Does time since colonization influence isolation by distance? A meta-analysis

E. Crispo* & A. P. Hendry

Redpath Museum and Department of Biology, McGill University, 859 Sherbrooke Street West, Montréal, Québec, Canada, H3A 2K6, (*Corresponding author: Phone: +1-514-398-4086, Ext.-00714; Fax: +1-514-398-3185; E-mail: erika.crispo@mail.mcgill.ca)

Received 9 September 2004; accepted 7 December 2004

Key words: dispersal, gene flow, glaciation, migration, equilibrium

Abstract

Isolation by distance (IBD) is a phenomenon characterized by increasing genetic divergence and decreasing gene flow with increasing geographic distance. IBD is often used in conservation biology to infer the extent of gene flow among populations. An assumption inherent to this approach is equilibrium between genetic drift and gene flow, which may take thousands of years to achieve. This implies that empirical IBD studies of recently colonized areas, such as postglacial systems, should be concerned with whether or not equilibrium has been reached. Short of equilibrium, IBD should increase with the length of time since a geographical area was colonized. We test the prediction that IBD increases with increasing time since colonization through a meta-analysis based on a diverse range of empirical systems. P and r^2 values from published IBD studies were analyzed with respect to time since colonization (in generations and years), taking into account variation in sample sizes, molecular markers, divergence metrics (genetic distance, F_{st} , Nm), and dispersal patterns (one or two dimensional). Overall, we found weak evidence for associations between time since colonization and IBD. Sample sizes, molecular markers, divergence metrics, and dispersal patterns did not appreciably influence IBD. We propose that the expected relationship between IBD and time since colonization is obscured by the influence of other factors, such as dispersal ability, geographical barriers, and proximity to glacial refugia. The possible effects of time since colonization should continue to be evaluated in empirical studies, but other potential factors should also be thoroughly explored.

Introduction

Wright (1943) coined the term "isolation by distance" (IBD) in reference to increasing genetic differences among populations separated by increasing geographic distances. IBD theory has since been substantially refined and used to develop methods for inferring gene flow among natural populations (e.g., Wright 1946; Kimura and Weiss 1964; Maruyama 1971; Nagylaki 1976; Slatkin 1993; Rousset 1997). Currently popular empirical applications employ pair-wise comparisons among populations to test for positive relationships between genetic divergence and geographic distance (e.g., Rousset 1997) or negative relationships between gene flow and geographic distance (e.g., Slatkin 1993). These methods are frequently used in conservation biology to infer the extent of gene flow among populations. For example, an absence of IBD is commonly interpreted to mean that gene flow is very high over large distances (e.g., Seppä and Laurila 1999) or very low, even over short distances (e.g., Gold et al. 1999; Kark et al. 1999; Koljonen et al. 1999; McLean et al. 1999; Shaffer et al. 2000; Caizergues et al. 2001; de Innocentiis et al. 2001; Costello et al. 2003; Olsen et al. 2003). Such conclusions might then be used by managers to make decisions about which populations should be considered distinct (and therefore eligible for protection), and whether or not gene flow should be artificially manipulated. However, inferring gene flow from IBD depends critically on several assumptions inherent in the application of IBD theory to natural systems. We here assess whether empirical biologists need to be concerned about one of these assumptions: equilibrium between genetic drift and gene flow.

IBD should reflect a balance between genetic drift and gene flow, with the former increasing and the latter decreasing genetic divergence (Hutchison and Templeton 1999). Moreover, IBD should be maximal at equilibrium between genetic drift and gene flow, which may take a considerable length of time to develop. Slatkin (1993) explored a "radiation model", wherein a single ancestral population gives rise to all descendent populations at time τ in the past. He found that when τ is small (radiation is recent), only nearby populations will show a signature of IBD. For example, populations more than 10 steps away from each other (i.e., 10 intervening populations) will only exhibit IBD after 10N generations, where N is the number of individuals in each population. If N = 1000, populations more than 10 steps away from each other should therefore fail to manifest IBD, even after 10,000 generations. Empirical studies of IBD often survey widely separated populations which may thus lead to considerable bias in gene flow estimation if equilibrium has not been reached.

Acknowledging the possibility of non-equilibrium conditions generates several testable predictions. First, the relationship between pair-wise gene flow (*Nm*) and pair-wise geographic distance should become more negative with increasing time since colonization (Slatkin 1993). Second, the relationship between pair-wise genetic divergence and pair-wise geographic distance should become more positive with increasing time since colonization. Individual empirical studies can be cited in support of these predictions: IBD is often found in long-established populations but is sometimes lacking in recently established populations (e.g., Rafiński and Babik 2000; Knutsen et al. 2001; Castric and Bernatchez 2003; Costello et al. 2003). Exceptions do, however, occur (e.g., Green et al. 1996; Kinnison et al. 2002). Individual studies thus do not allow general conclusions about the role of non-equilibrium conditions on IBD. Thus, we here aim to detect general patterns of decreasing IBD with increasing time since colonization, through a metaanalysis of IBD in vertebrates. Specifically, we ask whether the strength and significance of IBD relationships is affected by the time since colonization.

The amount of elapsed evolutionary time since the colonization of a particular geographical area should be positively correlated with the number of years since the area became habitable and negatively correlated with the generation length of the colonizing species. For most species in temperate regions, the number of years since an area became habitable can be determined by the last retreat of continental glaciers. During the height of the Pleistocene glaciation (20,000 to 18,000 years ago), ice covered most of northern North America and northern Europe (Hewitt 1993, 1996, 1999, 2000). Populations now found in areas that were formerly covered by ice must have colonized these areas after the glacial retreat (Hewitt 1993). These populations may not have reached equilibrium between drift and gene flow. If so, IBD should increase with an increase in the number of years since the most recent retreat of ice sheets. IBD in these areas should also be influenced by generation lengths because species with shorter generations experience more evolutionary time for a given number of years.

Here we test whether the strength and significance of IBD relationships (geographic distance versus genetic divergence or gene flow) are positively correlated with time since colonization, measured in years or generations. Specifically, P values (significance) associated with IBD relationships should decrease and r^2 values (strength) should increase as time since colonization increases. Any influence of time on IBD might be moderated by other factors. We therefore also consider possible effects of taxonomic group, pattern of dispersal, molecular marker type, and the genetic divergence metric used for IBD analyses. Our results will indicate whether concerns about equilibrium conditions should be paramount when interpreting IBD trends.

Methods

Data collection

Our analyses were based on published studies that examined IBD in 66 vertebrate species (see Appendix A). The studies were obtained by searching online databases: BIOSIS Previews, CAB Abstracts, Current Contents, Wilson Biological and Agricultural Index, and Wilson General Science Abstracts. Relevant studies were included in our database if they met several criteria. First, we used only the most recent article on any particular species, thus reducing pseudoreplication. Second, we excluded studies for which physical barriers clearly influenced gene flow. Third, we excluded studies wherein IBD results were reported for only a subset of the surveyed populations, thus avoiding situations where IBD analyses were based on *post hoc* criteria. When IBD statistics were reported for multiple subsets of loci within a single paper, we always selected those based on the maximum number of loci. All but one of the studies focused on systems established through natural colonization, with the exception involving an introduction by humans (rabbit, Oryctolagus cuniculus; Fuller et al. 1996). Inclusion or exclusion of this study did not influence our conclusions.

Whether individuals disperse in one dimension (e.g., fish along a river or coast) or two dimensions (e.g., birds across a landscape) should theoretically influence IBD (Maruyama 1970, 1971; Slatkin and Maddison 1990; Slatkin 1991, 1993; Rousset 1997). For each study, we therefore recorded the primary dispersal pattern (one or two dimensional), along with taxonomic group (mammals, birds, fish, reptiles, and amphibians), molecular marker type (microsatellite, allozyme, mitochondrial DNA), and divergence metric (gene flow, including Nm and transformations; F_{st} , including $R_{\rm st}$ and transformations; genetic distance). Dispersal pattern and taxonomic group were partially confounded and gave similar results, but dispersal pattern had more power because it had fewer groups and more data points per group. We therefore do not further consider the role of taxomonic group. We next recorded P and r^2 values for IBD relationships, which reflect their significance and strength, respectively. P values were typically from Mantel (1967) tests, but were sometimes from regression analyses. Our analyses were based on P and r^2 values rather than slopes and intercepts because analysis methods varied among studies and because slopes and intercepts were often not reported. This decision greatly increased our sample sizes. Moreover, r^2 values are directly related to regression slopes: r is the correlation coefficient, which is the regression slope multiplied by the ratio of the standard deviations of the two variables (Sokal and Rohlf 1995, p. 566).

Specific *P* and r^2 values were chosen from each study according to the following criteria. First, if results based on more than one marker type or divergence metric were reported separately, we randomly chose (coin toss) values for one of the markers/metrics. If values were reported for more than one year, we calculated the average. When recording *P* values, we ignored "greater than" and "less than" signs (e.g., if P < 0.01 was reported, we used P=0.01). The exception was P > 0.05, in which case we excluded the values from our database. One *P* value was reported as 0.1 >P > 0.05 (King and Lawson 2001), for which we used the mid-point (P=0.075).

For each study, time since colonization of the geographical area was recorded in years and generations. If years since colonization were explicitly stated in the paper from which the IBD data were obtained, we used that value. Failing this, we estimated years since colonization based on a minimum number of other sources (see Appendix A), thus reducing potential error caused by different dating methods. In most cases, years since colonization were the number of years since the most recent glacial retreat. For the single introduction by humans, we used the introduction date. If different populations in a single study had different colonization times, we used the average. In some cases, the geographical area had clearly been colonized long ago but the specific time was not known. For these, we simply used 20,000 years because equilibrium was likely to have been reached in a shorter time. The number of generations since colonization was estimated as the number of years divided by the generation length of the species in question, the latter obtained by personal communication from the authors or from other literature sources (see Appendix A).

Statistical analyses

We tested for associations between IBD (P and r^2 values) and time since colonization (years and generations) using two statistical methods: ANCOVA (to account for variation attributable to factors other than time) and weighted linear regression (to account for variation in sample sizes). ANCOVAs were performed in SPSS (version 11.0) and included time since colonization (covariate), dispersal pattern (fixed effect), molecular marker type (fixed effect), and divergence metric (fixed effect). We also considered secondorder interactions between these fixed effect factors. For all ANCOVAs, P values were logit transformed $(\ln[y/(1-y)])$ and r^2 values were arcsine square-root transformed, which improved normality and linearity.

Weighted linear regressions were performed in MetaWin (version 2.1; Rosenberg et al. 2000), which converts test statistics to correlation coefficients weighted by their sampling variances: variance = 1/(n-3), where n is the sample size within a study. As a result, studies with larger sample sizes (lower variances) are given greater weight. We used untransformed P and r^2 values for regressions because MetaWin analyzes proportions. For each combination of test statistic (P or r^2) and time metric (years or generations), we performed fixedeffect regressions based on three different weighting schemes: the number of populations per study, the total number of individuals per study, and the number of loci per study (studies that used mtDNA were excluded when weightings were based on the number of loci). Significance levels were obtained using 999 iterations in randomization tests. This is the preferred method because our data were not normally distributed and were obtained opportunistically rather than randomly (Quinn and Keough 2002, p. 46). MetaWin does not allow multiple predictor variables and thus cannot be used to simultaneously examine the effects of other factors, as in our ANCOVAs.

We performed all analyses on three different subsets of the data. The first included all studies in the database. The second included the entire database except for two extreme outliers, the yellow pygmy rice rat (*Oligoryzomys flavescence*; Chiappero et al. 1997) and the rice rat (*Oryzomys capito*; Patton et al. 1996), both of which had very high *P* values despite long times since colonization. The third dataset included only studies of systems colonized less than 20,000 years ago. The reason for using this last dataset is that we could not accurately estimate the time since colonization for populations not influenced by the last ice age, which may confound our results if a longer time is required for genetic equilibrium to be reached.

Meta-analyses should test for publication bias. In general, papers with non-significant results may be less likely to be submitted or accepted than papers with significant results (Jennions and Møller 2002). In our case, this might lead to a bias because IBD studies that examined recently colonized populations may be less likely to be published, if they show less IBD as predicted. This publication bias, if present, should be reflected in *P* values that increase and r^2 values that decrease with increasing sample size (Jennions and Møller 2002). We used Spearman rank order correlations (SPSS version 11.0) to examine our database for these signatures of publication bias. We performed three analyses for each test statistic, one using the number of populations per study, one using the total number of individuals per study, and one using the number of loci per study.

Results

P values

ANCOVA found no significant relationship between P values and time since colonization (in years or generations) (Table 1; Figure 1). AN-COVA also did not detect any effects of dispersal pattern, marker type, or divergence metric, nor were any interactions among these factors significant (Table 1). Regressions weighted by the number of individuals or the number of loci did not, with a single exception, detect a significant relationship between P values and time since colonization (Table 2). The exception was a signifinegative correlation for years since cant colonization in systems less than 20,000 years old when the number of individuals was used for weighting (P=0.005;Table 2). Regressions weighted by the number of populations detected a significant negative correlation for all datasets when considering years since colonization but not generations since colonization (albeit only

Variable	df	Time = years	Time = generations
All studies			
Time	1	0.177	0.323
Marker type	2	0.507	0.868
Divergence metric	2	0.449	0.463
Dispersal pattern	1	0.504	0.931
Marker*metric	4	0.277	0.169
Marker*dispersal	2	0.377	0.204
Metric*dispersal	2	0.857	0.415
Outliers removed			
Time	1	0.629	0.091
Marker type	2	0.567	0.685
Divergence metric	2	0.254	0.359
Dispersal pattern	1	0.719	0.954
Marker*metric	4	0.111	0.141
Marker*dispersal	2	0.247	0.181
Metric*dispersal	2	0.926	0.550
< 20,000 years			
Time	1	0.896	0.524
Marker type	2	0.271	0.229
Divergence metric	2	0.318	0.161
Dispersal pattern	1	0.388	0.357
Marker*metric	3	0.139	0.067
Marker*dispersal	0	n/a	n/a
Metric*dispersal	1	0.457	0.666

Table 1. P values from ANCOVAs assessing the relationship between IBD *P* values and time since colonization, molecular marker type, divergence metric, and dispersal pattern

Results are presented for all studies, all studies minus two outliers, and the studies of systems colonized less than 20,000 years ago.

marginally significant for populations colonized less than 20,000 years ago (P = 0.059); Table 2).

r^2 values

ANCOVA found only marginally positive correlations between r^2 values and years since colonization for all datasets (Table 3; Figure 2). There were no significant relationships between r^2 values and generations since colonization when all studies, and all studies minus two outliers, were considered, but there was a significant positive relationship between these variables when only systems colonized less than 20,000 years ago were considered (P=0.041; Table 3; Figure 2). AN-COVA found no effects of dispersal pattern, marker type, or divergence metric, nor were any interactions apparent (Table 3). Weighted regressions found no significant relationship between r^2 values and time since colonization for all datasets and weighting methods (Table 4).

Publication bias

P values were not correlated with the number of individuals sampled when all studies were included ($r_s = -0.010$, P = 0.937, n = 61), nor when the two outliers were removed $(r_s = 0.053,$ P = 0.691, n = 59). Similarly, P values were not correlated with the number of loci when all studies were included $(r_s = 0.063, P = 0.672,$ n = 48) nor when the two outliers were removed $(r_s = 0.013, P = 0.933, n = 47)$. In contrast, P values decreased with increasing numbers of popuall studies were included lations when $(r_s = -0.339, P = 0.008, n = 61)$ and when the two outliers were removed ($r_s = -0.320$, P = 0.014, n = 59), a result opposite to that expected if a publication bias was present. r^2 values were not correlated with the total number of individuals $(r_{\rm s} = 0.044, P = 0.777, n = 44)$, the number of populations ($r_s = 0.168$, P = 0.277, n = 44), nor the number of loci $(r_s = -0.059, P = 0.747, n = 32)$. These results suggest that a publication bias was not present in our database.

Discussion

Contrary to theory (Slatkin 1993), our analyses found that time since colonization did not appreciably influence IBD. Most of the apparent exceptions to this generalization were only marginally significant, and visual inspection of the data revealed very low explanatory power (Figures 1, 2). Indeed, studies of populations colonized recently varied from very strong IBD to very weak IBD (Figures 1, 2). Studies of populations colonized more than 20,000 years ago also varied dramatically, although very weak IBD was perhaps less frequent. We conclude that time since colonization had weak (if any) effects on IBD in this broad-brush meta-analysis.

Also contrary to theory (Slatkin 1993; Rousset 1997), dispersal pattern (one or two dimensional) did not influence IBD. Dispersal in one dimension occurs when populations are arranged in a linear fashion, whereas dispersal in two dimensions occurs when populations are arranged in a radial

Figure 1. Relationships between time since colonization and P values of isolation by distance (IBD). The left-hand panels show results with respect to *years* since colonization: with all studies included (a), and with only studies of systems colonized less than 20,000 years ago (b). The right-hand panels show results with respect to *generations* since colonization: with all studies included (c), and with only studies of systems colonized less than 20,000 years ago (d). Black circles indicate one dimensional dispersal, open circles indicate two dimensional dispersal.

Table 2.	Р	values	from	weighted	regressions	assessing	the
relationsl	nip	betwee	n IBD	P values	and time sin	ice coloniza	tion

Sample size	n	Time = years	Time = generations
All studies			
Populations	61	0.013	0.863
Individuals	61	0.943	0.969
Loci	45	0.355	0.577
Excluding outl	iers		
Populations	59	0.015	0.942
Individuals	59	0.966	0.991
Loci	44	0.475	0.970
< 20,000 years	5		
Populations	30	0.059	0.785
Individuals	30	0.005	0.485
Loci	24	0.585	0.982

Weighting was based on the number of populations, the total number of sampled individuals, and the number of loci. Significance levels were calculated using randomization. Results are presented for all studies, all studies minus two outliers, and the studies of systems colonized less than 20,000 years ago. pattern or across a surface. Theoretical models suggest that IBD should be more pronounced in the former case than in the latter (Slatkin and Maddison 1990; Slatkin 1991, 1993). Taking this prediction literally, IBD slopes in empirical studies have been used to infer whether dispersal is one or two dimensional (e.g., Baer 1998; Gavin et al. 1999; Koljonen et al. 1999; Shaffer et al. 2000; Baker et al. 2001; Hundertmark et al. 2003). Despite theoretical expectations, however, the effect of dispersal pattern on IBD has not been tested empirically. Our failure to find such an effect suggests that it is obscured by confounding factors, such as dispersal ability stemming from physical barriers or behavioral traits. For example, Peterson and Denno (1998) have shown that dispersal ability, regardless of dispersal pattern, influences IBD in at least some taxa.

One possible reason for our failure to detect an increase in IBD with time since colonization is that

Variable	df	Time = vears	Time = generations
		<i>J</i>	8
All studies			
Time	1	0.063	0.605
Marker type	2	0.101	0.262
Divergence metric	2	0.546	0.254
Dispersal pattern	1	0.528	0.782
Marker*metric	3	0.247	0.344
Marker*dispersal	2	0.947	0.898
Metric*dispersal	1	0.610	0.935
Excluding outliers			
Time	1	0.055	0.977
Marker type	2	0.128	0.303
Divergence metric	2	0.357	0.241
Dispersal pattern	1	0.694	0.858
Marker*metric	3	0.232	0.346
Marker*dispersal	2	0.914	0.909
Metric*dispersal	1	0.720	0.869
< 20,000 years			
Time	1	0.045	0.041
Marker type	2	0.091	0.091
Divergence metric	2	0.471	0.516
Dispersal pattern	1	0.276	0.813
Marker*metric	2	0.231	0.206
Marker*dispersal	0	n/a	n/a
Metric*dispersal	0	n/a	n/a

Table 3. P values from ANCOVAs assessing the relationship between IBD r^2 and time since colonization values, molecular marker type, divergence metric, and dispersal pattern

Results are presented for all studies, all studies minus two outliers, and the studies of systems colonized less than 20,000 years ago.

equilibrium between gene flow and genetic drift had been reached on shorter than expected time scales. Returning to theory (Slatkin 1993), small population sizes and few intervening populations should speed the rate at which IBD is achieved – perhaps the studies in our database were characterized by these properties. We cannot directly assess these possibilities because studies of IBD generally do not report population sizes or the number of populations separating those surveyed. Regardless, our results suggest that caution is necessary when inferring that populations are unlikely to display IBD solely because they have been colonized after the ice age.

Another alternative is that time since colonization does indeed influence IBD but that its effects are masked by other factors not controlled for in a broad-brush meta-analysis such as ours. These factors might include barriers to dispersal, variation in dispersal ability, glaciation patterns, and distances among populations. First, barriers to dispersal, and hence gene flow, are likely to disrupt IBD (e.g., Pfau et al. 2001; Taylor et al. 2003). Although we excluded studies with obvious barriers, undocumented partial barriers may still influence gene flow. Second, dispersal abilities vary among species and are known to influence IBD in at least some taxa, with lower levels of IBD observed in species with either very high or very low dispersal (Peterson and Denno 1998). Third, the historic distribution of glacial refugia and colonization routes (Castric et al. 2001; Castric and Bernatchez 2003; Costello et al. 2003), as well as patterns of ice sheet expansion and contraction (Rowe et al. 2004) should influence IBD. Unfortunately, these factors are poorly known and difficult to quantify. Fourth, the maximum geographic distance between populations may influence IBD because this influences dispersal. An additional factor, not usually considered, is that ecological gradients may cause barriers to gene flow that do not correlate obviously with any sort of physical barrier (e.g., Smith et al. 1997; Ogden and Thorpe 2002). Finally, errors in the estimation of parameters used (e.g., time since deglaciation, generation length, dispersal pattern) could also have influenced our results.

Many authors consider one or more of the above factors when interpreting IBD in their study systems. When IBD is not found, authors most often consider the effects of barriers to dispersal, either physical (e.g., Piertney et al. 1998; Barber 1999; Gavin et al. 1999; Gold et al. 1999; van Hooft et al. 2000; Castric et al. 2001; Pfau et al. 2001; Burton et al. 2002; Lugon-Moulin and Hausser 2002; Costello et al. 2003) or behavioral (e.g., Gold et al. 1999; Goossens et al. 2001; Ellis et al. 2002). If no such barriers appear likely, some authors conclude that populations not exhibiting IBD have been too recently colonized or have been influenced by Pleistocene glaciers (e.g., Patton et al. 1996; Chiappero et al. 1997; Holder et al. 2000; Rafiński and Babik 2000). Other factors sometimes taken into consideration include dispersal ability (e.g., Chiappero et al. 1997; King and Lawson 2001), effective population sizes (e.g., Baer 1998; Turgeon and Bernatchez 2001), colonization routes (e.g., McLean et al. 1999;

Figure 2. Relationships between time since colonization and r^2 values of isolation by distance (IBD). See the caption for Figure 1 for more details.

Table 4.	Р	values	from	W	eighted	reg	gressio	ons a	assessing	the
relationsh	ip	betwee	n IBD	r^2	values	and	time	since	coloniza	tion

Sample size	n	Time = years	Time = generations
All studies			
Populations	44	0.872	0.066
Individuals	44	0.403	0.173
Loci	30	0.332	0.122
Excluding outliers			
Populations	42	0.921	0.237
Individuals	42	0.430	0.190
Loci	29	0.388	0.184
<20,000 years			
Populations	22	0.841	0.167
Individuals	22	0.623	0.328
Loci	17	0.947	0.077

Weighting was based on the number of populations, the total number of sampled individuals, and the number of loci. Significance levels were calculated using randomization. Results are presented for all studies, all studies minus two outliers, and the studies of systems colonized less than 20,000 years ago. Lugon-Moulin and Hausser 2002; Costello et al. 2003; Hundertmark et al. 2003), and scaling effects (e.g., maximum geographic distance among populations; Planes et al. 1996; Lougheed et al. 1999; Mossman and Waser 2001). In summary, many factors have the potential to influence IBD. Whether or not these factors are important and general in their effects, however, requires further study. We suggest that *all* of these factors, in addition to time since colonization, be considered when making management decisions based on IBD patterns.

In conclusion, time since colonization may influence the ability of populations to reach equilibrium between gene flow and genetic drift, and hence manifest IBD. However, any such effects appear weak in the context of other factors that might influence IBD. We conclude that the effects of time since colonization are likely contextdependent, and suggest that researchers continue to evaluate the possible influence of time, but also take a more comprehensive approach to the consideration of other factors. A lack of IBD may indeed reflect limited gene flow in a conservation context but it may also reflect other confounding factors, such as those listed above. Moreover, it is of critical importance in a conservation context to determine *why* gene flow is limited, which again necessitates consideration of these other factors.

Acknowledgements

We thank J. Correa for providing assistance with the statistics and K. Räsänen, S. A. Pavey, McGill Department of Biology graduate student discussion group members, and anonymous reviewers for providing comments. We also thank all individuals who provided information on generation lengths (see Appendix A). Financial support was provided by a Natural Sciences and Engineering Research Council of Canada Discovery Grant to A. P. Hendry.

Appendix A

Studies used for data collection

Arnold W (1990) The evolution of marmot sociality: I. Why disperse late? *Behav. Ecol. Sociobiol.*, **27**, 229–237.

Baer CF (1998a) Species-wide population structure in a southeastern U.S. freshwater fish, *Heterandria formosa*: gene flow and biogeography. *Evolution*, **52**, 183–193.

Baer CF (1998b) Population structure in a south-eastern US freshwater fish, *Heterandria formosa*. II. Gene flow and biogeography within the St. Johns River drainage. *Heredity*, **81**, 404–411.

Baker AM, Mather PB, Hughes JM (2001) Evidence for long-distance dispersal in a sedentary passerine, *Gymnorhina tibicen* (Artamidae). *Biol. J. Linn. Soc.*, **72**, 333–343.

Barber PH (1999) Patterns of gene flow and population genetic structure in the canyon tree frog, *Hyla arenicolor* (Cope). *Mol. Ecol.*, **8**, 563–576.

Berven KA (1990) Factors affecting population fluctuations in larval and adult stages of the wood frog (*Rana sylvatica*). *Ecology*, **71**, 1599–1608.

Blouin-Demers G, Prior KA, Weatherhead PJ (2002) Comparative demography of black rat snakes (*Elaphe obsoleta*) in Ontario and Maryland. J. Zool., **256**, 1–10.

Broughton RE, Stewart LB, Gold JR (2002) Microsatellite variation suggests substantial gene flow between king mackerel (*Scomberomorus cavalla*) in the western Atlantic Ocean and Gulf of Mexico. *Fish. Res.*, **54**, 305–316.

Brown GP, Weatherhead PJ (1999) Demographic and sexual size dimorphism in northern water snakes, *Nerodia sipedon. Can. J. Zool.*, **77**, 1358–1366. Burton C, Krebs CJ, Taylor EB (2002) Population genetic structure of the cyclic snowshoe hare (*Lepus americanus*) in southwestern Yukon, Canada. *Mol. Ecol.*, **11**, 1689–1701.

Caizergues A, Dubois S, Mondor G et al. (2001) Genetic structure of black grouse (*Tetrao tetrix*) populations of the French Alps. *Genet. Select. Evol.*, **33**, S177–S191.

Carlsson J, Nilsson J (2000) Population genetic structure of brown trout (*Salmo trutta* L.) within a northern boreal forest stream. *Hereditas*, **132**, 173–181.

Carrick R (1963) Social and ecological factors in population regulation of the Australian magpie. *Proc. XVI Int. Cong. Zool.*, **8**, 339–341.

Castric V, Bernatchez L (2003) The rise and fall of isolation by distance in the anadromous brook charr (*Salvelinus fontinalis* Mitchill). *Genetics*, **163**, 983–996.

Chenoweth SF, Hughes JM, Keenan CP, Lavery S (1998) Concordance between dispersal and mitochondrial gene flow: Isolation by distance in a tropical teleost, *Lates calcarifer* (Australian barramundi). *Heredity*, **80**, 187–197.

Chiappero MB, Calderon GE, Gardenal CN (1997) Oligoryzomys flavescens (Rodentia, Muridae): gene flow among populations from central-eastern Argentina. Genetica, **101**, 105–113.

Creighton JA (1988) Photoperiodic control of puberty in the red-legged partridge. *Gen. Comp. Endocrinol.*, **71**, 17–28.

Dyke AS, Prest VK (1987) Paleogeography of northern North America, 18 000–5 000 years ago. Geological Survey of Canada, map 1703A, scale 1:12 500 000.

Ellis WA, Hale PT, Carrick F (2002) Breeding dynamics of koalas in open woodlands. *Wildl. Res.*, **29**, 19–25.

Elverhøi A, Fjeldskaar W, Solheim A, Nyland-Berg M, Russwurm L (1993) The Barents Sea ice sheet: A model of its growth and decay during the last ice maximum. *Quat. Sci. Rev.*, **12**, 863–873.

Entwistle AC, Racey PA, Speakman JR. 1998. The reproductive cycle and determination of sexual maturity in male brown long-eared bats, *Plecotus auritus* (Chiroptera: Vespertilionidae). *J. Zool.*, **244**, 63–70.

Fernandez-Delgado C (1989) Life-history patterns of the mosquito-fish, *Gambusia affinis*, in the estuary of the Guadalquivir river of south-west Spain. *Freshwater Biol.*, **22**, 395–404.

Finucane JH, Collins A, Brusher HA, Saloman CH (1986) Reproductive biology of king mackerel, *Scomberomorus cavalla*, from the southeastern United States. *Fish. Bull.*, **84**, 841–850.

Flint RF (1971) *Glacial and Quaternary Geology*. John Wiley and Sons, New York.

Fuller SJ, Mather PB, Wilson JC (1996) Limited genetic differentiation among wild *Oryctolagus cuniculus* L. (rabbit) populations in arid eastern Australia. *Heredity*, **77**, 138–145.

Gavin TA, Sherman PW, Yensen E, May B (1999) Population genetic structure of the northern Idaho ground squirrel (*Spermophilus brunneus brunneus*). J. Mammal., **80**, 156–168.

Georgiadis N, Bischof L, Templeton A et al. (1994) Structure and history of African elephant populations: I. Eastern and southern Africa. J. Heredity, **85**, 100–104.

Giæver M, Forthum J (1999) A population genetic study of haddock (*Melanogrammus aeglefinus*) in northeast Atlantic waters based in isozyme data. *Sarsia*, **84**, 89–98.

Gibbs HL, Dawson RJG, Hobson KA (2000) Limited differentiation in microsatellite DNA variation among northern populations of the yellow warbler: Evidence for male-biased gene flow? *Mol. Ecol.*, **9**, 2109–2118.

Gilbert N, Meyers K, Cooke BD et al. (1987) Comparative dynamics of Australasian rabbit populations. *Aust. Wildl. Res.*, **14**, 491–503.

Gold JR, Turner TF (2002) Population structure of red drum (*Sciaenops ocellatus*) in the northern Gulf of Mexico, as inferred from variation in nuclear-encoded microsatellites. *Mar. Biol.*, **140**, 249–265.

Goossens B, Chikhi L, Taberlet P, Waits LP, Allaine D (2001) Microsatellite analysis of genetic variation among and within Alpine marmot populations in the French Alps. *Mol. Ecol.*, **10**, 41–52.

Harris JH (1986) Reproduction of the Australian bass, *Macquaria novemaculeata* (Perciformes: Percichthyidae) in the Sydney Basin. *Aust. J. Mar. Freshwater Res.*, **37**, 209–236.

Hawkins SL, Varnavskaya NV, Matzak EA et al. (2002) Population structure of the odd-broodline Asian pink salmon and its contrast to the even-broodline structure. *J. Fish Biol.*, **60**, 370–388

Hemelaar A (1988) Age, growth and other population characteristics of *Bufo bufo* from different latitudes and altitudes. *J. Herpetol.*, **22**, 369–388.

Hesthagen T, Jonsson B (2002) Life history characteristics of brown trout in lakes at different stages of acidification. *J. Fish Biol.*, **60**, 415–426.

Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. *Nature*, **405**, 907–913.

Holder K, Montgomerie R, Friesen VL (2000) Glacial vicariance and historical biogeography of rock ptarmigan (*Lagopus mutus*) in the Bering region. *Mol. Ecol.*, **9**, 1265–1278.

Hundertmark KJ, Bowyer RT, Shields GF, Schwartz CC (2003) Mitochondrial phylogeography of moose (*Alces alces*) in North America. *J. Mammal.*, **84**, 718–728.

Jerry DR, Baverstock PR (1998) Consequences of a catadromous life-strategy for levels of mitochondrial DNA differentiation among populations of the Australian bass, *Macquaria novemacuelata. Mol. Ecol.*, **7**, 1003–1013.

Kark S, Alkon PU, Safriel UN, Randi E (1999) Conservation priorities for Chukar partridge in Israel based on genetic diversity across an ecological gradient. *Conserv. Biol.*, **13**, 542–552.

King RB, Lawson R (2001) Patterns of population subdivision and gene flow in three species of sympatric natricine snakes. *Copeia*, **2001**, 602–614.

Kleman J, Hätterstrand C, Borgström I, Stroeven A (1997) Fennoscandian palaeoglaciology reconstructed using a glacial geological inversion model. *J. Glaciol.*, **43**, 283–299.

Koljonen M-L, Jansson H, Paaver T, Vasin O, Koskiniemi J (1999) Phylogeographic lineages and differentiation pattern of Atlantic salmon (*Salmo salar*) in the Baltic Sea with management implications. *Can. J. Fish. Aquat. Sci.*, **56**, 1766–1780. Kotoulas G, Bonhomme F, Borsa P (1995) Genetic structure of the common sole *Solea vulgaris* at different geographical scales. *Mar. Biol.*, **122**, 361–375.

Li S-H, Brown JL (2000) High frequency of extrapair fertilization in a plural breeding bird, the Mexican jay, revealed by DNA microsatellites. *Anim. Behav.*, **60**, 867–877.

Lougheed SC, Gibbs HL, Prior KA, Weatherhead PJ (1999) Hierarchical patterns of genetic population structure in black rat snakes (*Elaphe obsoleta obsoleta*) as revealed by microsatellite DNA analysis. *Evolution*, **53**, 1995–2001.

Lugon-Moulin N, Hausser J (2002) Phylogeographical structure, postglacial recolonization and barriers to gene flow in the distinctive Valais chromosome race of the common shrew (*Sorex araneus*). *Mol. Ecol.*, **11**, 785–794.

Macholán M, Filippucci MG, Zima J (2001) Variation and zoogeography of pine voles of the *Microtus subterraneus/majori* group in Europe and Asia Minor. J. Zool., **255**, 31–42.

Maes GE, Volckaert FAM (2002) Clinal genetic variation and isolation by distance in the European eel *Anguilla anguilla* (L.). *Biol. J. Linn. Soc.*,77, 509–521.

Mahida H, Campbell GK, Taylor PJ (1999) Genetic variation in *Rhabdomys pumilio* (Sparrman 1784): An allozyme study. *South Afr. J. Zool.*, **34**, 91–101.

Martin RW (1981) Age-specific fertility in three populations of the koala, *Phascolarctos cinereus* Goldfuss, in Victoria. *Aust. Wildl. Res.*, **8**, 275–283.

Martinez JG, Soler JJ, Soler M, Møller AP, Burke T (1999) Comparative population structure and gene flow of a brood parasite, the great spotted cuckoo (*Clamator glandaris*), and its primary host, the magpie (*Pica pica*). Evolution, **53**, 269–278.

McClenaghan LR, Smith MH, Smith MW (1985) Biochemical genetics of mosquitofish *Gambusia affinis* 4. Changes of allele frequencies through time and space. *Evolution*, **39**, 451–460.

McDonald DB, Caswell H (1993) Matrix methods for avian demography. In: *Current Ornithology*, Vol. 10 (ed. Power D), pp. 139–185. Plenum Press, New York.

McDonald DB, Potts WK, Fitzpatrick JW, Woolfenden GE (1999) Contrasting genetic structures in sister species of North American scrub-jays. *Proc. R. Soc. Lond. B Biol. Sci.*, **266**, 1117–1125.

McLean JE, Hay DE, Taylor EB (1999) Marine population structure in an anadromous fish: Life-history influences patterns of mitochondrial DNA variation in the eulachon, *Thaleichthys pacificus. Mol. Ecol.*, **8**, S143–S158.

Merrick JR, Schmida GE (1984) Australian Freshwater Fishes: Biology and Management. Griffin Press Limited, Netley, South Australia.

Mossman CA, Waser PM (2001) Effects of habitat fragmentation on population genetic structure in the white-footed mouse (*Peromyscus leucopus*). *Can. J. Zool.*, **79**, 285–295.

Nixon CM, Etter D (1995) Maternal age and fawn rearing success for white-tailed deer in Illinois. *Am. Midl. Nat.*, **133**, 290–297.

Olsen JB, Miller SJ, Spearman WJ, Wenburg JK (2003) Patterns of intra- and inter-population genetic diversity in Alaskan coho salmon: Implications for conservation. *Conserv. Genet.*, **4**, 557–569. Overholtz WJ (1988) Factors relating to the reproductive biology of Georges Bank haddock (*Melanogrammus aeglefinus*) in 1977–83. J. Northw. Atl. Fish. Sci., **7**, 145–154.

Parer I (1977) The population ecology of the wild rabbit, *Oryctolagus cuniculus* (L.) in a Mediterranean-type climate in New South Wales, Australia. *Aust. Wildl. Res.*, **4**, 171–205.

Patton JL, Da Silva MNF, Malcolm JR (1996) Hierarchical genetic structure and gene flow in three sympatric species of Amazonian rodents. *Mol. Ecol.*, **5**, 229–238.

Petit E, Mayer F (1999) Male dispersal in the noctule bat (*Nyctalus noctula*): Where are the limits? *Proc. R. Soc. Lond. B Biol. Sci.*, **266**, 1717–1722.

Pielou EC (1991) After the Ice Age: The Return of Life to Glaciated North America. University of Chicago Press, Chicago.

Piertney SB, MacColl ADC, Bacon PJ, Dallas JF (1998) Local genetic structure in red grouse (*Lagopus lagopus scoticus*): Evidence from microsatellite DNA markers. *Mol. Ecol.*, 7, 1645–1654.

Planes S, Fauvelot C (2002) Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean. *Evolution*, **56**, 378–399.

Purdue JR, Smith MH, Patton JC (2000) Female philopatry and extreme spatial genetic heterogeneity in white-tailed deer. J. Mammal., **81**, 179–185.

Rafiński J, Babik W (2000) Genetic differentiation among northern and southern populations of the moor frog *Rana arvalis* Nilsson in central Europe. *Heredity*, **84**, 610–618.

Randall JE (1961) A contribution to the biology of the convict surgeonfish of the Hawaiian Islands. *Pacific Sci.*, **15**, 215–272.

Rassmann K, Tautz D, Trillmich F, Gliddon C (1997) The microevolution of the Galápagos marine iguana *Amblyrhynchus cristatus* assessed by nuclear and mitochondrial genetic analyses. *Mol. Ecol.*, **6**, 437–452.

Reading CJ (1988) Growth and age at sexual maturity in common toads (*Bufo bufo*) from two sites in Southern England. *Amphibia-Reptilia*, **9**, 277–288.

Ryser J (1988) Determination of growth and maturation in the common frog, *Rana temporaria*, by skeletochronology. *J. Zool.*, **216**, 673–685.

Säisä M, Koljonen M-L, Tähtinen J (2003) Genetic changes in Atlantic salmon stocks since historical times and the effective population sizes of the long-term captive breeding programmes. *Conserv. Genet.*, **4**, 613–627.

Scott WB, Crossman EJ (1998) Freshwater Fishes of Canada. Galt House Publications, Oakville, Canada.

Seppä P, Laurila A (1999) Genetic structure of island populations of the anurans *Rana temporaria* and *Bufo bufo*. *Heredity*, **82**, 309–317.

Shaffer HB, Fellers GM, Magee A, Voss SR (2000) The genetics of amphibian declines: Population substructure and molecular differentiation in the Yosemite toad, *Bufo canorus* (Anura, Bufonidae) based on single-strand conformation polymorphism analysis (SSCP) and mitochondrial DNA sequence data. *Mol. Ecol.*, **9**, 245–257.

Sherman PW (1989) Mate guarding as paternity insurance in Idaho ground squirrels. *Nature*, **338**, 418–420.

Sinclair ARE (1977) The African Buffalo. University of Chicago Press, Chicago.

Smith PJ, Benson PG (1997) Genetic diversity in orange roughy from the east of New Zealand. Fish. Res., 31, 197–213.

Squire T, Newman RA (2002) Fine-scale population structure in the wood frog (*Rana sylvatica*) in a northern woodland. *Herpetologica*, **58**, 119–130.

Storfer A (1999) Gene flow and population subdivision in the streamside salamander, *Ambystoma barbouri*. *Copeia*, **1999**, 36–54.

Sukumar R (2003) The Living Elephants: Evolutionary Ecology, Behavior, and Conservation. Oxford University Press, New York.

Sumner J, Rousset F, Estoup A, Mortitz C (2001) 'Neighbourhood' size, dispersal and density estimates in the prickly forest skink (*Gnypetoscinus queenslandiae*) using individual genetic and demographic methods. *Mol. Ecol.*, **10**, 1939–1945.

Taylor EB, Stamford MD, Baxter JS (2003) Population subdivision in westslope cutthroat trout (*Oncorhynchus clarki lewisi*) at the northern periphery of its range: Evolutionary inferences and conservation implications. *Mol. Ecol.*, **12**, 2609–2622.

Taylor MI, Ruber L, Verheyen E (2001) Microsatellites reveal high levels of population substructuring in the speciespoor Ertmodine cichlid lineage from Lake Tanganyika. *Proc. R. Soc. Lond. B Biol. Sci.*, **268**, 803–808.

van Hooft WF, Groen AF, Prins HHT (2000) Microsatellite analysis of genetic diversity in African buffalo (*Syncerus* caffer) populations throughout Africa. *Mol. Ecol.*, **9**, 2017–2025.

White MM, Turner BJ (1985) Intralacustrine differentiation in 2 spp. of Goodeid fishes. *Copeia*, **1985**, 112–118.

Winker K, Graves GR, Braun MJ (2000) Genetic differentiation among populations of a migratory songbird: *Limnothlypis swainsonii. J. Avian Biol.*, **31**, 319–328.

Zimová I (1985) Biology of reproduction and postnatal development of the pine vole, *Pitymys subterraneus* (Mammalia: Rodentia) under laboratory conditions. *Acta Univ. Carol. Biol.*, **1985**, 367–417.

Appendix A. Data for each spe-	cies used in th	ne analyses, ir	ncluding source	es of informat	ion				
Species	Generations	Generation	Marker	Divergence	r^2 value	P value	Source	Source for	Source for
	since	length	type	metric			for	time since	generation length
	colonization	(years)					IBD	colonization	
Fish									
Atlantic salmon	1607	5.6	Allozyme	$N_{\rm III}$	0.69	<0.001	Koljonen	Koljonen	Säisä et al. 2003
(Salmo salar)							et al. 1999	et al. 1999	
Australian barramundi	4706	4.3	mtDNA	$N_{\rm III}$	0.787	<0.001	Chenoweth	Flint (1971),	Merrick and Schmida
(Lates calcarifer)							et al. (1998)	p. 683	(1984), p. 187
Australian bass	4706	4.3	mtDNA	$F_{ m st}$	0.102	<0.05	Jerry and	Flint (1971),	Harris (1986)
(Macquaria							Baverstock (1998)	p. 683	
novemaculeata)									
Brook charr (Salvelinus	3333	3.0	Microsatellite	$F_{\rm st}$	I	<0.0005	Castric and	Flint (1971),	Scott and Crossman
fontinalis)							Bernatchez (2003)	p. 492, Figure 18.12	(1998), p. 211
Brown trout	2209	4.3	Microsatellite	$F_{ m st}$	0.42	<0.05	Carlsson and	Kleman	Hesthagen and Jonsson
(Salmo trutta)							Nilsson (2000)	et al. (1997)	(2002)
Cichlid (Eretmodus	8000	2.5	Microsatellite	Nm	0.676	0.0016	Taylor et al. (2001)	Flint (1971),	Martin Taylor
cyanostic tus)								pp. 698–699	(pers. comm.)
Coho salmon	3333	3.0	Microsatellite	$F_{ m st}$	0.13	0.002	Olsen et al. (2003)	Flint (1971),	Jeffrey Olsen (pers.
(Oncorhynchus								p. 492, Figure	comm.)
kisutch)								18.12; Pielou (1991),	
								p. 11, Figure 1.4	
Common sole (Solea vulgaris)	8000	2.5	Allozyme	Genetic	Ι	<0.01	Kotoulas et al.	Flint (1971), pp.	Georgios Kotoulas
				distance			(1995)	594-595, Figure	(pers. comm.)
								23.1, pp. 662–663,	, g
								Figure 25.1	
Eulachon (Thaleichthys	2857	3.5	mtDNA	Genetic	0.224	0.012	McLean et al.	Flint (1971), p.	Jennifer McLean
pacificus)				distance			1999	492, Figure 18.12;	(pers. comm.)
								Pielou (1991), p. 11,	
	0000	000	11 4		00700			riguic 1.4	
European eel (Anguina	7000	0.0	Апогуще	Ceneuc	0.000	ccU.U		Hewlut (1999); Nicifian	Uregory Maes
anguilla)				distance			Volckaert (2002)	et al. (1997)	(pers. comm.)
Goodeid fish (Chapalichthys	66,667	0.3	Allozyme	Genetic	0.0256	1	White and	Flint (1971), p. 476	Matthew White
encaustus)				distance			Turner (1985)		(pers. comm.)
Goodeid fish (Goodea	40,000	0.5	Allozyme	Genetic	0.185	<0.05	White and	Flint (1971), p. 476	Matthew White
atripinnis)				distance			Turner (1985)		(pers. comm.)
Haddock (Melanogrammus	3333	3.0	Allozyme	Genetic	I	0.006	Giæver and	Kleman et al. (1997)	Overholtz (1988)
aeglefinus)				distance			Forthum		
							(4441)		

s of information including need in the 100000 hape Annendix A. Data for

				ţ					
King mackerel (<i>Scomberomorus</i> <i>cavalla</i>)	5000	4.0	Microsatellite	$F_{\rm st}$	I	0.127	Broughton et al. (2002)	Hewitt (2000)	Finucane et al. (1986)
Lake cisco	2857	3.5	Microsatellite	$F_{ m st}$	0.423	0.005	Turgeon and	Turgeon and	Scott and Crossman
(Coregonis artedi)							Bernatchez (2001)	Bernatchez (2001)	(1998), pp. 240–241
Mosquitofish (Combusic officie)	12,000	0.5	Allozyme	Genetic	I	>0.1	McClenaghan	Baer 1998a	Fernandez-Delgado
Moccuitefeb	10100	0.2	Alloring	Neo	0110		Doar (1000a)	Daar (1000a)	Door (1008b)
(Heterandria	10,102			TTLET	<u></u>		Davi (1770a)	Davi (17704)	(00//1) 1997
formosa)									
Orange roughy	635	31.5	Allozyme	Nm	0.216	I	Smith and	Flint (1971), p.	Peter Smith
(Hopostethus							Benson (1997)	688, Figure 25.7	(pers. comm.)
atlanticus)									
Pink salmon	10,000	2.0	Allozyme	$F_{ m st}$	I	<0.05	Hawkins	Flint (1971), pp.	Jeffrey Olsen
(Oncorhynchus gorhuscha)							et al. (2002)	662–663, Figure 25.1	(pers. comm.)
Red drum (Sciaenops	1645	12.2	Microsatellite	$F_{ m st}$	0.575	0.001	Gold and	Hewitt (2000)	John Gold
ocellatus)				1			Turner (2002)	~	(pers. comm.)
Surgeonfish (Acanthurus	13,333	1.5	Allozyme	Nm	0.684	<0.001	Planes and	Hewitt 2000	Randall (1961)
triostegus)							Fauvelot (2002)		
Westslope cutthroat trout	3333	3.0	Microsatellite	$F_{ m st}$	0.102	0.005	Taylor	Flint (1971),	Eric Taylor
(Oncorhynchus clarki lewisi)							et al. (2003)	p. 492, Figure 18.12;	(pers. comm.)
								Pielou (1991), p. 11. Figure 1.4	
Mammals)	
African buffalo	4000	5.0	Microsatellite	$F_{ m st}$	I	<0.00001	van Hooft	Flint (1971), pp.	Sinclair (1977),
(Syncerus caffer)							et al. (2000)	669-669	pp. 167–168
African elephant	1509	13.3	mtDNA	Nm	0.281	I	Georgiadis	Flint (1971),	Sukumar (2003),
(Loxodonta africana)							et al. (1994)	pp. 698–699	pp. 92, 100
Alpine marmot	4000	2.0	Microsatellite	Nm	0.234	0.18	Goossens	Hewitt (1999)	Arnold (1990)
(Marmota marmota)							et al. (2001)		
Brown long-eared bat	9800	1.3	Microsatellite	$F_{ m st}$	I	0.001	Burland	Elverhøi	Entwistle et al. (1998)
(Plecotus auritus)							et al. (1999)	et al. (1993)	
Common shrew	8000	1.0	Microsatellite	$F_{ m st}$	0.499	0.001	Lugon-Moulin	Hewitt (1999)	Jacques Hausser
(Sorex araneus)							and Hausser (2002)		(pers. comm.)
Ground squirrel	10,000	2.0	Allozyme	Nm	0.28	<0.001	Gavin et al. (1999)	Dyke and	Sherman (1989)
(Spermophilus brunneus)				;				Prest (1987)	
Koala (Phascolarctos	/999	3.0	Microsatellite	Nm	I	0.037	Ellis et al. (2002)	Flint (1987),	Martin (1981)
cinereus)								p. 683	

Appendix A. (Continued)									
Species	Generations since colonization	Generation length (years)	Marker type	Divergence metric	r² value	P value	Source for IBD	Source for time since colonization	Source for generation length
Moose (Alces alces)	1923	6.5	mtDNA	Genetic distance	0.0484	0.29	Hundertmark et al. (2003)	Hundertmark et al (2003)	Kris Hundertmark
Noctule bat (<i>Nyctalus</i>	7600	2.0	Microsatellite	$F_{ m st}$	I	0.21	Petit and Mayer (1999)	Kleman et al. (1997)	Jiri Gaisler (pers. comm.)
noctula) Pine vole (Microtus subterraneus, M.	58,824	0.3	Allozyme	Nm	0.309	<0.001	Macholán et al. (2001)	Hewitt (1999)	Zimová (1985)
Pygmy rice rat	60,606	0.3	mtDNA	Nm	0.295	<0.002	Patton et al (1006)	Flint (1971), p. 710	James Patton
(Ungeryzennys microus) Rabbit (Oryctolagus cuniculus)	60	2.4	Allozyme	Genetic distance	0.00325	I	Et al. (1990) Fuller et al. (1996)	Fuller et al. (1996)	Parer (1977); Parer (1977); Gilbert et al.
Rice rat (Oryzomys	119,760	0.2	mtDNA	Nm	0.00884	>0.788	Patton et al (1996)	Flint (1971), p. 710	James Patton
Superior for the second	8,500	1.0	Microsatellite	$F_{ m st}$	0.144	0.025	Burton et al. (2002)	Pielou (1991), p. 11, Figures 1.4 and 1.5;	Cole Burton (pers. comm.)
Spiny tree rat	10,000	2.0	mtDNA	Nm	0.416	<0.0001	Patton	Flint (1971), p. 492, Figure 18.12 Flint (1971), p. 710	James Patton
(Mesomys hispidus) Striped mouse (Rhabdomys numilia)	30,303	0.7	Allozyme	Genetic distance	0.292	<0.001	et al. (1996) Mahida et al. (1999)	Flint (1971), pp. 698–699	(pers. comm.) Neville Pillay (pers. comm.)
White-footed mouse (Peromyscus leucopus)	7000	2.0	Microsatellite	$F_{ m st}$	I	0.515	Mossman and Waser	Dyke and Prest (1987)	Catherine Mossman
White-tailed deer (Odocoileus viroinianue)	10,000	2.0	Allozyme	Genetic distance	I	0.004	Purdue et al. (2000)	Hewitt (2000)	Nixon and Etter (1995)
Yellow pygmy rice rat (Oligoryzomys flavescens)	60,606	0.3	Allozyme	Nm	0.0676	0.82	Chiappero et al. (1997)	Flint (1971), p. 708	James Patton (pers. comm.)
Reptiles Black rat snake	2462	6.5	Microsatellite	$F_{ m st}$	0.662	0.0002	Lougheed	Dyke and Prest	Blouin-Demers
(Eutoprie ousoieta) Brown snake (Storeria dekayi)	7000	2.0	Allozyme	Nm	I	0.1>P>0.05	King and Lawson (2001)	Dyke and Prest (1987)	ct al. (2002) Richard King (pers. comm.)

Garter snake	7000	2.0	Allozyme	Nm	I	>0.25	King and	Dyke and Prest	Richard King
(Indmnopms striaus)							Lawson (2001)	(1961)	(pers. comm.)
Marine iguana	2500	8.0	Microsatellite	$F_{ m st}$	Ι	<0.008	Rassman	Rassman et al. (1997)	Martin Wikelski
(Amblyrhynchus							et al. (1997)		(pers. comm.)
cristatus)									
Prickly skink	4000	5.0	Microsatellite	$F_{ m st}$	I	0.026	Sumner	Flint (1971), p. 683	Michael Cunningham
(Gnypetoscincus							et al. (2001)		(pers. comm.)
queenslandiae)									
Water snake	4667	3.0	Allozyme	Nm	Ι	< 0.025	King and	Dyke and Prest (1987)	Brown and
(Nerodia sipedon)							Lawson (2001)		Weatherhead (1999)
Amphibians									
Canyon tree frog	20,000	1.0	mtDNA	Nm	0.127	0.00015	Barber (1999)	Hewitt (2000)	Paul Barber
(Hyla arenicolor)									(pers. comm.)
Common frog	3000	3.0	Allozyme	$F_{ m st}$	0.0064	0.805	Seppä and	Koljonen et al. (1999)	Ryser (1988)
(Rana temporaria)							Laurila (1999)		
Common toad	2571	3.5	Allozyme	$F_{ m st}$	0.000729	0.504	Seppä and	Koljonen et al. (1999)	Hemelaar (1988);
(Bufo bufo)							Laurila 1999		Reading (1988)
Moor frog (Rana	5333	3.0	Allozyme	Nm	0.192	0.0014	Rafiński and	Kleman et al. (1997)	Jon Loman (pers.
arvalis)							Babik (2000)		comm.)
Streamside salamander	8000	2.5	Allozyme	$F_{ m st}$	I	0.026	Storfer (1999)	Hewitt (2000)	Andrew Storfer
(Ambystoma barbouri)									(pers. comm.)
Wood frog (Rana	6667	1.8	Microsatellite	$F_{ m st}$	I	0.029	Squire and	Dyke and Prest (1987)	Berven (1990)
sylvatica)							Newman (2002)		
Yosemite toad (Bufo	6667	3.0	mtDNA	Nm	0.4	<0.05	Shaffer et al.	Hewitt (2000);	Howard Shaffer
canorus)							(2000)	Flint (1971), p. 475, Figure 18.4	(pers. comm.)
Birds)	
Australian magpie	10,000	2.0	Allozyme	Nm	0.017	0.311	Baker et al. 2001	Flint (1971), p. 683	Carrick (1963)
(Gymnorhina tibicer)									
Black grouse (Tetrao	2000	4.0	Microsatellite	$F_{ m st}$	0.57	< 0.01	Caizergues	Hewitt (1999)	Alain Caizergues
tetrix)							et al. (2001)		(pers. comm.)
Chukar partridge	24,096	0.8	Allozyme	Nm	I	<0.001	Kark et al.	Flint (1971), pp.	Creighton (1988)
(Alectoris chukar)							(1999)	662-663, Figure 25.1	
Florida scrub jay	3333	6.0	Microsatellite	Genetic distance	0.144	0.026	McDonald	Hewitt (2000)	McDonald and
(A phelocoma							et al. (1999)		Caswell (1993)
coerulescens)									
Gray-breasted jay	8000	2.5	Allozyme	Genetic distance	I	0.052	Peterson (1992)	Hewitt (2000);	Li and Brown
(Aphelocoma								Flint (1971), p. 476	(2000)
ultramarına)									

Appendix A. (Continued)

Appendix A. (Continued)									
Species	Generations since colonization	Generation length (years)	Marker type	Divergence metric	r ² value	P value	Source for IBD	Source for time since colonization	Source for generation length
Great spotted cuckoo (Clamator glandarius)	20,000	1.0	Microsatellite	Genetic distance	0.477	0.008	Martinez et al. (1999)	Kleman et al. (1997)	Juan Soler (pers. comm.)
Magpie (Pica pica)	7500	2.0	Microsatellite	Genetic distance	0.325	<0.001	Martinez et al. (1999)	Kleman et al. (1997)	Juan Soler, Manuel Soler (pers. comm.)
Red grouse (Lagopus lagopus)	12,250	1.0	Microsatellite	$F_{ m st}$	0.1	<0.001	Piertney et al. (1998)	Elverhøi et al. (1993)	Stuart Piertney (pers. comm.)
Rock ptarmigan (Lagopus mutus)	7333	1.5	mtDNA	Nm	0.01	0.6	Holder et al. (2000)	Holder et al. (2000)	Robert Montgomerie (pers. comm.)
Swainson's warbler (<i>Linnothlvpis swainsonii</i>)	20,000	1.0	Allozyme	Genetic distance	I	0.71	Winker et al. (2000)	Hewitt (2000)	Kevin Winker (pers. comm.)
Western scrub jay (Aphelocoma californica)	3333	6.0	Microsatellite	Genetic distance	0.0016	0.378	McDonald et al. (1999)	Hewitt (2000)	McDonald and Caswell (1993)
Yellow warbler (Dendroica petechia)	10,833	1.2	Microsatellite	$F_{ m st}$	0.29	0.013	Gibbs et al. (2000)	Dyke and Prest (1987)	Lisle Gibbs (pers. comm.)

References

- Baer CF (1998) Species-wide population structure in a southeastern U.S. freshwater fish, *Heterandria formosa*: Gene flow and biogeography. *Evolution*, 52, 183–193.
- Baker AM, Mather PB, Hughes JM (2001) Evidence for longdistance dispersal in a sedentary passerine, *Gymnorhina tibicen* (Artamidae). *Biol. J. Linn. Soc.*, **72**, 333–343.
- Barber PH (1999) Patterns of gene flow and population genetic structure in the canyon tree frog, *Hyla arenicolor* (Cope). *Mol. Ecol.*, 8, 563–576.
- Burton C, Krebs CJ, Taylor EB (2002) Population genetic structure of the cyclic snowshoe hare (*Lepus americanus*) in southwestern Yukon, Canada. *Mol. Ecol.*, **11**, 1689–1701.
- Caizergues A, Dubois S, Mondor G, et al. (2001) Genetic structure of black grouse (*Tetrao tetrix*) populations of the French Alps. *Genet. Select. Evol.*, 33, S177–S191.
- Castric V, Bernatchez L (2003) The rise and fall of isolation by distance in the anadromous brook charr (*Salvelinus fontinalis* Mitchill). *Genetics*, **163**, 983–996.
- Castric V, Bonney F, Bernatchez L (2001) Landscape structure and hierarchical genetic diversity in the brook charr, *Salvelinus fontinalis*. Evolution, 55, 1016–1028.
- Chiappero MB, Calderon GE, Gardenal CN (1997) Oligoryzomys flavescens (Rodentia, Muridae): Gene flow among populations from central-eastern Argentina. Genetica, 101, 105–113.
- Costello AB, Down TE, Pollard SM, Pacas CJ, Taylor EB (2003) The influence of history and contemporary stream hydrology on the evolution of genetic diversity within species: An examination of microsatellite DNA variation in bull trout, *Salvelinus confluentus* (Pisces: Salmonidae). *Evolution*, 57, 328–344.
- de Innocentiis S, Sola L, Cataudella S, Bentzen P (2001) Allozyme and microsatellite loci provide discordant estimates of population differentiation in the endangered dusky grouper (*Epinephelus marginatus*) within the Mediterranean Sea. *Mol. Ecol.*, **10**, 2163–2175.
- Ellis WA, Hale PT, Carrick F (2002) Breeding dynamics of koalas in open woodlands. *Wildl. Res.*, **29**, 19–25.
- Fuller SJ, Mather PB, Wilson JC (1996) Limited genetic differentiation among wild *Oryctolagus cuniculus* L. (rabbit) populations in arid eastern Australia. *Heredity*, **77**, 138–145.
- Gavin TA, Sherman PW, Yensen E, May B (1999) Population genetic structure of the northern Idaho ground squirrel (Spermophilus brunneus brunneus). J. Mammal., 80, 156–168.
- Gold JR, Richardson LR, Turner TF (1999) Temporal stability and spatial divergence of mitochondrial DNA haplotype frequencies in red drum (*Sciaenops ocellatus*) from coastal regions of the western Atlantic Ocean and Gulf of Mexico. *Mar. Biol.*, **133**, 593–602.
- Goossens B, Chikhi L, Taberlet P, Waits LP, Allaine D (2001) Microsatellite analysis of genetic variation among and within Alpine marmot populations in the French Alps. *Mol. Ecol.*, 10, 41–52.
- Green DM, Sharbel TF, Kearsley J, Kaiser H (1996) Postglacial range fluctuation, genetic subdivision and speciation in the western North American spotted frog complex, *Rana preti*osa. Evolution, **50**, 374–390.
- Hewitt GM (1993) Postglacial distribution and species substructure: Lessons from pollen, insects and hybrid zones In:

680

.

Evolutionary Patterns and Process (eds. Lees DR, Edwards D.), pp. 97–123. Academic Press, London.

- Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. *Biol. J. Linn. Soc.*, 58, 247–276.
- Hewitt GM (1999) Post-glacial re-colonization of European biota. *Biol. J. Linn. Soc.*, **68**, 87–112.
- Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. *Nature*, **405**, 907–913.
- Holder K, Montgomerie R, Friesen VL (2000) Glacial vicariance and historical biogeography of rock ptarmigan (*Lagopus mutus*) in the Bering region. *Mol. Ecol.*, **9**, 1265–1278.
- Hundertmark KJ, Bowyer RT, Shields GF, Schwartz CC (2003) Mitochondrial phylogeography of moose (*Alces alces*) in North America. J. Manmal., 84, 718–728.
- Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: Inferring the relative influences of gene flow and drift on the distribution of genetic variability. *Evolution*, 53, 1898–1914.
- Jennions MD, Møller AP (2002) Publication bias in ecology and evolution: An empirical assessment using the 'trim and fill' method. *Biol. Rev.*, **77**, 221–222.
- Kark S, Alkon PU, Safriel UN, Randi E (1999) Conservation priorities for Chukar partridge in Israel based on genetic diversity across an ecological gradient. *Conserv. Biol.*, 13, 542–552.
- Kimura M, Weiss GH (1964) The stepping stone model of population structure and the decrease in genetic correlation with distance. *Genetics*, **49**, 561–576.
- King RB, Lawson R (2001) Patterns of population subdivision and gene flow in three species of sympatric natricine snakes. *Copeia*, **2001**, 602–614.
- Kinnison MT, Bentzen P, Unwin MJ, Quinn TP (2002) Reconstructing recent divergence: Evaluating nonequilibrium population structure in New Zealand chinook salmon. *Mol. Ecol.*, **11**, 739–754.
- Knutsen H, Knutsen JA, Jorde PE (2001) Genetic evidence for mixed origin of recolonized sea trout populations. *Heredity*, 87, 207–214.
- Koljonen M-L, Jansson H, Paaver T, Vasin O, Koskiniemi J (1999) Phylogeographic lineages and differentiation pattern of Atlantic salmon (*Salmo salar*) in the Baltic Sea with management implications. *Can. J. Fish. Aquat. Sci.*, 56, 1766–1780.
- Lougheed SC, Gibbs HL, Prior KA, Weatherhead PJ (1999) Hierarchical patterns of genetic population structure in black rat snakes (*Elaphe obsoleta obsoleta*) as revealed by microsatellite DNA analysis. *Evolution*, **53**, 1995–2001.
- Lugon-Moulin N, Hausser J (2002) Phylogeographical structure, postglacial recolonization and barriers to gene flow in the distinctive Valais chromosome race of the common shrew (*Sorex araneus*). *Mol. Ecol.*, **11**, 785–794.
- Mantel N (1967) The detection of disease clustering and a generalized regression approach. *Cancer Res.*, **27**, 209–220.
- Maruyama T (1970) On the rate of decrease of heterozygosity in circular stepping stone models of populations. *Theor. Popul. Biol.*, **1**, 101–119.
- Maruyama T (1971) Analysis of population structure. II. Twodimensional stepping stone models of finite length and other

geographically structured populations. Ann. Human Genet., 35, 179–196.

- McLean JE, Hay DE, Taylor EB (1999) Marine population structure in an anadromous fish: Life-history influences patterns of mitochondrial DNA variation in the eulachon, *Thaleichthys pacificus. Mol. Ecol.*, 8, S143–S158.
- Mossman CA, Waser PM (2001) Effects of habitat fragmentation on population genetic structure in the white-footed mouse (*Peromyscus leucopus*). Can. J. Zool., 79, 285–295.
- Nagylaki T (1976) The decay of genetic variability in geographically structured populations. II. *Theor. Popul. Biol.*, 10, 70–82.
- Olsen JB, Miller SJ, Spearman WJ, Wenburg JK (2003) Patterns of intra- and inter-population genetic diversity in Alaskan coho salmon: Implications for conservation. *Conserv. Genet.*, 4, 557–569.
- Ogden R, Thorpe RS (2002) Molecular evidence for ecological speciation in tropical habitats. *Proc. Natl. Acad. Sci. USA*, 99, 13612–13615.
- Patton JL, Da Silva MNF, Malcolm JR (1996) Hierarchical genetic structure and gene flow in three sympatric species of Amazonian rodents. *Mol. Ecol.*, 5, 229–238.
- Peterson MA, Denno RF (1998) The influence of dispersal and diet breadth on patterns of genetic isolation by distance in phytophagous insects. Am. Nat., 152, 429–446.
- Pfau RS, van Den Bussche RA, McBee K (2001) Population genetics of the hispid cotton rat (*Sigmodon hispidus*): Patterns of genetic diversity at the major histocompatibility complex. *Mol. Ecol.*, **10**, 1939–1945.
- Piertney SB, MacColl ADC, Bacon PJ, Dallas JF (1998) Local genetic structure in red grouse (*Lagopus lagopus scoticus*): Evidence from microsatellite DNA markers. *Mol. Ecol.*, 7, 1645–1654.
- Planes S, Galzin R, Bonhomme F (1996) A genetic metapopulation model for reef fishes in oceanic islands: The case of the surgeonfish, *Acanthurus triostegus. J. Evol. Biol.*, 9, 103– 117.
- Quinn GP, Keough MJ (2002) Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge.
- Rafiński J, Babik W (2000) Genetic differentiation among northern and southern populations of the moor frog *Rana* arvalis Nilsson in central Europe. *Heredity*, 84, 610–618.
- Rosenberg MS, Adams DC, Gurevitch J (2000) *MetaWin: Statistical Software for Meta-Analysis.* Sinauer Associates, Sunderland, Massachusetts.
- Rousset F (1997) Genetic differentiation and estimation of gene flow from *F*-statistics under isolation by distance. *Genetics*, 145, 1219–1228.
- Rowe KC, Heske EJ, Brown PW, Paige KN (2004) Surviving the ice: Northern refugia and postglacial colonization. *Proc. Nat. Acad. Sci. USA*, **101**, 10355–10359.
- Seppä P, Laurila A (1999) Genetic structure of island populations of the anurans *Rana temporaria* and *Bufo bufo*. *Heredity*, **82**, 309–317.
- Shaffer HB, Fellers GM, Magee A, Voss SR (2000) The genetics of amphibian declines: Population substructure and molecular differentiation in the Yosemite toad, *Bufo canorus* (Anura, Bufonidae) based on single-strand conformation

polymorphism analysis (SSCP) and mitochondrial DNA sequence data. *Mol. Ecol.*, **9**, 245–257.

- Slatkin M (1991) Inbreeding coefficients and coalescence times. Genet. Res., 58, 167–175.
- Slatkin M (1993) Isolation by distance in equilibrium and nonequilibrium populations. *Evolution*, 47, 264–279.
- Slatkin M, Maddison WP (1990) Detecting isolation by distance using phylogenies of genes. *Genetics*, **126**, 249–260.
- Smith TB, Wayne RK, Girman DJ, Bruford MW (1997) A role for ecotones in generating rainforest biodiversity. *Science*, 276, 1855–1857.
- Sokal RR, Rohlf FJ (1995) *Biometry*, 3rd edn. W.H. Freeman and Company, New York.
- Taylor EB, Stamford MD, Baxter JS (2003) Population subdivision in westslope cutthroat trout (Oncorhynchus clarki

lewisi) at the northern periphery of its range: Evolutionary inferences and conservation implications. *Mol. Ecol.*, **12**, 2609–2622.

- Turgeon J, Bernatchez L (2001) Clinal variation at microsatellite loci reveals historical secondary intergradation between glacial races of *Coregonus artedi* (Teleostei: Coregoninae). *Evolution*, **55**, 2274–2286.
- van Hooft WF, Groen AF, Prins HHT (2000) Microsatellite analysis of genetic diversity in African buffalo (*Syncerus caffer*) populations throughout Africa. *Mol. Ecol.*, 9, 2017– 2025.
- Wright S (1943) Isolation by distance. Genetics, 28, 114-138.
- Wright S (1946) Isolation by distance under diverse systems of mating. *Genetics*, **31**, 39–59.