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Abstract. In this paper we present a novel single-frame image zoom-
ing technique based on so-called “self-examples”. Our method combines
the ideas of fractal-based image zooming, example-based zooming, and
nonlocal-means image denoising in a consistent and improved framework.
In Bayesian terms, this example-based zooming technique targets the
MMSE estimate by learning the posterior directly from examples taken
from the image itself at a different scale, similar to fractal-based tech-
niques. The examples are weighted according to a scheme introduced by
Buades et al. to perform nonlocal-means image denoising. Finally, var-
ious computational issues are addressed and some results of this image
zooming method applied to natural images are presented.

1 Introduction

The idea of increasing the resolution of an image using its nonlocal self-similarities
was initially proposed by the researchers in fractal image coding back in the 1990s
– see, for example, [4, 17, 25, 27, 21]. In fractal image coding, one seeks to approx-
imate a target image by the fixed point of a contractive, resolution-independent
operator called the fractal transform. The essence of the fractal transform is to
approximate smaller range subblocks of an image with modified copies of larger
domain subblocks. Repeated action of the transform introduces finer details, im-
plying that its fixed point can increase the resolution of images to any arbitrary
degree. Because of the block coding involved in the construction of the fractal
transform, however, the results are blocky and, in many ways, artificial.

A more recent series of novel example-based methods that take advantage of
the self-similarity of images show great promise for the solution of various inverse
problems [6, 7, 9, 14, 32]. In [6, 7], the authors demonstrated that their nonlocal-
means (henceforth to be referred to as “NL-means”) image denoising algorithm
has the ability to outperform classical denoising methods. In this paper, we
generalize their method to address the zooming problem. Similar to NL-means
denoising, we compare neighborhoods in the image that will allow us to predict
pixel values that reproduce local patterns and textures. Our algorithm compares
the neighborhood information of each pixel to the neighborhoods of the same size
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in the coarser scale over the entire image. Due to the reconstruction scheme, our
results do not suffer from the blockiness generally inherent in fractal zooming.
Moreover, the geometry of objects is well preserved for the test images presented.

In Section 2, we introduce the problem of image zooming, and present a brief
introduction to the ideas of interpolation, regularization and classical inverse
theory techniques, and example-based methods. In Section 3, we review the
role of self-similarity in various inverse problems, namely fractal-based methods
and example-based approaches. We explain how our example-based approach in
this paper takes advantage of self-similarity across scales similar to fractal-based
methods. In Section 4, we introduce our method, and discuss some computational
issues in Section 5. Finally, some concluding remarks are presented in Section 6.

2 Some background on the inverse problem of image

zooming

In the characterization of a visual image, the term “resolution” can be confusing
since it involves a rather large number of competing terms and definitions. Spatial
resolution refers to the spacing of pixels in an image. Many imaging devices, such
as charged-coupled-device (CCD) cameras, consist of arrays of light detectors. A
detector determines pixel intensity values depending upon the amount of light
detected from its assigned area in the scene. The spatial resolution of images
produced by these types of devices is proportional to the density of the detector
array. In many applications, the imaging sensors have poor resolution output.

The process of producing a high-resolution image from a single lower-resolution
and distorted (e.g., blurred, noisy) image is called (single-frame) image zooming.

2.1 The inverse problem of image zooming

We consider the following degradation model [8, 15, 16]

u = Hf + n, (1)

in which u ∈ l2(Ω) is the low-resolution m × n-pixel observation, i.e.,

Ω = [1, . . . , m] × [1, . . . , n],

and n ∈ l2(Ω) is additive white, independent Gaussian noise with zero-mean
and variance σ2. f ∈ l2(Ψ) is the high-resolution image to be recovered such that

Ψ = [1, . . . , mz] × [1, . . . , nz],

where z is a positive integer. The operator H = SB is the composition of a
blurring operator B followed by a downsampling operator S of factor z in each
direction. More technically, in order to be consistent with the CCD-array model,
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we assume that the blurring operator B : l2(Ψ) → l2(Ψ) is the local averaging
operator of length z, i.e., for any (p, q) ∈ Ψ ,

(Bf)(p, q) =
1

z2

∑

0≤p1<z,0≤q1<z

f(p + p1, q + q1). (2)

Note that boundary conditions on f may be required so that B is well-defined.
Also, the downsampling operator S : l2(Ψ) → l2(Ω) is defined for any image
I ∈ l2(Ψ) such that for any (i, j) ∈ Ω,

(SI)(i, j) = I
(
(i − 1)z + 1, (j − 1)z + 1

)
. (3)

The problem of image zooming can be viewed as the recovery of an estimate
of f , denoted by f̃ , given the observation u and scaling factor z.

2.2 A brief introduction to various techniques

Image interpolation: The easiest and not necessarily most appealing ap-
proach to estimate f is to ignore the effect of noise n and the blurring operator B,
thereby assuming that u is provided by downsampling of f , i.e., u = Sf . In this
case, one could simply apply traditional interpolation algorithms on u to esti-
mate f , including nearest neighbor or pixel replication, bilinear, bicubic, spline, or
sinc interpolation. In general, the resizing of an image does not translate into an
increase in its resolution. Resizing should be accompanied by approximations to
frequencies higher than those present in the observation u as well as at a higher
signal-to-noise ratio. However some of these algorithms provide overly smoothed
results around edges and fine details. The application of sharpening operators
on these oversmoothed results does not usually recover the image details [8].

Regularization and classical inverse theory techniques: Single image
zooming cannot recover high-frequency components that are lost during the
low-resolution sampling process unless we include additional a priori information
about the image. This can be normally done by using regularization. Regulariza-
tion not only acts as an algebraic stabilizer in estimating the solutions of ill-posed
inverse problems, but it may also improve the solutions of well-posed problems.
Equivalently, in the Bayesian point of view, the probability density function
(PDF) of the image, serving as the prior p(f), plays the role of regularization.
The most trivial form of regularization, known as Tikhonov regularization [30]
that applies a uniform spatial smoothness on the outcome will over-smooth the
edges. According to [15]: “Much of the progress made in the past two decades
on inverse problems in image processing can be attributed to the advances in
forming or choosing the way to practice the regularization. This includes, the
regularization terms based on variational methods [29], edge-preserving regular-
ization terms formed using various partial differential equations (PDE) methods
[33], as well as sparsity of transform coefficients (e.g. wavelet) [11].” The effec-
tiveness of single-image zooming techniques is always limited to the prior used
in the reconstruction process.
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Example-based methods: A very attractive approach in solving imaging in-
verse problems is to exploit examples in defining the PDF of the image instead
of intuitively defining a regularization term. There are various ways to apply ex-
amples in inverse problems as comprehensively described in [15]: Examples can
be used either (a) directly in the reconstruction procedure [9, 14, 19, 20, 26, 32],
(b) in tuning the parameters of previously defined regularization expressions [23,
28, 35] or (c) in an alternating combination of these two methods [3, 10, 15, 19,
20]. The method described in this paper corresponds to making use of examples
directly in the reconstruction procedure, i.e., method (a).

3 The role of self-similarity in various inverse problems

3.1 Fractal-based methods

The original motivation of fractal coding was image compression [4, 25]. Most
methods rely upon the method of fractal block coding, where the subimage u|Ri

supported on a smaller range block Ri is approximated by a spatially contracted
and greyscale-modified copy of the subimage u|Dj supported on a larger domain
block Dj. (Of course, one has to search for such a domain block.) In this way,
fractal coding exploits the local (affine) self-similarity of image patches at two
different scales. Some variations and improvements of fractal coding include: vari-
able partitioning schemes [17], redundant representation and multiple-domain
methods [5, 34, 2], lapped approximations [24], and fractal coding on wavelet co-
efficient trees (IFSW) [18, 31]. More recently, the ability of fractal-coding scheme
to solve other inverse problems in imaging has been investigated. For example,
it has been observed that fractal-based methods have denoising capabilities [22,
1]. Also, due to the resolution independence nature of the fractal-transform op-
erator, interpolation algorithms called “fractal zoom” have been developed in
the literature [17, 21, 25, 27].

Some recent investigations [1, 2] have shown that images generally possess
a great deal of local (affine) self-similarity: Given a subimage u|Ri

there are
often a good number of domain blocks Dj whose subimages u|Dj

approximate
it as well as the “best” domain block. This feature, which never seems to have
been quantified previously, accounts for the rather small degradations that are
experienced when the size of the domain pools – the domain blocks Dj to be
examined – is decreased.

As mentioned earlier, however, the images produced by most fractal-based
methods, including “fractal zoom,” suffer from blockiness. Another major draw-
back of traditional fractal-based methods is that their output is quite restricted,
i.e., no prior knowledge, extra regularization method or tuning (regularization)
parameters can be combined with these methods. Recently, we have examined
various possibilities to address this problem in [12, 13]. In this paper, we shall
combine some of the ideas in the above works in a natural and complementary
fashion.
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3.2 Self-Similarity in various example-based approaches

In the work of [9, 14, 32] on texture synthesis, and inpainting (filling in holes),
examples are taken from the image itself.

Another important example-based approach, nonlocal-means (NL-means)
image denoising [6, 7] addresses the denoising problem using examples from the
noisy image itself at the same scale with a Gaussian-type weighting scheme.
The authors demonstrated that their algorithm has the ability to outperform
classical denoising methods, including Gaussian smoothing, Wiener filter, TV
filter, wavelet thresholding, and anisotropic diffusion. Since we shall generalize
this algorithm to address the zooming problem, it is necessary to review the
algorithm below.

NL-means image denoising [6, 7]: Consider the following image denoising
problem

u = f + n.

For any x ∈ Ω define the denoising formula

NL
(
u(x)

)
= f̃(x) =

1

C(x)

∑

y∈Ω

w(x, y)u(y), such that (4)

w(x, y) = exp
(
−

‖ u(N d{x}) − u(N d{y}) ‖
2

2,a

h2

)
, and (5)

C(x) =
∑

y∈Ω

w(x, y), (6)

where the expressions N d{. . .} and ‖ . ‖2
2,a are defined in the following way.

Neighborhoods: For any point in the domain of observation (i, j) ∈ Ω, define

N d
{
(i, j)

}
=

{
(i + i1, j + j1) | (i1, j1) ∈ Z

2, max{|i1|, |j1|} ≤ d
}

. (7)

Gaussian-semi-norm: For an image I the Gaussian-weighted-semi-norm ‖ . ‖2,a

is defined in terms of the l2 norm as

‖ I ‖2,a = ‖ Ga ⋆ I ‖2

in which Ga is a two-dimensional Gaussian kernel of standard deviation a.

The idea of the NL-means algorithm is that given a discrete noisy image u,
the estimated denoised value NL

(
u(x)

)
is computed as a weighted average of

all the pixels in the image, u(y), where the weights w(x, y) depend on the simi-
larity of neighborhoods of the pixels x and y, and w is a decreasing function of
the weighted Euclidean distance of the neighborhoods. The parameter h acts as a
degree of filtering. It controls decay of the exponential function and therefore the
decay of the weights as a function of the Euclidean distances.The NL-means not
only compares the grey level in a single point but the geometrical configuration
in a whole neighborhood [6, 7].
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3.3 From same-scale towards across-scale self-examples

The NL-means algorithm mentioned above [6, 7] along with the work reported in
[14] use self-examples, i.e., they take examples from the image itself. However, in
all cases, the examples are taken at the same scale. This clearly represents a major
difference between these example-based methods and fractal-based methods.

In the zooming algorithms proposed below, we take advantage of the rich-
ness of the NL-means algorithm (and thereby overcome the issue of blockiness)
yet remain consistent with fractal-based methods by comparing patches across
scales.

4 Image zooming algorithm using self-examples

In this section we introduce our notations, and then formulate a natural exten-
sion of the NL-means denoising method, to be denoted as Algorithm 1 below.
Our main algorithm (image zooming algorithm using self-examples) will be a
special case of Algorithm 1, in which the example image is precisely the input
image. This formulation will detect across-scale similarities.

Example image: The notion of example image is denoted by v ∈ l2(Φ), where Φ

is the k × l pixel lattice defined by

Φ = [1, . . . , k] × [1, . . . , l].

Lattice covers: Recall that

Ψ = [1, . . . , mz] × [1, . . . , nz]

is the lattice on which the high-resolution image f was defined. Let P be the
partition of the lattice Ψ composed of non-overlapping square blocks of size z×z.
Also, define Q to be the set of all z × z square blocks on the lattice Φ. We allow
the elements of Q to overlap, implying that Q does not necessarily form a par-
tition of Φ.

Lattice mapping: Let the mapping D : P → Ω be defined in the following way.
For any z × z block x ∈ P where

x =
{

(x1, x2) ∈ N
2 | ⌈

x1

z
⌉ = i, ⌈

x2

z
⌉ = j, for some fixed (i, j) ∈ Ω

}
,

define Dx = (i, j).

Extended z-neighborhoods: For any block y in example-image-cover y ∈ Q define

N d
z

{
y
}

=
{
(y1+i1, y2+i2) | (y1, y2) ∈ y, (i1, i2) ∈ Z

2, max{|i1|, |i2|} ≤ dz
}
. (8)

The following is a natural extension of the NL-means algorithm. In Bayesian
terms the algorithm is an MMSE estimation by learning the posterior directly
from the examples taken from an example-image v.
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Algorithm 1. An example-based zooming algorithm The approximation
of f , denoted by f̃ , given the observation u, using example image v, is computed
in the following way. For any x ∈ P ,

f̃(u,v,z,h,d,a)(x) =
1

C(x)

∑

y∈Q

w(x, y)v(y) (9)

where,

w(x, y) = exp
(
−

‖ u(N d{Dx}) −H
(
v(N d

z {y})
)
‖
2

2,a

h2

)
(10)

and,

C(x) =
∑

y∈Q

w(x, y). (11)

Proposition 1. NL-means image denoising is equivalent to Algorithm 1 for the
case that z = 1 and v = u, i.e.,

NL
(
u(x)

)
= f̃(u,u,1,h,d,a)(x). (12)

Proof. If z = 1 and v = u then Ω = Ψ = Φ = P = Q, Dx = x, and H becomes
the identity operator. Furthermore, in this case N d

1

{
y
}

= N d
{
y
}
. Substituting

the corresponding expressions in Algorithm 1 leads to the equivalent expression
of the NL-means algorithm.

The benefit of our notation and the introduction of Algorithm 1 above is
that a simple substitution, namely, v = u, will lead to our proposed technique
of “Image zooming using self-examples,” the main algorithm of this paper.

Algorithm 2. Image zooming using self-examples For a given observation
u and a zooming factor z apply Algorithm 1, using the observation in place of
the example image as well, i.e., v = u, and estimate f̃(u,u,z,h,d,a).

Again it can be observed that Algorithm 2 is a special case of Algorithm 1,
naturally by the constraint v = u, yet still an extension of the NL-means de-
noising if z = 1. Similar to NL-means denoising, the main algorithm, from a
Bayesian viewpoint, targets the MMSE estimate by learning the posterior di-
rectly from the examples taken from the image itself at a different scale. As
mentioned above, this is similar to fractal-based approaches.

5 Numerical considerations and results

5.1 Various numerical considerations

Several aspects should be carefully considered in the implementation of our al-
gorithm. It may be necessary to apply appropriate boundary conditions, for
example, when encountering neighborhoods that fall out of the image domain or
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applying the operator H on patches. In all of our experiments we have applied
symmetric boundary conditions. Furthermore, the adjustment of the parameter
h varies the degree of filtering in a manner quite similar to that of NL-means
denoising. A large h-value will blur the output result; a very small h-value will
amplify any image noise in the output.

It should also be noticed that if finite precision is employed in our computa-
tions, then if h is sufficiently small, then all weighting terms in Equation (10) will
be computed as zero. In other words, it is possible that for some x ∈ P and for
some small pre-chosen parameter h > 0 the weights are computed as w(x, y) = 0
for all values of y ∈ Q. Computationally, this is not an issue in the NL-means
image denoising because there is at least one patch – the neighborhood of x

itself – that makes the exponent equal to 1 regardless of the value of h > 0. We
can bypass this problem by defining w(x, y) = 1S(y), at the problematic points
x ∈ P , where 1S(y) denotes the indicator function of y over the set S defined as
follows,

S =

{
ys ∈ Q | ys = argmin

y

(
‖ u(N d{Dx}) −H

(
v(N d

z {y})
)
‖
2,a

)}
. (13)

This is equivalent to averaging over all v(y) for which y is a minimizer of the
similarity distance.

5.2 Computational results

In this section we present some results of our computational experiments. In all
experiments we have chosen a zoom factor z = 2, and 3 × 3 neighborhoods as
well as 6 × 6 extended-neighborhoods, i.e., d = 3. We also have chosen Ga = δ,
i.e., simply ignoring the effect of Gaussian smoothing. As well, we have varied
the parameter h with respect to each image individually.

Figure 1 indicates the result of an experiment of Algorithm 1 to show that
using irrelevant examples (middle column) may lead to irrelevant outputs (right
column). In Figure 2, we present the outputs of Algorithm 2 for a noiseless (top
left) and noisy (bottom left) image. It can be seen that the algorithm performs
denoising in parallel with zooming. For purposes of comparison, the results of
pixel replication and bilinear interpolation are also presented.

In rows 1 and 3 of Figure 3, we present the result of Algorithm 2 when applied
to a simple circular shape in both noiseless and noisy situations, respectively.
Below each of these rows are displayed the Fourier spectra of each image. In the
bottom two rows of Figure 3, we show the effect of Algorithm 2 on a Gaussian
white noise sample, along with corresponding Fourier spectra. The value of pa-
rameter h was set in a way that the variance of noise was three-quarter of the
variance of the input noise. However, the output is still noise-like, as opposed
to the results of bilinear and pixel replication. It can be seen that the Fourier
spectrum of the output is also distributed rather uniformly over the frequency
domain, as opposed to the pixel replication and bilinear interpolation cases.
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Fig. 1. Original, Example and the image reconstructed using Algorithm 1, h = 0.1 in
all three cases

Fig. 2. Original , Pixel replication, Bilinear, Self-examples. In the first row h = 0.05 is
applied while in the second row the standard deviation of noise σ = 0.1 and h = 0.15.
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Fig. 3. A comparison of the image zooming using self-examples, Algorithm 2, with
other methods of zooming. Three input images are considered: Circular region (row
1), noisy circular region (row 3) with the noise of standard deviation σ = 0.1, pure
noise image (row 5). The Fourier spectra of all images are also shown (rows 2,4 and
6). Starting at left: input image, zooming with pixel replication, zooming with bilinear
interpolation, zooming with Algorithm 2. In rows 1,3,5 the value of h in the experiment
are respectively 0.01, 0.5, and 0.05.
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6 Conclusions

In this paper we have presented a novel single-frame image zooming method of
self-examples, explaining how it combines the ideas of fractal-based image zoom-
ing, example-based zooming and nonlocal-means image denoising. Our frame-
work implicitly defines a regularization scheme which exploits the examples
taken from the image itself at a different scale in order to achieve image zoom-
ing. The method essentially extends the NL-means image denoising technique
to image zooming problem. Various computational issues and results were also
presented, showing that frequency domain extrapolation is in fact possible with
this method. The issue of parameter selection, e.g., the filter parameter h, is
an important issue which has not been addressed in sufficient detail this paper.
We are currently investigating adaptive parameter schemes that may be able to
achieve superior results.
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