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Abstract

The goal of this paper is to present a new recipe for the fractal im-
age decoding process. In this paper, we explain how fractal-based
methods can be internally combined with regularization schemes, e.g.,
Tikhonov, Total Variation (TV), or Hard-Constrained regularization.
Although the regularization procedure is very common in context of
algebraic image restoration, it has not yet been thought directly in
the context of fractal-based methods. This implication can be advan-
tageous in many ways to improve the quality of the decoded image
depending on the regularization functional. We develop the theory
and apply the standard iterative methods of steepest descent and pro-
jected Landweber. We apply our technique to the under-determined
missing fractal code problem as verification to the theory presented.

Keywords— Fractal Image Decoding, Fractal Image Cod-
ing, Tikhonov Regularization, Total Variation.

1 Introduction

In traditional fractal-based image coding techniques, im-
ages are thought as elements of a complete metric space.
A contractive operator, the so-called fractal transform T , is
estimated at the encoding stage, such that its fixed point X̄
is an approximation of the original image X . At the decod-
ing stage, this operator is iteratively applied to any initial
image. Banach’s contraction mapping theorem guarantees
the convergence of this iterative scheme. This decoding pro-
cedure is in fact too restrictive, however, due to the fixed
point iteration scheme. Regardless of the initial seed image
and any other prior information about the image, the tra-
ditional fractal decoding procedure converges to the fixed
point X̄ of T . An interesting question is whether fractal
image encoding/decoding can be combined with other ex-
tra knowledge about the image – i.e., can we regularize the
estimated image. Regularization can be applied to both
ill-posed or well-posed problems to obtain superior results.

In our framework, the problem of fractal image decoding
will be modeled as the solution of a linear equation with a
sparse coefficient matrix. Due to the structure of the coef-
ficient matrix, the solution of this linear system is unique
and coincides with the attractor of the contractive fractal
transform T . Traditional fractal decoding scheme finds a
solution of this linear system in a greedy fashion.

In the technique proposed in this paper, we construct a
minimization problem for the fractal linear equation along
with the regularization functional. We present some of our
experiments in the context of regularized fractal decoding
regarding the solution of the problem of missing fractal
codes which was first introduced in [5].

2 Basics of Fractal Image Encoding and
Decoding

More details on fractal image coding can be found in
many places [1], [3], [7], [11], [9], including one of our re-
cent papers on generalized fractal image coding using pro-
jections onto convex sets [5]. Fractal image coding seeks
to approximate an image by a union of spatially-contracted
and greyscale-modified copies of subblocks of itself. If we
let the image of interest be represented by an image func-
tion X(x, y), then the result of the coding procedure is a
contractive mapping T , the so-called fractal transform oper-
ator, the fixed point X̄ of which provides an approximation
to X . In other words,

X ∼= X̄ = T X̄. (1)

To obtain T , the image is first partitioned (e.g., uniform,
quadtree) into a set of nonoverlapping range blocks Ci. For
each range block Ci, one searches for a larger domain block
PJ(i) (from an appropriate “domain pool” P that is often
common to all range blocks of the same size) such that
X
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where φi : R → R is a greyscale map that operates on pixel
intensities and wi denotes the 1-1 contraction/decimation
that maps pixels of PJ(i) onto pixels of Ci. The fractal code
defining T consists of the maps φi as well as the domain-
range assignments determined during the coding procedure.
In practice, greyscale maps are assumed to be affine, i.e.,

φi(t) = αit + βi. (3)

For a given domain-range block pair PJ(i)/Ci, the optimal
value of the α and β parameters is usually accomplished by
means of least-squares fitting.

At the decoding stage, given a contractive fractal trans-
form T , we may generate its fixed point X̄ by iteration
Xn+1 = T (Xn), starting with an arbitrary image X0.

(Xn+1)
∣∣∣
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=
(
T (Xn)
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= αiD
(
(Xn)

∣∣∣
PJ(i)

)
+ βi. (4)

in which D in this Equation is the down-sampling operator.
As mentioned earlier, Banach’s contraction mapping theo-
rem guarantees that the sequence of images Xn converges
to X̄ .



3 Regularization Model of
Fractal-Transform Operator

In this section, assume that T is the approximated fractal
transform of an m×m image X , i.e., X is approximated by
the fixed point X̄ of T . Also for convenience assume that
the blocks in both domain and range pools are nonoverlap-
ping.

In this paper, by notation X̃ = X we mean X is the lexi-
cographic representation of image X . Given T we can define
a corresponding T acting on X such that T̃(X) = T (X).
T is in fact the same as T acting on X when written in
lexicographic order and returning the corresponding image
T (X) when rearranged in the lexicographic order.

By these notations, the result of the traditional fractal
image decoding in the lexicographic form is

X̄ = argminX‖ X − T(X) ‖2
. (5)

We take advantage of writing X in the lexicographic or-
der, that operator T can be written as

T(X) = MX + B. (6)

A similar type of this matrix representation of the fractal
transform operator was introduced in [10]. Here M is an
N × N matrix, and both X and B are vectors of dimen-
sion N × 1, where N = m2. The matrix M carries the
αi information, where B contains the information of βi, all
in the appropriate locations. A nominal row of of matrix
M corresponding to a point in the range block Ci has the
following form.⎛
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M is in general a huge and sparse matrix with the ratio
of non-zeros to total of 4/N = 4/m2, for an m × m image.
Figure 1 shows sparsity structures of matrix M for an small
image.

Therefore, X̄ is the solution of a linear equation of the
form

MX + B = X, (7)

or equivalently
AX = B, (8)

where A = IN×N − M , and IN×N is the identity matrix of
size N × N . In the case that the fractal transform is fully
known, this linear system has a unique solution X̄, indeed
by the structure of A. This unique solution is in fact the
attractor of the fractal transform T in the lexicographic
order, i.e., X̄ . It is also true that

AX − B = X− T (X), (9)

Figure 1. Typical sparsity of matrix M , for an 8×8 image,
i.e., m = 8. M is of dimension 64 × 64, i.e., N =
m2 = 64. Range and domain blocks are respectively
of size 2× 2 and 4× 4. Number of nonzeros of M are
4N = 256 out of the total of N2 = 4096 elements.

and hence finding the fixed point of the fractal transform
operator in fact the same finding the unique minimizer of
the collage error. Equivalently, therefore, the image is ap-
proximated by solution of the least squares problem

X̄ = argminX‖ AX− B ‖2
. (10)

Now we consider the new objective function

Gλ(X) =
1
2
‖ AX − B ‖2 + λΛ(X), (11)

in which some convex and differentiable regularization func-
tion Λ(X) is controlled by λ. The idea is to improve the
traditional fractal attractor X̄ by minimizing this new ob-
jective function.

This is especially very attractive when the ‖ AX − B ‖2

does not have a unique minimizer – for example, the missing
fractal code problem that we consider Section 6. However,
even when ‖ AX − B ‖2 has a unique minimizer one can
improve the solution by choosing the appropriate values of
λ and function Λ(X). Hence, we define

X̄reg(λ) = argminXGλ(X). (12)

X̄reg(λ) might be solved analytically depending on the reg-
ularization function, but the goal is to numerically estimate
X̄reg(λ) in general.

In the next Section, we present a numerical algorithm,
so-called regularized fractal decoding algorithm (RFDA),
to estimate X̄reg(λ).



4 Regularized Fractal Decoding
Algorithm (RFDA)

Constructing the huge sparse matrix A = (IN×N −M), is
computationally inefficient. Matrices A and M are not only
sparse, but also redundant in the nonzero values. Vector B
is also redundant. The redundancy is based on the fact that
the values of αi and βi are the same for all of the points
in range blocks that correspond to some domain block. A
fixed αi and βi’s can appear many times respectively in A
and B depending on the size of range and domain blocks.

In this Section, we present an algorithm based on the
Steepest Descent (SD) method to minimize Gλ(X), and
present an efficient algorithm to minimize Gλ(X), without
directly dealing with A and B.

Because objective function in Equation 11 is convex the
numerical algorithms for minimizing the convex functions
can be applied to find X̄reg(λ), the unique minimizer of
Gλ(X). It turns out that SD is not the only numerical
method one may apply to find X̄reg(λ), and not necessarily
the most efficient algorithm.

By SD, the sequence {Xn} defined by

Xn+1 = Xn − μ∇Gλ(X), (13)

converges to an approximation of X̄reg(λ) if μ, the scalar
step-size in the direction of gradient is sufficiently small.
The convergence trend could be improved by taking advan-
tage of a variable step-size, i.e., by taking a sequence μn,
but in this paper we use only a fixed step-size μ.

Differentiating Gλ(X), and substituting in 13 yields

Xn+1 = Xn + μAT (B − AXn) − μλ∇Λ(Xn) (14)
= Xn + μ(IN×N − MT )(B − AXn)

−μλ∇Λ(Xn)
= Xn + μ(IN×N − MT )(T(Xn) − Xn)

−μλ∇Λ(Xn)
= Xn + μ(T(Xn) − Xn)

−μMT (T(Xn) − Xn) − μλ∇Λ(Xn).

Now defining Yn = T(Xn) − Xn and taking tilde, i.e.,
converting each image from column-stacked lexicographic
order to matrix representation gives

X̃n+1 = X̃n + μ(Ỹn − ˜MTYn) − μλ ˜∇Λ(Xn). (15)

Finally, substituting Zn = ˜MTYn gives

Xn+1 = Xn + μ(Yn − Zn) − μλ∇Λ(Xn). (16)

Note that Yn can be easily computed as T (X) − X . The
only difficulty of computation is now Zn = ˜MTYn. The fol-
lowing lemma shows that we can compute M̃TX, for any
given X based on X = X̃ without dealing with large ma-
trices.

Lemma 1 [6]. Assume T is the fractal image transform
of some image with fractal code {Ci, PJ(i), αi, βi}, i.e.,(

T (X)
)∣∣∣

Ci

= αiD
(
X

∣∣∣
PJ(i)

)
+ βi, (17)

for the case of non-overlapping square domain and range
blocks, with domain blocks size twice of the range block size.
Also take M as defined in Equation 6, and operators U and
D are respectively upsampling and downsampling operators,
then for any X = X̃(

M̃X
)∣∣∣
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= αiD
(
X
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)
(18)

and (
M̃TX

)∣∣∣
Pj

=
∑
i∈Ωj

αi

4
U

(
X

∣∣∣
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)
(19)

where Ωj = {i | J(i) = j}.
Equation 19 states that to compute M̃TX on each do-

main block piece Pj , we take all the range blocks Ci corre-
sponding to this fixed domain block, up-sample each block
of these range blocks Ci’s and multiply it by its correspond-
ing αi value divided by 4, and then take the sum over all
of these up-sampled and appropriately scaled pieces. This
sum gives the required domain block piece Pj of M̃TX, i.e.,(
M̃TX

)∣∣∣
Pj

. Note that the non-overlapping constraint on

domain blocks is required for M̃TX to be uniquely deter-
mined for this method to be well-defined.

Now we are prepared to summarize our minimization al-
gorithm. We had Zn = ˜MTYn, hence, we compute Zn

using Equation 19 of Lemma 1, and yield the following.

Regularized Fractal Decoding Algorithm (RFDA)
The sequence {Xn}, defined iteratively as following con-
verges to an approximation of X̄reg(λ) = ˜X̄reg(λ) for any
X0 (typically a black image) and sufficiently small μ.

Yn = T (Xn) − Xn (20)

Zn
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Pj

=
∑
i∈Ωj
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4
U

(
Yn

∣∣∣
Ci

)
, ∀Pj ∈ P

where Ωj = {i | J(i) = j},
Xn+1 = Xn + μ(Yn − Zn) − μλ∇Λ(Xn).

Note that in the case that λ = 0 this scheme is in fact a
special case of Landweber algorithm, and {Xn} converges
to ˜̄X the least square minimizer of Equation 10 (thought
in the matrix form so we need tildes) that is closest to X0.
It is of specific interest when we cover the missing fractal
code problem in Section 6. In this problem 10 is under-
determined with many possible least square solutions. We
state that by iterating the RFDA from X0 = 0 with no
regularization, i.e., λ = 0, Xn converges to the minimum
norm least square solution of 10, and not just some least
square solution.



5 Various Regularization Functions

The choice of regularization function may depend on the
application. In this section, we briefly mention three dif-
ferent popular regularization functions and explicitly form
their RFDA counterparts.

• Tikhonov Regularization
The special case, Λ(X) = 1

2‖ X ‖2 is called the Tikhonov
regularization. It can be shown that the analytic solution
in this case is

X̄reg(λ) = (AT A + λIN×N )−1AT B. (21)

The RFDA counterpart below can be used to estimate
Xreg(λ),

Yn = T (Xn) − Xn (22)

Zn
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4
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)
, ∀Pj ∈ P

Xn+1 = (1 − μλ)Xn + μ(Yn − Zn).

• Total Variation (TV)
A possibility is to choose Total Variation(TV) for the reg-
ularization functional. In this case,

Λ(X) = TV (X) =
∫ √

|∇X |2dxdy (23)

and ∇TV (X) = −∇ · ( ∇X

|∇X |
)
. (24)

Hence, the RFDA corresponding to this regularization func-
tional becomes

Yn = T (Xn) − Xn (25)
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Xn+1 = Xn + μ(Yn − Zn) + μλ∇ · ( ∇Xn

|∇Xn|
)
.

• Hard Constrained
In some certain cases we may have the prior knowledge that
the encoded image lives in some closed and convex set Ψ
(typically a subset of the Hilbert space L2(R2)). For exam-
ple Ψ can be constructed based on certain smoothness or
energy boundedness constraint of the image. Assume that
Ψ is given and the projector on ProjΨ is easy to compute.
Then, the projected Landeweber algorithm can be applied
to estimate a minimizer of Gλ(X) in Equation 12 that lives
in Ψ (if it exists). In this case one can assume that

Λ(X) = ιΨ(X) ×∞, (26)

where ιΨ is the characteristic function on Ψ, and 0×∞ = 0.
Similar to use of SD now applying projected Landeweber
algorithm in the RFDA, we get the following algorithm to

estimate the solution of hard constrained case.

Yn = T (Xn) − Xn (27)
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Xn+1 = ProjΨ
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)
.

6 Application to Restoration of an Image
With an Incomplete Fractal Code

In [5] we introduced the problem of restoration of an im-
age with an incomplete fractal code, and used the method
of projection onto convex sets (POCS) to address this prob-
lem. Here we use the regularization approach introduced
above.

Assume that we are given an incomplete fractal code of
an image, i.e., some of the domain-range block assignments
and corresponding greyscale map coefficients are missing.
In such a case, the usual fractal decoding scheme, in which
an arbitrary “seed” image is employed, will collapse since
the range blocks of the image for which the fractal code
is missing cannot be modified. These blocks will simply
remain identical to the corresponding subblocks of the seed
image.

To illustrate, let us consider the fractal code associated
with the well-known Lena image (256 × 256 pixels, 8 bits
per pixel). Suppose that the fractal code corresponding to
all range blocks in the bottom quarter of the image are
missing. Using a black image as the seed, the limiting im-
age produced by the fractal decoding procedure is shown
in Figure 2(a). Only the domain blocks in the top-three-
quarter of the image have been modified – those in the
bottom quarter are identical to their counterparts in the
seed black image.

We now show how this situation can be improved using
the theory presented in this paper. We consider different
types of regularization functions discussed in this paper,
and apply the RFDA with a fixed small step size μ = 0.01
in all cases after mapping the image values to [0, 1]. For
the missing codes, i.e., for the range blocks Ci’s where the
corresponding domain PJ(i) and the coefficients αi and βi

are missing, we initially replace αi = 0 and βi = 0. Now
we use the RFDA to estimate the solution of this under-
determined problem.

First we set λ = 0 and use RFDA iterating from X0 =
0. This scheme will find the minimum norm least square
solution of the problem. The result is given in Figure 2(b).
It can be seen that the bottom quarter of the image which
was not changed at all by the traditional fractal decoding
in Figure 2(a) has been improved. The RFDA updates Zn

by
Zn

∣∣∣
Pj

=
∑
i∈Ωj

αi

4
U

(
Yn

∣∣∣
Ci

)
, ∀Pj ∈ P . (28)

This actually causes an alteration of domain blocks Pj that
are included in the missing range part, i.e., the bottom
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Figure 2. (a) Decoded as bottom quarter of the fractal
code is missing, black seed. (b) Proposed Minimum
norm least square solution using RFDA with λ =
0, μ = 0.01. (c) Proposed Hard-constrained RFDA
with smoothness constraint, μ = 0.01.

quarter of the image. Since some domain blocks used in
the fractal coding procedure come from that region, it is
possible that portions of the lower part of the image are
modified.

In Figure 2(c), we show the result obtained using the
RFDA in hard-constrained case, as explained in Section 5
Equation (27). The initial image was black, i.e., X0 = 0. Ψ
can be thought as the set of images with certain smooth-
ness, e.g, low-pass filtered in the frequency domain. In this
case, ProjΨ(X) the projection operator on Ψ smoothes the
input image X . Clearly, Figure 2(c) is an improvement over
the usual fractal coding method of Figure 2(a), although
some edges are smeared out as a result of the projection
ProjΨ.

Finally, in Figures 3(a,b,c) are shown the results obtained
by applying RFDA with total variation regularization as in
25, with λ = 0.1, 0.5 and 1, respectively. Needless to say,
more parameters are involved when implementing gradient
computation in the TV model. However, it is not the main
purpose of this paper to discuss these matters in detail.
This will be done elsewhere. It can be seen that the im-
portant edges are preserved using the TV model. It is a
noteworthy improvement over Figure 2(a) to preserve the
edges as well as to recover some missing information from
the bottom quarter of the image.

7 Conclusions

In this paper, we have described a reformulation of tradi-
tional fractal image decoding by regularization. The solu-
tion of the traditional fractal-based methods are too restric-
tive in the sense that no additional knowledge about the
image can be combined with self-similarity constraints to
improve the decoded image. This is based on the fact that
Banach’s contraction mapping theorem has been used as
a prescription for fractal-based decoding procedures. The
principal advantage of our framework is that it provides the
flexibility to incorporate constraints and possibly additional
knowledge about the reconstructed image.

We have improved this situation by viewing the fractal
transform operator as a linear operator, and modelling the
decoding procedure as a least-squares problem. We have
also improved the model by regularization. In addition, we
have applied the steepest descent algorithm to numerically
estimate the solution. This procedure produced the regu-
larized fractal decoding algorithm (RFDA).

We also introduced an explicit formulation to combine
fractal image decoding with a variety of regularization pro-
cedures, e.g., Tikhonov, total variation (TV), or hard-
constrained. A regularized decoding approach also provides
the opportunity of solving under-determined inverse prob-
lems in fractal coding, as we have shown for the case of the
incomplete fractal code problem. Since the RFDA allows
fractal coding to be employed along with any additional
knowledge about the image/signal, it still remains to de-
termine what type of regularizations could be used with
fractal-based coding to produce the most appealing results.
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Figure 3. (a) Proposed RFDA using using TV regular-
ization with λ = 0.1, μ = 0.01. (b) Proposed RFDA
using using TV regularization with λ = 0.5, μ = 0.01.
(c) Proposed RFDA using using TV regularization
with λ = 1, μ = 0.01.
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