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Abstract 
Super-orthogonal space-time trellis codes (SOSTTC) 

designed by hand can significantly improve the performance 
of space-time trellis codes. This paper introduces a new 
representation of SOSTTCs based on a generator matrix that 
allows a systematic and exhaustive search of all possible 
codes. This will verifL that some of the known codes are 
optimal, andprovides a means to easily implement encoders 
and decoders with a large number of states without relying 
on a graphic representation. 

Keywords: space-time coding, M M 0  (Multiple-Inp t 
Multiple Output). diversity 

I. INTRODUCTION 

Space-time trellis coding [ I ]  provides a diversity gain 
and a coding gain to wireless communications systems 
employing multiple transmit antennas, thereby improving 
the error performance and the data rate of these systems. In 
[2], Jafarkhani and Seshadri introduced a new structure 
called Super-orthogonal space-time trellis codes (SOSTTCs) 
which can yield an additional coding gain of more than 2 dB 
while providing the highest possible rate. By concatenating a 
space-time block coding scheme with an outer trellis code, 
the diversity gain of the space-time block code is maintained 
and a coding gain is realized. Since the trellis coding gain is 
achieved through redundancy, the signal set of the inner 
code must be expanded to maintain full transmission rate. 
Note that it is not the signal constellation that is expanded 
but the set of orthogonal matrices, i.e., the number of 
available orthogonal matrices is increased. In order to 
accomplish this, Jafarkhani and Seshadri proposed a 
parameterized class of space-time block codes. 

Beginning with the original space-time block code of 
Alamouti [3], a class of orthogonal designs or transmission 
matrices for two transmit antennas was created as follows: 
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where x j  and x2 are selected by input'bits. The first row 
corresponds to the symbols transmitted in time slot 1, the 
second row, to the symbols in time slot 2. The first column 
corresponds to the symbols transmitted by antenna 1, the 
second column to the symbols of antenna 2. By varying 0, 
multiple ortbogonal block codes can be constructed, and a 
super-orthogonal code is formed from the union of these 
codes. For M-PSK signal constellations, the signals x j  and 

XI can be represented by e?, 1 = OJ,. . ', M - 1 and 0 can 
take on the values 0 = 2 d ' / M ,  where 1'=0,1,..., M - 1 ,  
without expanding the signal set. To maximize the coding 
gain, the matrix sets are partitioned in a manner similar to 
Ungerboeck's method [4], but using the determinant criteria 
from [I] rather than Euclidian distance. Note that using the 
trace of the difference matrix would produce the same 
partitioning. 

In addition to Jafarkhani and Seshadri's work [2], 
Siwamogsatham and Fitz [5], [6], and Ionescu [7] have also 
independently developed methods to expand the orthogonal 
matrix set. Siwamogsatham and Fitz's method applies a 
similar unitary transformation to the original orthogonal 
design to produce additional sets and Ionescu uses cosets 
which are equivalent to the rotations of [2]. For the QPSK 
signal constellation, the A ,  J, B and K sets of 
Siwamogsatham and Fitz correspond (respectively) to the 0 
= 0, x/2, x, and 3n/2 rotations in [2] and the two cosets in 
[7], [8] correspond to the 0 = 0 and x rotations. 

The trellises presented in [2], [5]-[6] are all hand- 
designed to maximize the determinant of the difference 
matrix, while those in [7] also attempt to maximize a 
criterion based on the trace of the difference matrix. Rules 
for the code design are given. These rules are similar to 
Ungerboeck's rules [4] but use the determinant instead of the 
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Euclidean distance. While the hand-designed codes perform 
well, it is not known if they are optimal. Also, hand- 
designing codes for a large number of states becomes 
tedious. Furthermore, these codes are described using a 
graphic representation ,of the trellis, where all possible 
outputs for each state are listed [2], [SI-[8]. Hence, 
implementing the encoder or decoder requires listing the 
outputs of all the states, which can become quite 
cumbersome for a large numher of states. 

This paper presents a method for performing a 
computer search of codes. Using a compact matrix notation, 
similar to that in [9] a computer search is performed to find 
trellises that maximize both the determinant and trace 
criteria. Simulations are then performed to compare the 
performance of these new codes to that of the known ones. 
The matrix representation allows a more compact 
representation of the code, making the implementation of the 
encoder and decoder easier. 

' The organization of the paper is as follows. Section I1 
provides the representation of SOSTTCs using a generator 
matrix. Section III discusses the details of the decoding and 
Section IV provides simulation results. Section V includes 
some concluding remarks. 

11. CODE SEARCH 

Maximizing the determinant and trace produced by a 
SOSTTC bas proven effective in the design of optimal codes 
with a small numher of states. However, as the number of 
states in the code increases, the complexity involved in the 
design of these codes increases proportionally and it 
becomes more difficult to produce optimal codes. In order 
to facilitate this, we show in this Section that the code can he 
represented by a simple generator matrix, allowing for a 
systematic and exhaustive computer search of all 
possibilities. This matrix representation is similar to that 
used for the search of space-time trellis-coded modulation as 
discussed in [9]. 

Fig. 1 shows a simple example of the graphical 
representation of an 8-state QPSK SOSTTC for a rate of 2 
hitsiflz; this trellis has two parallel branches. Using the set 
partitioning for QPSK in [2], S,, means that x,, x2 in the 
transmission matrix (1) are equal to 0, 0 and 2, 2, 
respectively for the first and the second parallel branch. It 
can he seen that as the number of states gets larger, 
describing the code graphically becomes increasingly 
cumbersome. 

In general, the generator matrix G of a SOSTTC for tiT 

transmit antennas is of the form r rows by nr columns, where 
r is determined by the sum of the number of input hits m at 
each trellis level and the numher of bits s needed to represent 
each state. Note that in this example each trellis level 
corresponds to a transmission matrix (1) and hence, a trellis 
level corresponds to two time slots. s is given hy 

s = log N 
where N is the number of states. For an M-PSK constellation 
with the highest possible rate, rn is given by 

m = 2 l o g , M  

Fig. 1 .  8-state SOSTTC with 2 parallel branches and a 
rate of 2 h i t s i s k  using QPSK. 

As an example, an 8-state code requires three bits to 
represent each state. For QPSK with a rate of 2 bits/s/Hz and 
2 transmit antennas, four hits are input at each trellis level. 
Hence, the generator matrix has I rows and 2 columns, as 
shown below 

(2) 

::J a14 

where a, = 0, 1, 2 or 3, and i= 1, 2, . . . , 14. For an M-PSK 
modulation, a, = 0, 1 ,  . . . , M-1. 
The information sequence to be transmitted is U = (ul, .._ U"), 

where U ,  = 0 or 1. The number of information bits 
influencing the transmission matrix (1) of a given trellis 
level is equal to (m+s), the number of rows of G .  Let these 
bits be represented hy a vector U,, where I is the trellis level. 
uf can also be considered as a shift-register. When G is 
multiplied (modulo 4) by uf, we obtain two symbols xI  and 
x2 which are then mapped to a transmission matrix using the 
mapping scheme described by (1). The rotation tJ depends on 
the current state and is determined in advance. As an 
example, if two rotations are used, all transitions originating 
from an odd state are assigned tJ= 0, and those from an even 
state, 0 = z. Hence, all possible outputs or transmission 
matrices of the SOSTTC can be obtained f?om uf G. There is 
no need to list all possible outputs from each state, making 
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the implementation of the encoder and decoder much easier. 
The generator matrix for the code in Fig. 1 is 

1 1 2 2 3 2 3  
2 3 0 2 3 0 2  

This idea can easily be extended to generate a code with 
any number of states or antennas for any signal constellation 
by increasing r and adding hits to the shift register 
accordingly. Hence, the matrix representation presented 
earlier is an efficient and compact way to describe a 

SOSTTC with a large number of states by performing an 
SOSTTC. Furthermore, it allows a computer design of a 

exhaustive or random search of all possible generator 
U4 z] (3) matrices G and selecting the matrix G which yields the hest 

characteristics. 
An exhaustive searcb among all nossible 414 or 

1 
In this example Of an 
branches, the bits of &can be considered as follows 

‘Ode with two pam’lel 

, Nex<Slate ~ poroiiei~ranch CvrenrSrore 
h 

Upon moving to the next transition the current state and 
parallel branch bits are discarded, the next state bits become 
the current state and four new input bits are shifted into the 
U, register. The description of the bits of U, given in (3) is 
not valid wben the number of parallel branches or states 
changes and a lookup table must be used. For example, if an 
8-state SOSTTC with 4 parallel branches is desired as shown 
in Fig. 2, a vector ur with the same number of bits can be 
used but a lookup table is required to determine the three bits 
representing the next state from the current state and the 
input bits. At the next trellis level, these three bits become 
the current state bits of U, and four new input bits are shifted 
into U,. The difference between this code and the code of 
Fig. 1 is that here the current state bits at the next trellis level 
are not simply the bits uludus from the previous level but 
have been obtained from the lookup table. Fig. 2 shows the 
SOSTTC with 4 parallel branches and 2 rotations obtained 
using 

1 3 3 2 0 3 3 1  
1 2 0 2 0 3 3  

GT =( 

Fig. 2. 8-state SOSTTC with 4 parallel branches and a 
rate of 2 bitsisHz using QPSK. 

By combining the approach of matrix multiplication 
with a lookup table, every possible 8-state trellis shape and 
permutation can be generated and tested. The lookup table is 
rather compact compared to what would be required to 
describe the whole trellis and can be determined in advance. 

268,435,456 matrices G for 8-state SOST’TCs has yielded 
thousands of codes with good characteristics (largest 
determinant and trace). There bas been no SOSTTC wbicb 
presented the largest determinant but not the largest trace. 
Many of these codes are equivalent, i.e., they generate the 
same outputs. The duplicate ones have been determined 
using a computer search and eliminated. The remaining 
codes have been simulated at a signal-to-noise ratio of 14 dB 
since the error probabilities of space-time codes usually do 
not crossover. In fact since all of the codes provide full 
diversity, the SNR-BER curve is a line at high SNRs (in a 
logarithmic scale) and therefore one point in the SNR-BER 
plane is good enough for comparison. The best new codes 
are presented in Table I .  It can be seen from Table 1 that the 
search has yielded codes which exhibit several 
improvements in both the minimum determinant and 
minimum trace compared to the codes in [5], [7]. The 
number of transitions of the paths that diverge from a state 
and remerge to that state is indicated in Table I .  The 
performance of the new codes will be compared to that of 
some known codes from [5], [7] in Section lV. 

111. DECODING 

Maximum-likelihood decoding is employed at the 
receiver end to reconstruct the transmitted signal. The 
decision metric was derived using the same method as in 
[IO], and using Jafarkhani and Seshadri’s [2] transmission 
matrix given by (I) .  

Let rj‘ be the signal received by antenna j at time f and 
let a,,, be the path gain from transmit antenna i to receive 
antenna j. The signal r/ is given by [IO] 

. .  .:‘ =-&Yi,jc; +a: 
i=l 

where ci are the signals transmitted from the nr antennas at 

time slot f and 7: are the independent noise samples. 
With two transmit and m receive antennas the 

maximum-likelihood detection amounts to fmding the values 
of SI and s> which minimize the decision metric 
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which, upon expanding and deleting terms that are 
independent of the codewords, produces 

This expression decomposes into two parts, the first of 
which is only a function of sI 

the second of which is only a function of s2 

Recognizing that the second and fourth terms of the 
previous expressions ,are the complex conjugates of the first 
and third terms respectively, the metrics reduce to 

fors,, and 

for s2. 

Due to the orthogonality of the transmission matrix, the 
decoder can minimize the metrics for sI and s2 separately, 
eliminating the need to compare all possible pairs of 
codewords. 

For trellises with multiple parallel branches, the 
decoding is performed in two steps. At each decoding 
interval, the decoder first scans through the parallel branches 
and picks the branch with the smallest branch metric to 

represent the set. The other parallel branches are pruned off 
resulting in a trellis with only one branch per transition. The 
Viterhi decoding algorithm is then applied to this reduced 
trellis to find the path with the minimum accumulated 
metric, The initial pruning step greatly reduces the number 
of calculations required at this step, as the accumulated 
metric is not computed for the pruned off branches. 

.IV. SIMULATIONS RESULTS 

Computer simulations using the techniques described in 
the previous section have been performed to determine the 
performance of our codes and select the best ones. Each 
frame consists of 130 transmissions out of each transmit 
antenna. 

Computer simulation of the 8-state codes with one 
receive antenna yielded little or no improvement on already 
published codes [SI, [7] as shown in Fig. 3. This would 
indicate that the known codes are optimal for all 8-state 
QPSK trellis shapes. This may be due to the fact that the 
known codes and the new codes with 4 and 8 parallel 
branches have the same determinant for parallel branches. 
To improve performance it would be necessary to search 
codes with a greater numher of states. Preliminary results for 
32-state codes are promising. The performance of the known 
16-state codes is almost similar to that of the 8-state codes as 
reported in [SI, [7]. Our new 16-state codes did not offer any 
improvement either. 

V. CONCLUSION 

A matrix representation of super-orthogonal space-time 
trellis codes bas been presented in this paper. This 
representation allows a more compact description of 
SOSTTCs which does not require the listing of all possible 
outputs from each state and therefore, simplifies the 
implementation of encoders and decoders for codes with a 
Large number of states. Furthermore, this representation can 
be used for a computer search of good SOSTTCs. An 
exhaustive search would yield the optimum code hut may 
require an excessive amount of time if the number of states 
is large. An exhaustive search of 8-state codes has provided 
codes with an error performance similar to that of some 
known codes, which means that these codes designed by 
hand and the rules of thumb used to design them were 
excellent. However, codes with a larger number of states 
may benefit from a computer design. 
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Table 1: Characteristics of 8 State QPSK Codes 

(8 Parallel Branches) 
SF [51 4 -  - 

Code 1 4 -  80 20 

G =  T 0 0 1 2 0 0 0 ’  
1 2 1 0 1 1 1  
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QPSK 8-state code comparison 
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Fig.'3. Comparison of the frame error rates of 8-state codes. 
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