low signal-to-noise ratios the threshold
effect prevents the final combination to be effective
[7]. Another problem with the incoherent signal-
subspace processing is its inability to handle
completely correlated sources even if SNR is
infinitely high and the observation time is infinitely
long. Several techniques have been developed
based on coherent signal-subspace processing [7].
They demonstrate better performance than corre-
sponding incoherent techniques, but still require
rather long observation time and high SNR ratio
for good estimation of covariance matrices.

The method presented in our work is very
general, it is applicable for both narrow-band and
wide-band signals in both near-field and far-field
scenarios. Both localization of the sources and
estimation of their time courses is achieved
simultaneously. We assume that incoming signals
can be sparsely represented in an appropriate basis
or frame (e.g., via the short time Fourier trans-
form, wavelet transform, wavelet packets, etc.).
This idea was exploited, for example, in [8,9] for a
very efficient blind source separation. We also
divide the space into a discrete grid of potential
source locations and assume that the sources are
sparsely located there (similarly to [10–12]). Since
the number of possible source locations is often
much greater than the number of sensors, the
corresponding inverse-problem is ill-posed. In
order to regularize the solution, both spatial
and temporal sparsity are enforced using l1-norm
and non-squared l2 norm regularization. The use
of l1 norm in order to achieve sparsity is well
known in signal representation community, see for
example [8,13].
Our method deals with the sensor array model
in time domain, and thus is applicable for both
narrowband and wideband signals. It also treats
the multipath (convolutive) model of signal
propagation. The combination of assumptions of
spatial and temporal sparsity leads to an improved
performance, as demonstrated by our simulations.
2. Problem formulation

2.1. Observation model

Assume K discrete time signals sk½n� impinge on
a sensor array, consisting of M sensors. The
multipath propagation of kth source toward mth
sensor can be represented by a convolution with
the transfer function hkm½n� (see for example [14])
(Fig. 1(a)). Thus, we can describe the output of the
mth sensor, ym½n�, as

ym½n� ¼
XK

k¼1

hkm½n� � sk½n� þ nm½n�, (1)

where � denotes convolution, and nm½n� is an
additive noise registered by the sensor. The above
equation is also valid for far-field direct path
model if we set hkm½n� ¼ dðn�DkmÞ:

ym½n� ¼
XK

k¼1

dðn�DkmÞ � sk½n� þ nm½n�. (2)

Here, Dkm is a delay of the kth source toward the
mth sensor. The delay Dkm is relative to the first
sensor, i.e. Dk1 ¼ 0 8k.

2.2. Discretized spatial model

In our approach, we assume that the properties
of the environment (signal propagation model,
sensors positions) are known. Given the geometry
of the problem, we can divide the whole area of
interest in some discrete set of potential locations.
It could be a set of pixels/voxels in the near field
case, or a grid of directions-of-arrival angles in the
far-field case. We will usually have much more
potential locations than active sources, and our
task is to identify which locations do actually
contain sources.
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Fig. 1. (a) In a reverberant environment a propagation of the signal sk½n� toward the ith sensor is modelled as a convolution with a

transfer function hki½n�. (b) An illustration of uniform linear array. The signal sk½n� impinges on the array from far field.

1Linear operators L and L� are adjoint if the inner products

hL�x; yi ¼ hx;Lyi for any x and y.
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Denote the potential source signal at lth
location as sl ½n�; 1pnpT . Suppose, we have L

potential locations, and the signals are limited in
time to T samples. Let us introduce an L� T

matrix S, which contains in its rows source signals
at all potential locations. The matrix S is the
unknown we wish to estimate. When the solution
is achieved, we expect only few rows of S,
corresponding to the active sources, to be sig-
nificantly large. The energies of signals at each
location will serve us as the spatial spectra
estimation.

Assume we have M sensors in our array. We
introduce the sensors measurement matrix Y,
which contains in the mth row the output signal
ym½n� of the mth sensor.

Since we know the positions of sensors and the
wave propagation model, we can pre-calculate the
transfer functions hlm½n� from any grid node l to
any sensor m.

Let us define the forward operator A by its
action U ¼AS on an arbitrary matrix S

um½n� ¼
XL

l¼1

hlm½n� � sl ½n�, (3)

where um½n� is the mth row of U. Note, that we
treat all locations (rows of S) equally, as if they all
contain an active source. This representation of A
is sufficient for our computations, and we do not
need its explicit matrix form.
Our problem is to find S given the observation

Y ¼AS þN, (4)

where N is an additive noise matrix, mth row of
which contains the noise registered by mth sensor.
Despite the operator A is known, the problem
cannot be solved without additional priors,
because we have much more grid locations than
sensors.
The adjoint1 operator A�, which will be needed

for the gradient computation, is given by its action
X ¼A�Y : the ith row of X is

xi½n� ¼
Xm

j¼1

ðhji½�k� � yj½k�Þ½n�. (5)

Note the ‘‘minus’’ sign near the argument of hji.

2.3. Interpolation

As mentioned above, we work with the discrete-
time signals. Therefore, a problem arises when Dji

is not integer. A straightforward solution is to
replace the fractional delays with the rounded
ones. However, this approach significantly limits
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the spatial resolution. A better approach suggests
upsampling of signals prior to applying the A
operator. The upsampling may be produced using
some interpolation kernel.

Let INup
denote upsampling by factor Nup

operator, and if S is an L� T matrix, then Sup ¼

INup
S will be L� TNup matrix. Note, that the

1þNupði � 1Þth column of Sup is equal to the ith
column of S ð1pipTÞ. Other columns should be
calculated using interpolation.

Suppose, we want to calculate the jth column,
Sj
up, of the matrix Sup. This column corres-

ponds to a time point, laying between the samples
k ¼ dj=Nupe and k þ 1 of the original signal
(d e is the ceiling function). The distances
between the above time point and the closest
samples of original signal are d� ¼ ðj � ðk �

1ÞNup � 1Þ=Nup to the left sample and dþ ¼ 1�
d� to the right sample (measured in sampling
periods T s). Finally, if r is the interpolation
kernel, N io is an interpolation order and Sk is
the kth column of S, then

Sj
up ¼

XN io

l¼�N ioþ1

rðl � d�ÞSkþl . (6)

We also need to calculate the adjoint operator
I�Nup

, which translates an L� TNup matrix Sup

into L� T matrix Sr ¼ I�Nup
Sup.

Using the above notations, we can write the
following formula for the Sk

r—the kth column of
matrix Sr:

Sk
r ¼

XN io�Nup

l¼�N io�Nup

r
l

Nup

� �
SNupðk�1Þþl
up . (7)

Now, in our model we will use the modified
operators

Â ¼AINup
; Â

�
¼ I�Nup

A� (8)

instead of A and A�, but for simplicity, we will
continue to denote the modified operators as A
and A�. Note, that after upsampling, we should
adjust Dji to be DjiNup. We will still need to round
DjiNup to the closest integer, but now the rounding
error is Nup times less.
3. Algorithm description

3.1. Sparse regularization

We solve the problems of source separation and
localization in the inverse problem framework: we
want to find source matrix S, such that after
applying to it the forward operator A, the result
will be as much close as possible to the actual
sensors measurement matrix Y, i.e. Y �AS. In
other words, we want to find minimizer

Ŝ ¼ argminS kY �ASk. This measure of proxi-
mity is connected to maximum-likelihood model.
The choice of particular norm is done according to
noise model. We assume white Gaussian noise,
thus we use Frobenius matrix norm, defined by

kXkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ijX
2
ij

q
.

However, the direct solution of above problem
does not lead to good estimate of source matrix S,
since the problem is ill-possed: there much more
possible locations than sensors. In order to
regularize a solution, we use a sparse prior: we
assume that the sources S are sparsely represen-
table in some basis or overcomplete system of
functions e.g. Gabor, wavelet, wavelet packet, etc.
(see for example [13]). Particularly, there exists
some operator F and the sparse matrix of
coefficients, C, such that

S ¼ CF. (9)

The matrix F contains elements of the chosen basis
in its rows. The rows of matrix C will contain the
coefficients of decomposition of time-domain
source signals in a chosen basis.
In addition to temporal sparsity, we will enforce

a spatial sparsity, as proposed in [12]. This sparsity
indeed exists in our problem formulation. Recall,
that we have divided the space into a set of
possible locations, and there are much more
locations than active sources.
All of the above leads to the following objective

function, which has to be minimized in C:

F ðCÞ ¼ 1
2
kY �AðCFÞk2F

þ m1
X

i;j

jcijj þ m2
Xm

i¼1

kcik2, ð10Þ
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where ci denotes the ith row of the matrix C (the
ith source’ coefficients), and cij is the jth element in
ci. The scalars m1 and m2 are used to regulate the
weight of each term.

The first term in (10) is the Frobenius-
norm-based data fidelity. The second term intends
to prefer sparsely representable signals in time;
it is based on the l1-norm, which had been
previously proven to be effective in enforcing
sparsity [8,13]. The third one is the spatial sparsity
regularizing term, which is intended to prefer
solutions with the source signals concentrated
in a small number of locations. It is easy to see
that moving some coefficient from an active
source location to an empty one, will strictly
increase this term.

Note, that we have chosen C (and not S), to be
the variable of proposed objective function. This
choice is intentional: the transformation from C to
S always exists, and it is defined in (9). However
the inverse transformation is not always defined
(for example when the chosen signal dictionary is
overcomplete).

Note also, that quite often matrix F does not
need to be stored explicitly. Multiplication by F
and F� corresponds to the synthesis and analysis
operation in some signal dictionary, and may be
performed very efficiently (like for example fast
wavelet or wavelet packet transform), see [13] for
details and more examples.

In order to minimize the objective (10) numeri-
cally, we use a smooth approximation of the l2-
norm, having the following form:2

cðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

x2
i þ �

r
� kxk2 (11)

the approximation becomes more precise as �! 0.
It can be easily seen, that if c is applied to a single
element of x—it becomes the smooth approxima-
tion of absolute value

cðxiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ �
q

� jxj. (12)
2An alternative would be to solve the problem in the Conic

Programming framework; we leave this option for the future.
Using (11) and (12), we obtain the following
objective function:

F ðCÞ ¼
1

2
kY �AðCFÞk2F

þ m1
X

i;j

cðcijÞ þ m2
Xm

i¼1

cðciÞ. ð13Þ
3.2. Choosing optimization technique

We can efficiently calculate both theAS and the
A�Y products, which enables us to calculate the
gradient matrix G and the product of the Hessian
operator H with an arbitrary matrix X (see
Appendix A). Hence, the objective (13) can be
minimized by one of the numerical optimization
methods, for example the quasi Newton method. A
problem arises when the dimension of the problem
grows. The memory consumption and iteration
cost grow as ðmTÞ2. This circumstance leads us to
the usage of the truncated Newton (TN) method
[15,16]. In the TN method the Newton direction D

is found by the approximate solution of the system
of linear equations HD ¼ �G. This is done by the
linear conjugate-gradients (CG) method. We use
diagonal preconditioning in order to further speed
up the optimization [17]. Note that in TN method,
the memory consumption grows linearly with the
number of variables. This enables us to solve large
problems with fair performance. See Appendix A
for detailed calculation of objective function
derivatives and Appendix B for detailed descrip-
tion of TN and preconditioned (CG) algorithms.
4. Computational experiments

In this section, we evaluate the proposed SMSR
algorithm. Conducted simulations demonstrate
the feasibility of our method. Moreover, we show
that the proposed approach is robust to noise and
very limited data size. In addition, it does not
require an accurate initialization. Another strength
of our algorithm is that it is able to resolve
closely spaced sources, i.e. it is able to achieve
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supper-resolution. However, the disadvantage of
our approach is a high computation complexity.

In our simulations we did not use signals
recorded in a real-world environment, rather we
have generated the source signals S and sensors’
measurement matrix Y. However, we have tried to
keep our simulations as close as possible to the
real-word problems. Thus, we have chosen the
following generation procedure: first, we have
generated the sparse coefficients matrix C. Next,
the source signals were created by S ¼ CF. In this
way an existence of sparse representation of source
signals (the assumption of our approach) is
guaranteed by generation. In our simulations we
have used Symlet8 Wavelets. Finally, sensors’
measurement matrix is created by: Y ¼AS þN,
where A defined in (8) and N represents the
additive zero-mean white Gaussian noise. In this
generation procedure, we have set parameters Nup,
N io and rðtÞ in (6) to have different values, from
those used later in reconstruction procedure. This
is done in order to introduce the ‘‘model error’’.
4.1. Far-field model

We start our simulations with basic scenario: we
assume far field 2D model and sensors lined up
with constant distances. In this scenario, we
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Fig. 2. (a) Noise-free case. The proposed method correctly identifies

clearly seen that beamforming fails to separate closely spaced sources
divided the space into discrete grid of angular
locations. The delay of the jth source location
toward the ith sensor is easy to calculate, given the
geometrical position of each sensor and assuming
that the source is far enough, so that signal arrives
as a planar wave (far-field assumption).
4.1.1. Noise-free case

First, we decided to demonstrate the feasibility
of our approach, starting with noiseless environ-
ment. The experimental setup is as following: 4
sensors are lined up with lmin=2 ¼ 1

2
C=f max dis-

tance (we assume our signal to be band limited,
and f max denoting the highest frequency). Signals
are arriving from 45 possible directions, and they
are 64 time samples-long.
We have chosen to have only 2 active sources,

located very close to each other—within 10�.
In these conditions conventional methods,
such as beamforming [18] and MUSIC fail to
super-resolve them (as shown in [10,11]). The
experiment was successful. Using proposed
algorithm, we have correctly estimated the
source positions (Fig. 2(a)), while the conventional
delay-sum beamforming has failed to resolve
the closely spaced sources (Fig. 2(b)). We
have also correctly reconstructed the sources.
The normalized reconstruction error was less
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(b)

the location of sources. (b) Zoom-in picture, in which it can be

.
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Fig. 3. Source separation (no noise). Top: sources from 2 active directions, bottom: restored sources. The normalized reconstruction

error is less than 1e� 3.
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than 5� 10�3 (Fig. 3) (the error was calculated
according to ksinit=ksinitk2 � srec=ksreck2k2).

4.1.2. Noisy environment

In the next experiment, we have added white
Gaussian noise to the matrix Y. The SNR at each
sensor was 5 dB. The contaminated by the noise
matrix Y was used as an input to our algorithm.

We have compared results based on our
approach (based on spatial and temporal sparsity),
with the method based on spatial sparsity only, in
spirit of [10,11]. This can be done by setting m1 ¼ 0
in (13). We have also done the DOA estimation
by conventional delay-sum beamforming. Then
we have computed the energy of the restored
signals at each direction for all methods
and compared the results. It can be seen from
Figs. 4 and 5 that proposed method has correctly
identified the active source directions,
however if we optimize on the spatial sparsity
only, we fail to correctly detect the source
positions. The conventional delay-sum beamform-
ing has also failed in DOA estimation task. In
the first experiment (Fig. 4(a)), it has failed
to resolve the closely-spaced sources . In the
second experiment (Fig. 4(c)), one of the signals
has about twice larger energy than the other.
In this case, the beamforming has found only the
first source.
We have also checked the signal reconstruction

performance of our algorithm in the noisy
environment. We have compared original vs.
reconstructed signals from active directions. As
one can see in Fig. 6, the active sources were
restored rather accurately. The reconstruction
error was about 5� 10�2. This is a very good
result, particularly if we take into consideration a
high noise level ðSNR ¼ 5 dBÞ of the sensor
signals.
Fig. 7 demonstrates the convergence of the

algorithm vs. number of iterations. We have
compared the computational load of the algorithm
for two cases: with and without preconditioning of
CG (see Appendix B for description of TN and
CG algorithms). The number of TN (outer)
iterations was slightly less for unpreconditioned
version. However with preconditioning the total
number of CG iterations was reduced by a factor
of � 45 and the total computation time by a factor
of � 28 (5.3 vs. 150min).
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Fig. 4. Examples of DOA estimation by proposed and alternative methods ðSNR ¼ 5 dbÞ. (a), (c) Solid line represents DOA estimation

by proposed method. Two peaks coincide with actual source positions (marked by solid vertical line). However, DOA estimation based
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sources. (b), (d) Zoom-in pictures, in which details can be seen more clearly.
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4.1.3. Reconstruction of signals with echo

The problem setup is as follows: we still stick to
the far-field 2D model and linear array, but this
time we place an infinite ‘‘wall’’ to the left of the
sensor array (Fig. 8), i.e. signals which arrive from
angles 0oao90 arrive to the array in the straight
path and as an reflection from the wall. However
signals which originate from directions
90oao180 do not reach the array. We have
generated the sensor measurement matrix using
‘‘full’’ transfer function (which takes into account
the reverberations from the wall). Then, we have
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performed the reconstruction in two ways: using
the ‘‘full’’ transfer function (convolutive recon-
struction) and using the straight-path only approx-
imation of the transfer function, which does not
include the reverberations from the wall (straight-

path only reconstruction).
Our experiments show, that using convolutive

reconstruction, we are able to correctly identify the
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Fig. 8. Illustration of far-field model with reverberation.

Infinite wall is placed to the left of the linear sensor array.

Signals arrive to the array in the straight path, and as

reverberation from the wall.
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source’ locations even in the case, when the echo
has the same amplitude as the straight-path signal
(reverberation factor equal to 1). However, using
the straight-path only technique, we are able to
restore sources only in the light reverberation
conditions (reverberation factor equal or less than
0.3). In both cases, we have evaluated the
algorithm in the noisy environment. Some results
are shown in Fig. 9.
4.2. Near-field model

In this experiment we have evaluated the source
localization and reconstruction capabilities of our
algorithm in the near-field scenario.
The problem setup was as following: we assume

near-field, 2D environment. The ‘‘2D room’’ was
chosen to have 1m� 1m dimensions, and was
divided into equally spaced 400 locations. Then,
we have randomly chosen locations for 4 sensors
and 3 active sources. Transfer functions from each
location to each sensor was assumed to reflect the
direct path propagation and 3 reverberations from
the walls. The generation of transfer functions was
done using the code available at public website
[19]. The remaining setup procedure was similar to
previous cases.
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Fig. 9. Examples of DOA estimation in reverberant environment. (a) Convolutive reconstruction (SNR ¼ 5dB, reverberation

factor ¼ 0:9). The proposed algorithm has correctly estimated the DOAs. The side-lobes level is about 15 dB lower, with comparison to

DOA estimation based on spatial sparsity only (b) convolutive reconstruction, zoom-in picture (c) straight-path only reconstruction

(SNR ¼ 5 dB, reverberation factor ¼ 0:3). Source locations were correctly identified by proposed method. However the DOA

estimation based on spatial sparsity only has failed to correctly locate the sources. (d) straight-path only reconstruction, zoom-in

picture.
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First, we have checked the feasibility of our
approach on the noiseless case. We have success-
fully identified the source locations. The results
can be seen in Fig. 10.
We have also tried to solve the problem in the noisy
environment. When applying our method for noisy
environment, we have to make sure, that the position
of sensors and the noise level are appropriate: i.e. each
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Fig. 10. 2D near-field, noiseless environment. (a) Sensors and active sources positions. Four sensors are depicted by circles. Three

active sources are depicted by squares. (b) Estimated signal energy at each possible location. The proposed algorithm has correctly

identified locations of active sources.

Fig. 11. Two examples of source localization in near-field noisy environment. In both cases the true source locations were identified

correctly.
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of source signals reaches at least two sensors with
amplitudes larger than noise. This is necessary to
avoid ambiguity in source localization.
When the above restriction is met, proposed
SMSR method has fairly good performance. Two
examples of source localization in near-field noisy
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environment are shown in Fig. 11. The signal-to-
noise ratio was 10 dB. The locations of active
sources were identified correctly in both cases. The
source signals themselves were reconstructed with
(normalized) error of about 6� 10�2.
5. Conclusions

Conducted simulations demonstrate the additive
value of enforcement of temporal sparsity along
with spatial sparsity. In most cases, the proposed
SMSR algorithm achieves lower side-lobe
levels, than the method based on spatial sparsity
only. In some cases, it is able to resolve sources,
which the spatial sparsity only method fails
to resolve.

In addition, the proposed enforcement of
both temporal and spatial sparsity makes the
proposed approach capable to accurately recon-
struct the source signals even at high noise levels.
Moreover, the proposed problem formulation
allows incorporation of reverberant (‘‘full’’)
transfer functions in the model, which leads
to convolutive reconstruction. The latter has
much better performance than the original
straight-path only approach.

The weaknesses of our approach are high
computational complexity and the need to sub-
jectively assess the trade-off parameters. These
issues can serve as challenging topics for further
research.
Appendix A. Objective function derivatives

In order to use the TN method, we need to
calculate the gradient G of the objective (13), as
well as to implement the product of the Hessian H
with an arbitrary matrix X. We also derive
multiplication by the diagonal of H, required for
preconditioned CG. Note that H is a tensor, but if
we parse the matrix variable C into a long vector,
then a Hessian will be represented by a matrix H.
We will use these notations throughout this
appendix. We will also use Gi and Hi to denote
gradient and Hessian of respective terms of the
objective function (13).
Let us start with the first term in (13). We will
define a new operator B in the following way:

BC ¼AðCFÞ; B�X ¼ ðA�X ÞF�. (A.1)

This enables us to write the first term in (13) as:
F1 ¼

1
2 kBC � Yk2F . If we introduce new variable

U ¼ BC � Y , then F 1 ¼
1
2
kUk2F ¼

1
2
TrðUTUÞ.

Hence, dF 1 ¼
1
2
ðTr ðUT dUÞ þ Tr ðdUTUÞÞ ¼

TrðUT dUÞ. Substituting U and dU ¼ BdC yields
dF1 ¼ TrððBC � Y ÞTBdCÞ ¼ hBC � Y ;BdCi ¼

hB�ðBC � Y Þ; dCi. Recall that dF ¼ hG; dCi, and
we get the gradient

G1ðCÞ ¼ B�ðBC � Y Þ. (A.2)

In order to calculate the multiplication of the
Hessian operator H by an arbitrary matrix X we
need to recall that dGðCÞ ¼HdC. By (A.2)
dG1ðCÞ ¼ B�ðBdCÞ, and thus for an arbitrary X

H1X ¼ B�ðBX Þ (A.3)

parentheses are used to ensure correct order of
multiplications.
In order to proceed with the second and the

third terms of objective (13), we need to use the
gradient and Hessian of (11)

rcðxÞ ¼
1

cðxÞ
x, (A.4)

ðr2cðxÞÞii ¼ �
1

c3
ðxÞ

x2
i þ

1

cðxÞ
,

ðr2cðxÞÞij ¼ �
1

c3
ðxÞ

xixj ; ðiajÞ, ðA:5Þ

where ðr2cðxÞÞii and ðr2cðxÞÞij are diagonal and

off diagonal elements of r2cðxÞ, respectively.
Now, by straightforward calculations we can write
down the gradients of the second and the third
term in (13)

ðG2Þij ¼ m1
1

cðcijÞ
cij , (A.6)

ðG3Þij ¼ m2
1

cðciÞ
cij , (A.7)

note, that the gradient of (13) is a matrix, because
our variable C is also a matrix (hence G1,G2 and
G3 are also matrices). It can be noticed in (A.6),
that all elements of G2 are independent, and thus
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the H2 matrix will be diagonal. It is convenient to
‘‘pack’’ the diagonal of H2 into a matrix with the
same size as C row by row. Let us denote the

packed matrix as ~H2

~H2ij
¼ m1 �

1

c3
ðcijÞ

c2ij þ
1

cðcijÞ

 !
. (A.8)

It is obvious, that

H2X ¼ ~H2 � X , (A.9)

where � is element-wise multiplication.
In order to define the multiplication H3X we

need to rewrite the Eq. (A.5)

r2cðcTi Þ ¼
1

c3
ðcTi Þ

cTi ci þ
1

cðcTi Þ
I , (A.10)

where I represents the identity matrix. Now it is
easy to define the ith row of H3X

ðH3X Þi ¼ m2 �
1

c3
ðcTi Þ

ciðcix
T
i Þ þ

1

cðcTi Þ
xi

 !
,

(A.11)

where xi is the ith row of matrix X.
This calculus is sufficient for the TN method.

However, in order to use preconditioned CG
method for inner iterations, we need to define the
diagonal of the Hessian of (13).

We will calculate the elements in the diagonal of
H1 in the following manner: let E be a zero matrix
with only one non-zero element equal to 1 at an
arbitrary location—ith row and jth column. Then

ð ~H1Þij ¼ hE;H1Ei, (A.12)

where ~H1 is a diagonal of H1 packed in the same
manner as a diagonal of H2 in (A.8).

It follows from (A.3) that hE;H1Ei ¼

hE;B�ðBEÞi ¼ hBE;BEi ¼ kBEk2F . The diagonal
of H2 is already defined in (A.8). Finally, the
diagonal of H3, packed in the same manner as a
diagonal of H2, is given by

ð ~H3Þij ¼ m2 �
1

c3
ðciÞ

c2ij þ
1

c3
ðciÞ

� �
. (A.13)
Appendix B. TN method

In the algorithm description we will use the
following notations: f ðCÞ—the objective function
(13). G and H are the gradient and the Hessian of
f ðCÞ, respectively. The TN method applied to the
objective (13) has the following iterative scheme:
(1)
 Start with an initial estimate C0 of source
coefficients.
(2)
 For k ¼ 1; 2; . . . until convergence
(a) Compute the current direction Dk by

approximate solution of system of linear
equations HDk ¼ �Gk.

(b) Compute the step size ak by exact or
inexact line search:
ak ¼ arg mina f ðCk þ aDkÞ.

(c) Ckþ1 ¼ Ck þ akDk.

(3)
 End of loop.
The step 2a is performed by the preconditioned

linear CG. We use the diagonal operator W for
preconditioning. W has the same size and the
diagonal as H—the Hessian of (13). Since W is
diagonal, the calculation of W�1 is straightfor-
ward. Moreover, the optimization algorithm does
not differ much from the regular CG:
(1)
 Start with D0, R0 ¼HD0 þ Gk, b0 ¼ 0,
P0 ¼ 0,
(2)
 For k ¼ 1; 2; . . .,
(a) Pk ¼ �W

�1Rk þ bk�1Pk�1,
(b) gk ¼

hRk ;W
�1Rki

hPk ;HPki
,

(c) Dkþ1 ¼ Dk þ gkPk,
(d) Rkþ1 ¼ Rk þ gkHPk,
(e) bk ¼

hRkþ1;W
�1Rkþ1i
�1 .
hRk ;W Rki
(3)
 End of loop,
where hA;Bi ¼ TrðATBÞ ¼
P

ij aijbij is an inner
product of two matrices A and B.
Note, that we are not looking for the exact

solution of step 2a of TN algorithm. Hence, we
should stop our CG algorithm when we are close
enough to the solution. One of the stop criteria
may be a fixed number of steps. Other possible
criteria is when the kRkk2=kR0k2 is low enough—
say 10�3.
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