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Abstract. We introduce a novel super-resolution scheme for multi-frame
image sequences. Our method is closely associated with the recently de-
veloped “non-local-means denoising filter”. In the proposed algorithm, no
explicit motion estimation is performed, unlike in many other methods.
Our results are comparable, if not superior, to many existing approaches,
especially in the case of low signal-to noise ratio.

1 Introduction

Naturally, there is always a demand for higher quality and higher resolution images.
The level of image detail is crucial for the performance of many computer vision algo-
rithms. Current imaging devices typically consist of arrays of light detectors. A detector
determines pixel intensity values depending upon the amount of light detected from its
assigned area in the scene. The spatial resolution of images produced is proportional
to the density of the detector array: the greater the number of pixels in the image,
the higher the spatial resolution. In many applications, however, the imaging sensors
have poor resolution output. When resolution can not be improved by replacing sen-
sors, either because of cost or hardware physical limits, one can resort to resolution
enhancement algorithms. Even when superior equipment is available, such algorithms
provide an inexpensive alternative.

The process of producing a high-resolution (HR) image given a single low-resolution
(LR) image is called single-frame image zooming. Re-sizing of the image does not
translate into an increase in resolution. In fact, re-sizing should be accompanied by
approximations to frequencies higher than those representable at original size, and at
a higher signal to noise ratio. Many interpolation methods tend to smoothen and blur
image detail as well as performing inefficiently in the presence of noise. Such recovery
is normally performed using a-priori information about the image. Another possibility
is to take advantage of information from several observations rather than from a single
image. The problem of recovering a high quality HR image from a set of distorted (e.g.,
warped, blurred, noisy) and LR images is known as super-resolution. Fusion of the
information from the observations is a fundamental challenge in the recovery process.
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2 Multi-frame super-resolution problem

2.1 The classical inverse problem

Formally, we review a general model for super-resolution widely used in the literature
[15, 8, 9, 5, 7]. Assume that the LR grid is

Ω = [1, . . . , M ]× [1, . . . , N ], (1)

and given the positive integer z the HR grid is defined as

Ψ = [1, . . . , Mz]× [1, . . . , Nz]. (2)

Forward model. We consider a forward degradation model that converts an ideal HR
image f to degraded LR frames ui,

ui = Hif + ni, 1 ≤ i ≤ k. (3)

Here, the operator Hi = SBWi is the composition of a warping operator Wi : l2(Ψ) →
l2(Ψ) which maps the HR grid coordinate to the LR grid, a blurring operator B :
l2(Ψ) → l2(Ψ), and a downsampling operator S : l2(Ψ) → l2(Ω) of factor z in each
direction. Also, ni ∈ l2(Ω) denotes additive white independent Gaussian noise with
zero-mean and variance σ2. The inverse problem of multi-frame super-resolution can
be stated as follows,

Invsere problem: Given a set of k LR observed frames {ui}i=1,...,k
∈ l2(Ω) of size

M ×N , reconstruct the HR image f ∈ l2(Ψ) of size Mz ×Nz.

Traditionally the equations in (3) are stacked to represent a large algebraic linear
equation u = Hf + n. The inverse problem corresponding to such system is typically
ill-posed, i.e., does not possess a unique solution that depends continuously on the
measurements. A great deal of research in the area of super-resolution in the past
decades has been focussed on defining effective regularization functionals to address
such ill-posed inverse problem.

2.2 A word on motion estimation

Accurate motion estimation has been a very important aspect of super-resolution
schemes. In the forward process, described in Equation (3), the motion parameters
are represented by Wi’s. In many existing super-resolution approaches, the motion is
computed directly from the LR frames, while many other super-resolution algorithms
unrealisticly assume that motion parameters are precisely known. In general, however,
accurate motion estimation of subpixel accuracy remains a fundamental challenge in
super-resolution reconstruction algorithms.

In our opinion, however, it seems reasonable to assume that the motion can be
relaxed from a strict grid mapping to a multi-pixel-pair intensity relation. In this
view, pixel-pairs in different frames may be relevant to each other with some measured
probability of confidence. In the method we propose below, instead of estimating the
motion vectors explicitly, a framework is provided in which such confidence measures
are evaluated and employed in the HR image reconstruction.
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3 Super-resolution with no explicit motion estimation

3.1 Changing the order of blur and warp to isolate blur

It is well known that the order of B and Wi may be changed in the case that blur is
linear spatially invariant. Hence, the equations may be written as

ui = SWiBf + ni, 1 ≤ i ≤ k. (4)

If we define v = Bf, then the measurements become

ui = SWiv + ni, 1 ≤ i ≤ k. (5)

In our algorithm, we simply focus on solving v, noting that any existing deblurring
algorithm can be applied to reconstruct f after we obtain a solution for v. In order to
reduce notation, we define vi = Wiv, so that the above equations become

ui = Svi + ni, 1 ≤ i ≤ k. (6)

Furthermore, in many multi-frame super-resolution algorithms it is customary to em-
ploy one of the LR frames as a reference frame. The algorithm proposed in the next
section provides an estimation of vi denoted by SR(vi) for any 1 ≤ i ≤ k.

3.2 HR reconstruction of the i-th frame given the j-th frame

In what follows, we let ûi denote the interpolation ui from Ω to Ψ yielded by some
standard technique, e.g., bilinear interpolation. Therefore, .̂ . . is a mapping from l2(Ω)
to l2(Ψ). Note that, the interpolation ûi provides an approximation of vi, i.e., vi ≈ ûi

for 1 ≤ i ≤ k. Here, however, we seek a superior approximation to vi, which will be
denoted as SR(vi).

The following scheme is inspired by the work on image and image-sequence denois-
ing in [2–4]. For any x ∈ Ψ , we evaluate the conditional expectation of SR(vi)(x) given
the observed LR image uj by

E[SR(vi)(x) | uj ] =
1

W (x, i, j)

∑
y∈Ψ

w(x, y, i, j)ûj(y), such that (7)

w(x, y, i, j) =

[
exp

(
−
‖ ûi(N d{x})− ûj(N d{y}) ‖2

2

h2

)]
, and (8)

W (x, i, j) =
∑
y∈Ψ

w(x, y, i, j), (9)

where N d{x} denotes a square neighborhood of length (2d + 1)× (2d + 1) centered at
x. The confidence measures mentioned earlier are expressed in terms of w(x, y, i, j)’s,
where W is a normalization factor. Note that in evaluation w(x, y, i, j) we have used
the interpolated copies of ui and uj , respectively denoted by ûi and ûj . Employing
such notion automatically takes into account translations of ui and uj by sub-pixel
accuracy. Also, h is a regularization parameter that can be adjusted to control the
smoothness of the output.
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3.3 HR reconstruction of the i-th frame given the whole image
sequence

Eventually, we evaluate the conditional expectation of SR(vi)(x) for any x ∈ Ψ , given
the information of all of the frames {uj} for 1 ≤ j ≤ k:

E[SR(vi)(x) | {uj}
1≤j≤k

] =
1

G(i)

∑
1≤j≤k

g(|i− j|)× E[SR(vi)(x) | uj ], (10)

G(i) =
∑

1≤j≤k

g(|i− j|), (11)

where g is a decaying function of |i− j|, and G is a normalization factor. The expres-
sion g(|i− j|) in this equation represents the temporal confidence on the expectations
computed for each of the various frames, j, which has been taken into account in recon-
structing the HR image SR(vi). In the experiments reported below, we have assumed
that each of the frames in hand are equally likely useful in producing the HR details of
the i-th frame. Hence, we have taken g to be a box-function of large enough support
which yields g(|i− j|) = 1. As a result,

E[SR(vi)(x) | {uj}
1≤j≤k

] =
1

k

∑
1≤j≤k

E[SR(vi)(x) | uj ]. (12)

4 Computational experiments

As in the case of the NL-means denoising algorithm, the algorithm described above is
computationally intensive. The major computational burden exists in the complexity
of computing the weights w(x, y, i, j). A primary scheme to overcome this complexity,
introduced in [2–4], is to restrict the search window by restricting y ∈ Ψ ∩N r{x} i.e.,
y lies in a square neighborhood of x with size (2r + 1) × (2r + 1), as opposed to the
entire field of Ω.

Figure 1 shows the result of evaluating E[SR(vi)(x) | {uj}
1≤j≤k

], on an im-

age sequence taken from the data-set library of MDSP at U. California Santa Cruz
(http://www.soe.ucsc.edu/ milanfar/software/sr-datasets.html),
originally obtained from the Adyoron Intelligent Systems Ltd., Tel Aviv, Israel. We
have taken the first 20 frames, i.e., k = 20, of size 32 × 32 from this sequence, i.e.,
M = N = 32, and have added independent additive white Gaussian noise of standard
deviation σ = 0.05 to the data set. Figure 1(a) shows the result of applying nearest
neighborhood interpolation on the second frame of this sequence, i.e., when i = 2 for a
zooming factor of z = 3. In Figure 1(b), the result of bilinear interpolation on the same
frame is shown. We have plotted the result of E[SR(v2)(x) | {uj}

1≤j≤20
] in Figure

1(c). In this experiment, we have taken d = 4 (corresponding to a neighborhood of size
9 × 9), a restricted search window of radius r = 13, a zooming factor of z = 3, and a
smoothness parameter h = 0.08.

5 Conclusions

In this paper, we have introduced a novel multi-frame super-resolution technique which
does not require explicit motion estimation. Our algorithm was inspired by the non-
local-means denoising algorithms introduced in [2–4]. The computational burden of
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(a) Nearest neighbor interpolation

(b) Bilinear interpolation

(c) Proposed multi-frame super-resolution

Fig. 1. Experimental results: (a) Nearest neighborhood interpolation, (b) Bilinear in-
terpolation, (c) Proposed algorithm with the following parameters: The original image
sequence is of size 32 × 32, i.e., M = N = 32, of a k = 20 frames sequence. The
HR counterpart of second frame, i.e., i = 2 is desired. Additive white Gaussian noise
of σ = 0.05 is added. Neighborhood of radius d = 4, search window radius r = 13,
zooming parameter z = 3, and smoothness parameter h = 0.08.
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the scheme is a formidable challenge, which precludes any iteration scheme to im-
prove the results. Since there are many parameters in our algorithms, it seems that a
fair comparison with other super-resolution algorithms cannot be made. As a result,
no comparisons were presented in this paper. That being said, experiments with a
number of sets of parameters suggest that our algorithm yields results which are quite
comparable if not superior to some of the algorithms in [8, 9] especially when the image
sequence is of very low signal-to-noise ratio.

Acknowledgments

This research has been supported in part by the Natural Sciences and Engineering
Research Council of Canada, in the form of a Discovery Grant (ERV). ME has been
supported primarily by an Ontario Graduate Scholarship.

References

1. S. Borman, Topics in multiframe superresolution restoration, PhD thesis, Graduate
Program in Electrical Engineering, University of Notre Dame, Indiana, April 2004.

2. A. Buades, B. Coll, and J.M. Morel, A nonlocal algorithm for image denoising, IEEE
International conference on Computer Vision and Pattern Recognition (CVPR), Vol.
2, pp. 6065, San-Diego, California, June 20-25, 2005.

3. A. Buades, B. Coll, and J.M. Morel, A review of image denoising algorithms, with
a new one, SIAM Journal on Multiscale Modeling and Simulation (MMS), Vol. 4,
No. 2, pp. 490-530, 2005.

4. A. Buades, B. Coll, J.M. Morel, Denoising image sequences does not require motion
estimation IEEE Conference on Advanced Video and Signal Based Surveillance,
2005, pp. 70-74

5. S. Chaudhuri, Super-resolution imaging, Boston, MA, Kluwer, 2001.
6. M. Ebrahimi and E.R. Vrscay, Solving the Inverse Problem of Image Zooming us-

ing Self-Examples, Lecture Notes in Computer Science, Volume 4633, Book: Image
analysis and Recognition, pp. 117-130, Springer Berlin / Heidelberg, 2007.

7. M. Elad and A. Feuer. Restoration of a single superresolution image from several
blurred, noisy, and undersampled measured images, IEEE Trans. on Image Process-
ing, vol. 6, no. 12, pp. 1646-1658, 1997.

8. S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, Advances and Challenges in Super-
Resolution, International Journal of Imaging Systems and Technology, August 2004,
Volume 14, no 2, pp. 47-57.

9. S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, Fast and Robust Multi-Frame
Super-Resolution, IEEE Transactions on Image Processing, October 2004, Volume
13, no 10, pp. 1327- 1344.

10. W.T. Freeman, T.R. Jones, and E.C. Pasztor, Example-based super-resolution,
IEEE Comp. Graphics And Appl., Vol. 22, No. 2, pp. 56-65, 2002.

11. R. Hardie, K. Barnard, and E. Armstrong. Joint MAP registration and high-
resolution image estimation using a sequence of undersampled images, IEEE Trans.
on Image Processing, vol. 6, no 12, pp. 1621-1633, December 1997.

12. M. Irani and S. Peleg, Improving resolution by image registration, CVGIP: Graph.
Models Image Processing, vol. 53, pp. 324-335, December 1993.

13. IEEE signal processing magazine, Special issue on super-resolution image recon-
struction, vol. 20, no. 3, pp. 19-86, May 2003.



Multi-frame super-resolution with no explicit motion estimation 7

14. S. Mallat, A wavelet tour of signal processing, San Diego, CA: Academic, 1998.
15. N. X. Nguyen, Numerical algorithms for image superresolution, PhD thesis, Grad-

uate Program in scientific computation and computational mathematics, Stanford
University, July 2000.

16. R. Schultz and R. Stevenson. Extraction of high-resolution frames from video se-
quences, IEEE Trans. on Image Processing, vol. 5, pp. 996-1011, June 1996.

17. A. Tekalp, M. Ozkan and M. Sezan. High-resolution image reconstruction from
lower-resolution image sequences and space-varying image restoration, Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal Processing,
vol. III, pp. 169-172, San Francisco, CA, 1992.

18. R. Tsai and T. Huang. Multi-frame image restoration and registration, In Advances
in Computer Vision and Image Processing, vol. 1, Greenwich, CT, 1984.

19. H. Ur and D. Gross. Improved resolution from subpixel shifted pictures, CVGIP:
Graphical Models and Image Processing, vol. 54, no. 2, pp. 181-186, March 1992.

20. S.C. Zhu and D. Mumford, Prior learning and Gibbs reaction-diffusion, IEEE
Trans. on Patt. Analysis and Machine Intel., Vol. 19, No. 11, pp. 1236-1250, 1997.


