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Abstract. We propose a technique of multisensor signal reconstruction
based on the assumption, that source signals are spatially sparse, as well
as have sparse [wavelet-type] representation in time domain. This leads
to a large scale convex optimization problem, which involves l1 norm
minimization. The optimization is carried by the Truncated Newton
method, using preconditioned Conjugate Gradients in inner iterations.
The byproduct of reconstruction is the estimation of source locations.

1 Introduction

The solution of the “Cocktail Party” problem is the active research field. However
none of the developed techniques provides an ideal solution. Yet another active
research area is source localization. In this paper we propose to benefit from
both fields in order to receive a more precise and stable solution.

Our technique is based on the assumption, that incoming signals can be
sparsely represented in an appropriate basis or frame (e.g., via the short time
Fourier transform, Wavelet transform, Wavelet Packets, etc.). This idea is ex-
ploited, for example, in [1],[2]. We also assume that there are few stationary
sources, and that they are sparsely located in space. The last assumption is used
in [3] and [4]. The combination of both assumptions can lead to an improved
performance, as demonstrated by our simulations. An additional advantage of
our method, is that it deals with the sensor array model in time domain, and
thus is applicable for both narrowband and wideband signals.

The solution of our problem is the restored signals in each location. Only
the locations, from which the signals have actually arrived, will contain signals
with relatively large energy, others will contain only noise, suppressed by our
method and, hence, relatively low energy. Thus, the byproduct of our solution
is an estimate of the source locations.

2 Observation Model

Consider several source signals impinging upon an array of n sensors. The arriv-
ing signals are sampled and represented in discrete time by T time samples. Let
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{θ1, . . . , θm} be a discrete grid of all source locations. Hence, the sources can be
represented by an m×T matrix S, whose i-th row represents the signal from the
i-th direction. In the same manner, we can introduce the sensor measurement
matrix, Y .

Signals from different source positions arrive to each sensor with different de-
lays and, possibly, different attenuations. This leads to the following observation
model:

Y = AS +N (1)
where N stands for the measurement noise matrix; A denotes ‘mixing operator’,
which shifts, attenuates and sums incoming signals modelling the real environ-
ment. Note, that the operator A written in an explicit matrix form will have the
huge dimensions of n × mT , hence, for optimization, it is more convenient to
implement the product Y = AS by a series of shifts, multiplications and sums
actions:

yi =
m∑

j=1

αjiU∆ji (sj) (2)

where yi is the i-th row of the sensor measurement matrix, Y ; sj is the j-th row
of sources’ matrix S; αji represents attenuation of the j-th source toward the
i-th sensor; U∆ji is a shifting operator and ∆ji is the delay of the j-th source
toward the i-th sensor.

In the same manner we can implement the application of the adjoint operator
X = A∗Y by a series of shifts, multiplications and sums actions:

xj =
n∑

i=1

αjiyi(1 +∆ji : T +∆ji) (3)

xj and yi refer to j-th and i-th rows of X and Y respectively. Matlab-like yi(1+
∆ji : T+∆ji) stands for the T -length subvector of yi, starting at 1+∆ji position.

As mentioned above, we work with the discrete-time signals. Therefore, a
problem arises when ∆ji is not integer. A straightforward solution is to replace
the fractional delays with the rounded ones. However, this approach significantly
limits the spatial resolution. A better approach suggests upsampling of signals
prior to applying the A operator. The upsampling may be produced using some
interpolation kernel.

Let INup denote upsampling by factor Nup operator, then if S is an m × T
matrix, Sup = INupS is m × TNup matrix. We also define the adjoint operator
I∗

Nup
, which translates an m×TNup matrix Sup into m×T matrix Sr = I∗

Nup
Sup.

Note, that in general S �= Sr.
Now, in our model we will use the modified operators

Â = A · INup Â∗ = I∗
Nup

· A∗ (4)

instead of A and A∗, but for simplicity, we will continue to denote the modified
operators as A and A∗ (for more details see [5]). Note, that after upsampling, we
should adjust ∆ji to be ∆ji ∗Nup. We will still need to round ∆ji ∗Nup to the
closest integer, but now the rounding error is Nup times less. In our simulations
we used Nup = 10 and the ‘sinc’ interpolation kernel.
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3 Method Description

We assume that the sources S are sparsely representable in some basis or over-
complete system of functions [6] (e.g. Gabor, wavelet, wavelet packet, etc.). In
other words, there exists some operator Φ, such that S = CΦ, and the matrix of
coefficients, C, is sparse. We use the objective function of the following form:

F (C) = F1(C) + F2(C) + F3(C) (5)

where F1(C) is the l2-norm-based data fidelity term; F2(C) is the temporal
sparsity regularizing term, which is intended to prefer sparsely representable
signals; F3(C) is the spatial sparsity regularizing term, which is intended to prefer
solutions with the source signals concentrated in a small number of locations.
F2(C) is based on the l1-norm, which is proved to be effective in forcing sparsity
[6]. Then, the objective function can be written as:

F (C) =
1
2
‖Y −A(CΦ)‖2

F + µ1

∑

i,j

|cij | + µ2

m∑

i=1

‖ci‖2 (6)

where ci denotes the i-th row of the matrix C (the i-th source’ coefficients), and
cij is the j-th element in ci. The scalars µ1 and µ2 are used to regulate the weight

of each term. And ‖X‖F =
√∑

ij X
2
ij denotes a Frobenius norm of matrix X .

In order to minimize the objective (6) numerically, we use a smooth approx-
imation of the l2-norm, having the following form:

ψ(x) =
√∑

i

x2
i + ε ≈ ‖x‖2 (7)

the approximation becomes more precise as ε→ 0. It can be easily seen, that if
ψ is applied to a single element of x - it becomes the smooth approximation of
absolute value:

ψ(xi) =
√
x2

i + ε ≈ |x| (8)

Using (7) and (8), we obtain the following objective function:

F (C) =
1
2
‖Y −A(CΦ)‖2

F + µ1

∑

i,j

ψ(cij) + µ2

m∑

i=1

ψ(ci) (9)

We can efficiently calculate both the AS and the A∗Y products, which enables
us to calculate the gradient matrix G and the product of the Hessian operator H
with an arbitrary matrix X (see Appendix A). Hence, the objective (9) can be
minimized by one of the numerical optimization methods, for example the Quasi
Newton method. A problem arises when the dimension of the problem growths.
The memory consumption and iteration cost grow as (mT )2. This circumstance
leads us to the usage of the Truncated Newton method [7],[8]. In the Truncated
Newton method the Newton direction d is found by the approximate solution of
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Fig. 1. DOA estimation: (a) - no noise; (b) - SNR=5 db.

the system of linear equations Hd = −g. This is done by the linear Conjugate-
Gradients method. We use diagonal preconditioning in order to further speed
up the optimization [9]. Note that in Truncated Newton method, the memory
consumption growth linearly with the number of variables. This enables us to
solve large problems with fair performance.

4 Computational Experiments

Our simulations were restricted to 2D model, far field and sensors lined up with
constant distances. The delay of the j-th source location toward the i-th sensor
is easy to calculate, given the geometrical position of each sensor and assuming
that the source is far enough, so that signal arrives as a planar wave (far field
assumption). Note that it is straightforward to extend our simulations to the
general case. It only requires to recalculate the delay from each location to each
sensor.

The experiment setup is as following: 8 sensors are lined up with λmin

2 =
1
2

C
fmax

distance (we assume our signal to be band limited, and fmax denoting
the highest frequency). Signals arrive from 45 possible directions, and they are
64 time samples-long. The environment is noisy, with SNR = 5dB. There are
only 2 active sources, located very close to each other - 10o. In these conditions
conventional methods, such as beamforming and MUSIC fail to superresolve
them (as shown in [3],[4]).

We have generated the sensors’ measurement matrix Y in the following way:
at first, we have generated the sparse coefficients matrix C. Next, the source
signals were created S = CΦ and finally Y = AS (A defined in (4) and Nup =
10).

In the first experiment we have checked that our algorithm can reconstruct
signals in noise-free environment. The experiment was successful, and the algo-
rithm has correctly determined the source positions (Fig. 1(a)) and has produced
reconstruction with less than 5 ∗ 10−3 reconstruction error .The error was calcu-
lated according to ‖sinit−srec‖2

‖sinit‖2
.
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Fig. 2. Source reconstruction (SNR = 5bB). Top: sources from 2 active directions,
bottom: restored sources.

In the second experiment, we have also added white Gaussian noise to the
matrix Y . The contaminated by the noise matrix Y was used as an input to our
algorithm. After successful optimization, we have checked the signals (original
vs. reconstructed) from the active directions. As one can see in Figure 2 the
active signals were restored rather accurately.

In addition, we have checked our method for DOA estimation, by comput-
ing the energy of the restored signal at each direction. We have compared our
technique with the method based on spatial sparsity only, in spirit of ([3],[4]),
by setting µ1 = 0 in (9). It can be seen from Figure 1(b) that both methods
correctly identify the active directions, however sidelobes are about 5dB lower
when temporal sparsity is enforced along with spatial sparsity.

5 Conclusions

We have presented a method for reconstruction of multiple source signals from
multi-sensor observations, based on temporal-spatial sparsity. We derive the ex-
pressions for efficient computation of the gradient, multiplication by Hessian and
diagonal preconditioning, necessary for Truncated Newton programming.

Computational experiments showed the feasibility of our method. The use of
temporal sparsity along with spatial sparsity further lowers the sidelobes. How-
ever, more simulations and comparison to other methods should be completed
before we can judge the method’s performance.

We are planning to test our method in the case of near field sources. As well
we wish to further speed up the optimization.
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Appendix A.
Gradient and Hessian of the Objective Function

In order to use the Truncated Newton method, we need to calculate the gradient
G of the objective (9), as well as to implement the product of the Hessian H with
an arbitrary matrix X . Note that H is a tensor, but if we parse the matrix vari-
able C into a long vector, then a Hessian will be represented by a matrix H . We
will use these notations throughout this appendix. We also derive multiplication
by the diagonal of H , required for preconditioned Conjugate-Gradients.

Let us start with the first term in (9). We will define a new operator B in
the following way:

BC = A(CΦ) B∗X = (A∗X)Φ∗ (10)

This enables us to write the first term in (9) as: F1 = 1
2 ‖BC − Y ‖2

F . If we
introduce new variable U = BC − Y , then F1 = 1

2 ‖U‖2
F = 1

2Tr(U
TU). Hence,

dF1 = 1
2

(
Tr(UTdU) + Tr(dUTU)

)
= Tr(UTdU). Substituting U and dU =

BdC yields dF1 = Tr
(
(BC − Y )TBdC)

= 〈BC − Y,BdC〉 = 〈B∗(BC − Y ), dC〉.
Recall that dF = 〈G, dC〉, and we get the gradient

G1(C) = B∗(BC − Y ) (11)

Now we can substitute the expressions for B and B∗ from (10) and we will receive:

G1(C) = (A∗ (A (CΦ) − Y ))Φ∗ (12)

In order to calculate the multiplication of the Hessian operator H by an arbitrary
matrix X we need to recall that dG(C) = HdC. By (11) dG1(C) = B∗(BdC),
and thus for an arbitrary X

H1X = B∗(BX) (13)

which gives after substituting B and B∗ from (10):

H1X = (A∗ (A (XΦ)))Φ∗ (14)

Parentheses are used to ensure correct order of multiplications, AX and A∗X
are defined in (2),(3),(4).

In order to proceed with the second and the third terms in (9), we need to
use the gradient and Hessian of (7):

∇ψ(x) =
1

ψ(x)
x (15)

(∇2ψ(x)
)

ii
= − 1

ψ3(x)
x2

i +
1

ψ(x)
(16)

(∇2ψ(x)
)

ij
= − 1

ψ3(x)
xixj (i �= j)
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where (∇2ψ(x))ii and (∇2ψ(x))ij are diagonal and off diagonal elements ele-
ments of ∇2ψ(x) respectively. Now, by straightforward calculations we can write
down the gradients of the second and the third term in (9):

(G2)ij = µ1
1

ψ(cij)
cij (17)

(G3)ij = µ2
1

ψ(ci)
cij (18)

note, that the gradient of (9) is a matrix, because our variable C is also a
matrix (hence G1,G2 and G3 are also matrices). It can be noticed in (17), that
all elements of G2 are independent, and thus the H2 matrix will be diagonal. It
is convenient to ‘pack’ the diagonal of H2 into a matrix with the same size as C
row by row. Let us denote the packed matrix as H̃2:

H̃2ij = µ1

(
− 1
ψ3(cij)

c2ij +
1

ψ(cij)

)
(19)

it is obvious, that
H2X = H̃2 	X (20)

where 	 is element-wise multiplication.
In order to define the multiplication H3X we need to rewrite the equa-

tion (16):

∇2ψ(cTi ) =
1

ψ3(cTi )
cTi ci +

1
ψ(cTi )

I (21)

where I represents the identity matrix. Now it is easy to define the i-th row of
H3X :

(H3X)i = µ2

(
− 1
ψ3(cTi )

ci(cixT
i ) +

1
ψ(cTi )

xi

)
(22)

where xi is the i-th row of matrix X .
This calculus is sufficient for the Truncated Newton method. However, in

order to use Preconditioned Conjugate Gradients method for inner iterations,
we need to define the diagonal of the Hessian of (9).

We will calculate the elements in the diagonal of H1 in the following manner:
let E be a zero matrix with only one non-zero element equal to 1 at an arbitrary
location - i-th row and j-th column. Then:

(
H̃1

)

ij
= 〈E,H1E〉 (23)

where H̃1 is a diagonal of H1 packed in the same manner as a diagonal of H2

in (19).
It follows from (13) that 〈E,H1E〉 = 〈E,B∗(BE)〉 = 〈BE,BE〉 = ‖BE‖2

F ,
and if we substitute the expression for B from (10) we will receive

〈
ET ,H1E

〉
=

‖A(EΦ)‖2
F . The elements of EΦ will be all zeros, except for the i-th row which
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will be equal to the j-th row of Φ. After applying the operator A as described
in (2),(3),(4), we will receive a shifted, attenuated and upsampled copy of j-th
row of Φ in each row of A(EΦ). And, finally, after taking the norm and using
(2) and (23), we will receive:

(
H̃1

)

ij
=

∥∥∥
(INupΦ

)
j

∥∥∥
2

2

n∑

j=1

α2
ij (24)

where
(INupΦ

)
j

is the j-th row of upsampled Φ.
The diagonal of H2 is already defined in (19). Finally, the diagonal of H3,

packed in the same manner as a diagonal of H2, is given by:

(H̃3)ij = µ2

(
− 1
ψ3(ci)

c2ij +
1

ψ3(ci)

)
(25)
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