
 
 
 
 
 

A NOVEL HEAD-FREE 

POINT-OF-GAZE ESTIMATION SYSTEM 

 
 
 
 
 

by 
 
 
 
 
 
 

Elias Daniel Guestrin 
 
 
 
 
 
 
 
 
 

A thesis submitted in conformity with the requirements 
for the degree of Master of Applied Science 

Graduate Departments of Edward S. Rogers Sr. Department of Electrical 
and Computer Engineering 

and Institute of Biomaterials and Biomedical Engineering, 
University of Toronto 

 
 
 
 
 
 

© Copyright by Elias Daniel Guestrin 2003 



 

 ii

 
A Novel Head-Free Point-of-Gaze Estimation System 

 
Elias Daniel Guestrin 

Master of Applied Science 

Edward S. Rogers Sr. Department of Electrical and Computer Engineering 

University of Toronto 

2003 

 

Abstract 

 

A novel real-time head-free point-of-gaze (POG) estimation system was developed. 

The system uses a video camera that captures images of one eye, and two IR light sources 

that illuminate the eye and produce two corneal reflections (glints). A geometrical-optical 

model is used to compute the POG on a computer monitor from the estimated image 

coordinates of pupil and glints centers. The sensitivity of the novel POG estimation method 

to errors in model parameters, noise in pupil and glints centers estimation, and fixation errors 

during calibration, is discussed. A non-spherical corneal model was developed to evaluate 

sub-optimal algorithms that improve the accuracy of the method. Experiments showed that 

the r.m.s. estimation error of the POG on a computer monitor is less than 1º. The POG 

estimation system was used in a pilot study to develop a visual aid for subjects with macular 

degeneration. 
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1. Introduction 
 

 When a person looks at an object, the eyes are oriented in such a way that the image 

of that object falls on the fovea of each eye. The fovea is the highest acuity region of the 

retina and its size corresponds to about 0.6 to 1º of visual angle [1]. In general, the point-of-

gaze, i.e. what the person is looking at, is formally defined by the intersection of the visual 

axes of both eyes with the 3D scene. The visual axis is the line defined by the nodal point of 

the eye and the center of the fovea (Fig. 1.1). If the scene is a plane, such as a projection 

screen or a computer monitor, the point-of-gaze can be then defined as the intersection of the 

visual axis of one eye with the scene plane. 

 

 

Figure 1.1: Schematic diagram of the right eye as viewed from above 

(Adapted from [2]) 

 

Nodal point 

 Optic axis Visual axis 

Macula 
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 A system that provides point-of-gaze information can be used in a large variety of 

applications that require the analysis of visual scanning patterns, and as an input device in 

human-machine interfaces. Visual scanning patterns give information regarding shifts in 

attentional focus and provide insights into human cognitive processes. Several examples of 

studies of visual scanning patterns in different areas can be given. One example, in which our 

research group was involved, is the study on visual selective attention for the quantification 

of mood disorders [3, 4, 5]. In such study, each subject was presented with a sequence of 

slides; each slide contained four images pertaining to neutral, dysphoric, threatening and 

social themes. Results showed that depressed subjects had an attentional bias towards 

dysphoric images, i.e. the mean time they spent looking at sad images was significantly 

larger than that of normal control subjects. Another example is the study of visual scanning 

patterns in attention, perceptual or learning disorders. In [6], an eye tracking system was used 

to study exploratory eye movements to pictures in schizophrenic, attention-

deficit/hyperactivity disorder (ADHD), and normal children. In [7], eye movement patterns 

in linguistic and non-linguistic tasks in dyslexic children and adolescents were studied. 

 Point-of-gaze tracking technologies can be used in driving research [8, 9, 10, 11] and 

have the potential of being used as part of driver safety systems in the future [12, 13]. A 

driver’s visual scanning pattern can be analyzed in different driving conditions to get 

information about the focus of attention and provide insight into the reaction to road hazards, 

the effects of different dashboard layouts and sources of distraction such as cell phones, and 

the change in behavior due to different levels of fatigue. A point-of-gaze tracking system can 

also be used to measure and analyze the visual scanning patterns of pilots in the cockpit of an 

aircraft [14]. By comparing the scanning behavior of expert and amateur pilots in standard 

operational sequences, efficient scanning strategies can be identified, and inferences can be 

made between visual scanning patterns and hazard perception abilities. 

 Another area where a point-of-gaze tracking system can be a useful tool is in 

ergonomics, for the design and evaluation of human-machine interfaces. Well-organized 

computer interfaces result in shorter scan paths and more efficient search behavior than 

poorly designed interfaces [15].  

 The use of the point-of-gaze as an input modality in human-machine interfaces is a 

growing application field, from its integration in multimodal human-computer interfaces [16] 
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to specific aids for motor disabled persons [17, 18]. For persons that can neither move nor 

talk but retain their intellectual capacities and can move their eyes, such as victims of spinal 

cord injuries or advanced ALS (Amyotrophic Lateral Sclerosis or Lou Gehrig’s Disease), 

such a system may be the only means to communicate and control the environment through 

an eye-controlled computer interface. This list of applications is by no means exhaustive as 

the possible fields of applications of a point-of-gaze estimation system are only limited by 

imagination. 

 

1.1 Methods for the estimation of the point-of-gaze 

 In general, in order to estimate the point-of-gaze, both the position and orientation of 

the eye in space must be known. A survey on general methods for estimating gaze direction 

is given in [1]. Some techniques, such as electro-oculography and contact lens methods [1] 

are not practical for general applications. Electro-oculography is based on the recording of 

potential differences on the skin around the eye, which are a function of eye orientation 

relative to the head. Although it has a large measurement range of up to ±70º, the accuracy is 

limited to about 1.5-2º, it requires electrodes to be placed on the skin of the subject and is 

sensitive to artifacts due to the activity of nearby facial muscles. Contact lens methods use 

special contact lenses that are tightly attached to the eye with negative pressure and have an 

embedded device that can be tracked. That embedded device can be, for example, a mirror 

that can be optically tracked, or a pair of mutually orthogonal miniature wire coils that pick 

up an induced voltage that is a function of eye orientation. The induced voltage is due to a 

magnetic field generated by two large perpendicular electromagnetic coils surrounding the 

subject. Even though contact lens methods can be very accurate (up to 2 seconds of arc), they 

cannot be used for long periods of time. The special contact lenses used can be cumbersome 

and very uncomfortable, often requiring the use of a local anesthetic. 

 Most modern eye tracking systems are video based and use images of various 

landmarks of the eye to estimate gaze. Video based eye tracking systems can be broadly 

classified as head-mounted systems and system that do not require head attachments. In 

head-mounted systems, the video camera that captures images of the eye is fixed relative to 

the head, permitting large and fast head movements without sacrificing the accuracy of the 

estimation of the gaze direction relative to the head. In order to estimate the point-of-gaze, in 
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general, the 3D head pose (position and orientation) has to be known. There are various types 

of transducers that are used to sense head position, of which the most common is the 

magnetic position transducer [19]. The limitations associated with this approach include the 

additional noise present in the head position estimates, the restriction of the mobility of the 

subject to the range of the magnetic transmitter, and the susceptibility to errors due to 

electromagnetic interference and the presence of ferrous materials. The video based head-

mounted eye tracking system developed by Dr. Eizenman’s group at the University of 

Toronto (pupil center-corneal reflection method with dark pupil effect, described later) 

currently uses a different methodology to estimate head pose. A head mounted camera is 

used to record the scene in front of the subject. Visual cues extracted from the resulting 

image sequence are used to determine the head position relative to the observed scene [3, 4]. 

This eye tracking system has been used successfully in the analysis of visual scanning 

patterns of pilots in the cockpit of an aircraft [14], driving research [8, 11], and in psychiatry 

to study mood disorders [3, 4, 5]. 

 Despite the advantages of head-mounted eye tracking systems, they are not suitable 

for applications that require monitoring gaze over long periods of time such as in the case of 

aids for motor disabled persons. Also, in applications that involve children, avoiding head 

attachments is usually desired. Current eye tracking technologies that do not require head 

attachments exhibit, in general, a trade-off between gaze estimation accuracy and allowed 

range of head movement. However, if head movements are limited, these technologies are 

suitable and attractive for applications in psychiatry and psychology, and for aids for motor 

disabled persons, where the point-of-gaze on a computer monitor is to be estimated. The 

discussion that follows concentrates on methods that are suitable for point-of-gaze estimation 

without head attachments (some of them are also suitable for head-mounted systems), since 

we are interested in the development of a system that will be less obtrusive and easier to use 

than the current head mounted system. 

 With the evolution of computer technology, video-based methods that combine the 

estimation of pupil center or iris center with a head tracker have been receiving great 

attention, as they are non-intrusive and head-free. In these methods, one [13,20] or two 

remote cameras (stereo vision) [9, 21, 22] are used to track facial features to estimate the 3D 

pose of the head. From the 3D head pose, the position of the center of the eyeballs can be 
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estimated and by combining this information with the estimated positions of pupil centers or 

iris centers, the optic axes of the eyes can be reconstructed and, eventually, the point-of-gaze 

can be estimated. Given that these approaches use full-face images, the resolution of the 

pupil or iris is limited and the estimate of the point-of-gaze has an accuracy of only 3º [22]. 

This approach is useful in driver-safety systems in which the driver’s focus of attention (e.g. 

front, rear-view mirrors, dashboard, etc.) is to be monitored. 

 An approach that uses the perspective projection of the iris-sclera boundary (limbus) 

to estimate the point-of-gaze has been suggested in [23, 24]. The general idea can be 

summarized as follows. The limbus can be modeled as a circle. The projection of the limbus 

obtained in a camera image is in general an ellipse (perspective projection of a circle). 

Theoretically, if the radius of the iris is known, the image of the limbus can be back projected 

to space and the 3D position of the iris center and the 3D orientation of the normal to the 

plane of the limbus can be reconstructed. Using this information, the point-of-gaze can be 

estimated. It should be noted that even though there are two possible solutions for the back 

projection problem and, consequently, two solutions for the position of the iris center and the 

orientation of the limbus plane, using appropriate physical constraints the spurious solution 

can be discarded. The main issue with this type of approach is image resolution. In general 

the top part and/or the bottom part of the iris is occluded by the eyelids and only the lateral 

edges of the iris can be used to fit an ellipse and apply the above methodology. In order to be 

able to fit an ellipse reliably in such conditions, a high-resolution image of the iris is 

required. This issue has been addressed by the use of two remote cameras, a pose camera that 

has a field of view somewhat larger than the whole face and a gaze camera mounted on a pan 

and tilt unit that takes zoom-in images of both eyes [23] or only one eye [24]. The pose 

camera is used to track the face and estimate the 3D head pose. The information about the 

head pose is used to aim the gaze camera to the eye(s). Point-of-gaze estimation errors of less 

than 1º of visual angle are reported in [24]. 

 A popular type of approach to gaze estimation that has been considered since the 

early 60s [25] consists of using the pupil center and one or more corneal reflections. The 

front corneal surface resembles a convex mirror and reflection of light from any bright object 

(e.g. a discrete light source) forms a virtual image of the bright object behind the corneal 

surface. This virtual image appears as a bright spot that is called the first Purkinje image and 
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usually referred to as corneal reflection or glint. The bright objects are usually near infrared 

(IR) light sources that are used to illuminate the eye while not interfering with normal vision 

(invisible to the human eye). 

A fully operational video-based remote gaze estimation system using the pupil center 

and one corneal reflection was reported in the early 70s in [26]. In that system, a vidicon TV 

camera with a telephoto lens and a near-IR filter was used to obtain images of one eye. The 

near-IR illumination was collinear with the optic axis of the camera. The field of view of the 

camera was just slightly larger than an eye in order to be able to estimate the centers of the 

pupil and the corneal reflection as accurately as possible. Two versions of the system were 

described: one that allowed for eye translation in a volume of one cubic inch and one that 

allowed for eye translation in a volume of one cubic foot. The cubic-foot version 

incorporated moving mirrors and a moving lens to bring the image of the eye to the camera 

sensor and keep the image in focus. The basic gaze estimation principle can be described as 

follows. If the corneal surface is assumed to be a convex spherical mirror and the 

illumination is collimated, the distance between the orthographic projections of the pupil 

center and the virtual image of the light source on a fixed plane is proportional to the sine of 

the angle between the optic axis of the eye and the optic axis of the camera (collinear with 

the illumination). Furthermore, if the orthographic projection plane is parallel to the camera 

image plane (perpendicular to the illumination), the distance between the images of the 

centers of pupil and corneal reflection is equal to the product of the distance between the 

pupil center and the center of corneal curvature and the sine of the angle between the optic 

axis of the eye and the optic axis of the camera. 

Using this idea, it is possible, in principle, to estimate the gaze direction relative to 

the camera axis after the system has been calibrated for each subject. However, the image 

obtained by the camera is a perspective projection rather than an orthographic projection and 

this can be an important source of error. If eye translation is restricted to only a few 

millimeters relative to the position adopted during calibration, the assumption of an 

orthographic projection is reasonable. In contrast, if eye translation is on the order of several 

centimeters, large estimation errors can occur unless the translation component is measured 

and compensated for. One example about how eye translation affects the estimation of gaze 

direction is when the distance between the eye and the camera changes. Suppose that the 
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gaze direction relative to the camera axis remains constant but the distance between the eye 

and the camera changes, i.e. the size of the eye image changes. This affects the distance 

between the centers of pupil and corneal reflection in the eye image and leads to the wrong 

conclusion that the gaze direction has changed. 

The estimation of the point-of-gaze is less straightforward than the estimation of gaze 

direction. In general, to estimate the point-of-gaze, a point in space through which the line of 

gaze passes is also needed. Again, if eye translation is restricted to only a few millimeters 

relative to the position adopted during calibration, it is possible to obtain a relatively accurate 

estimate of the point-of-gaze using the pupil center-corneal reflection vector. However, this 

is not the case in general. In the case of the cubic-foot version of the gaze estimation system 

[26], although the mathematical model is not given explicitly, it is inferred that it had the 

capability to estimate the position of the eye in space from the orientation of the mirrors and 

the range of the focusing system, and hence it could compensate for eye translation within 

the cubic foot of space. Accuracy of about 1º of visual angle was reported in that work. 

In the light of the above discussion, it is not difficult to understand why when the 

vector from the pupil center to the corneal reflection alone is used to estimate the point-of-

gaze, large estimation errors result when the head moves relative to the position adopted 

during calibration [17]. Several different solutions with different degrees of complexity have 

been proposed in order to deal with the problem of head displacement. In [27] an approach 

that can compensate for lateral head displacement, to some extent, but not for variation of the 

distance between the eye and the camera, is suggested. In this approach, the eye is assumed 

to be on a fixed plane parallel to the computer screen where the point-of-gaze is to be 

estimated. One light source is mounted coaxially with the optic axis of the camera, 

horizontally centered below the monitor. A second light source is mounted, vertically 

centered, on one side of the monitor. The combination of the two light sources is used to 

approximately mimic a single light source at the center of the screen in order to exploit 

system symmetries. The horizontal image coordinate of the glint corresponding to the light 

source mounted below the monitor, and the vertical image coordinate of the glint 

corresponding to the side mounted light source, are used to approximate the coordinates of a 

virtual glint that would be produced by a light source mounted at the center of the screen. 

The absolute coordinates of this virtual glint are used as an indication of eye translation in the 
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plane parallel to the screen, while the vector from the pupil center to the virtual glint is used 

as an estimate of eye rotation. In that way, the sensitivity to lateral eye translation is reduced 

although the problem of variation of the distance between the eye and the camera is not 

solved.  

Solutions that use information about the distance between the eye and the camera, and 

yield accuracies of about 1º of visual angle for the estimation of the point-of-gaze on a plane 

scene, have been proposed. In [28, 29, 30, 31] an ultrasonic distance meter mounted on the 

camera is used. In [12] a method using an asymmetric aperture to control an autofocus 

system and estimate the eye-camera distance is described. An asymmetric aperture built into 

the camera lens causes the image of the corneal reflection to vary in size and orientation as 

the eye moves forward and backward. The magnitude of the corneal reflection blur provides 

information about how far out-of-focus the camera is, and the orientation of the corneal 

reflection image provides polarity information as to whether the camera is focused too near 

or too far. This concept is implemented in a commercial system [32]. Another commercial 

system [33] utilizes a magnetic head tracker in order to compensate for error induced by head 

displacement relative to the position adopted during system calibration. However, the use of 

the magnetic head tracker means that a device has to be attached to the head of the subject. In 

[34], a second remote camera is used to track facial features and estimate the position of the 

eye in space.  

An attempt to avoid the problem of estimating the position of the eye in space is 

presented in [35]. This approach uses multiple corneal reflections and exploits the invariance 

property of cross ratios in projective geometry. However, results are not accurate since the 

use of cross ratios assumes that the cornea is a plane mirror, which is incorrect. 

The systems described in [12, 17, 26, 27, 28, 29, 32, 33] use the bright pupil effect. In 

these cases, the illumination (near-IR) is collinear with the optic axis of the camera. The IR 

light enters the eye and the retina reflects it back to the camera, making the pupil brighter 

than the surrounding iris. In these systems, the amount of light that enters the eye and is 

reflected back from the retina is a function of pupil diameter. For small pupil diameters (less 

than 4 mm) the contrast between the bright pupil and the iris is poor, making the extraction of 

the pupil boundary from the eye image very difficult or impossible. For this reason, systems 

using the bright pupil effect, in general, have to be used in dim light conditions [17, 26]. 
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Additionally, experience has shown that in about 5 to 10 % of the population the near-IR 

reflectivity of the retina is not enough for the bright pupil effect to work properly [17, 36].  

When the IR illumination is not coaxial with the optic axis of the camera, the pupil 

appears as a dark circle against the surrounding iris (dark pupil effect). This is because the 

light reflected by the retina is not collected back by the camera. The dark pupil effect is not 

affected by the pupil diameter and therefore it can be used in a larger variety of applications 

and environments. One of the papers cited above that uses the dark pupil effect is [34]. One 

reason for the interest in the bright pupil effect is that it usually allows for more compact 

implementations of the gaze estimation system. 

An approach that combines the bright and dark pupil effects is used in [30, 31, 35]. In 

this approach, on-axis illumination (bright pupil) is used for one video field and off-axis 

illumination (dark pupil) is used for the other video field. The image difference between the 

two fields removes the effect of ambient IR illumination while the pupil appears as a bright 

disk. This technique allows for easy detection of the pupil boundary. A specific description 

of this method can be found in [37, 38, 39, 40]. 

 Another method for the estimation of gaze direction, although not practical for a 

head-free system, is described briefly here for the sake of completeness. It is called the 

double Purkinje image method [1]. As light passes through the eye, reflections occur at each 

optical interface where the index of refraction changes. In addition to the corneal reflection 

(first Purkinje image) produced by the front surface of the cornea, there is a second image 

produced by the rear surface of the cornea, a third one produced by the front surface of the 

lens and a fourth image produced by the rear surface of the lens. The second Purkinje image 

is relatively dim and the third Purkinje image is formed in a plane far from the other images, 

hence they are not used in this method. This method uses the relation between the first and 

fourth Purkinje images to estimate the gaze direction relative to the axis of the collimated 

illumination. More specifically, the distance between the first and fourth Purkinje images is 

proportional to the sine of the angle between the optic axis of the eye and the illumination 

axis. The drawbacks of this method are that it has a limited tracking range and requires bright 

illumination in order to be able to detect the fourth Purkinje image reliably. In addition, an 

elaborate and carefully aligned optical system has to be placed close to the eye.  
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1.2 Proposed system specifications 

In this thesis, a novel model-based monocular point-of-gaze estimation system that 

does not require any attachment to the head and allows for some head movement is 

presented. The system consists of a computer monitor to present visual information, two 

near-IR light sources at the sides of the monitor that illuminate the eye and produce two 

corneal reflections (glints), and a video camera with a near-IR filter, centered under the 

monitor, that captures images of the subject’s eye. Since the illumination is off-axis, the pupil 

appears darker than the surrounding iris. A mathematical model that uses the estimated 

coordinates of pupil and glints centers in each image of the eye to compute the point-of-gaze 

on the computer screen was developed. Using a set of model parameters that is estimated 

through a calibration procedure, the visual axis of the eye in space can be obtained and the 

point-of-gaze on the computer screen can be estimated.  

 In order to derive the specifications of the proposed point-of-gaze estimation system, 

the applications of interest were considered. In particular, in this thesis, the proposed system 

is applied as a tool in the development of a visual aid for persons with macular degeneration. 

This visual aid would allow them to read from a computer monitor. Aged-related macular 

degeneration is the leading cause of legal blindness in North America, affecting about 1.6 

million persons over 50 years of age [41]. This disease affects the high-resolution part of the 

retina and results in impaired or complete central vision loss, dramatically affecting the 

quality of life. For this application, preliminary experiments suggest that an accuracy of 1º of 

visual angle and an estimation rate of 10 Hz are adequate. These requirements are consistent 

with other applications of interest for this system: aid for motor disabled persons and studies 

in psychiatry and psychology. 

Eye-controlled computer interfaces for the motor disabled, including a word 

processor using hierarchical menu trees with as little as six options per screen, have been 

reported in the literature [17, 18]. In those interfaces, the number of options per screen was 

limited by the accuracy of the estimation of the point-of-gaze. Better accuracy permits an 

increase in the amount of information presented per screen thus reducing the number of steps 

needed to get to a desired menu option. Ideally, in the case of word processing, a full on-

screen keyboard would be used. For this application, an accuracy of 1º of visual angle is 

adequate as an initial goal since it is in general possible for the subject to shift his/her gaze 
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slightly to compensate for small estimation errors so that a pointer can be moved to the 

desired location on the screen. A minimum of ten estimates per second is considered 

adequate for most applications of this type. 

 In a typical experiment for the assessment of mood disorders [3, 4, 5], an accuracy of 

1º of visual angle is satisfactory as it allows not only for the determination of which picture is 

the focus of attention but also for the identification of the area or areas of interest inside each 

picture. Unless the analysis of fast eye movements that shift the point-of-gaze is needed, an 

estimation rate of 15-30 Hz is adequate.  

 The above discussion suggests that an accuracy of 1º and an estimation rate of at least 

10 Hz (15-30 Hz for analysis of visual scanning patterns) are satisfactory for the applications 

of interest. 

 

1.3 Organization of this document 

 Chapter 2 develops a mathematical model that relates the coordinates of pupil and 

glints centers in each image of the eye to the point-of-gaze on the computer screen. Chapter 3 

describes the estimation of system and eye parameters that are required for the calculation of 

the point-of-gaze. It also discusses the sensitivity of the mathematical model to errors in each 

of the system and eye parameters, the effects of errors in the estimation of the coordinates of 

pupil and glints centers, and the effects of fixation errors during calibration. Chapter 4 

discusses real corneas, that are not exactly spherical, and describes solutions that improve the 

estimation accuracy. Several simulation and experimental results are included. Finally, 

Chapter 5 proposes a novel visual aid to allow patients with macular degeneration to read 

from a computer monitor and shows preliminary experimental results where the point-of-

gaze estimation system was used to simulate the disease in healthy subjects. The 

contributions of this thesis and future work are summarized at the end of the chapter. 
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2. Mathematical model 
 

2.1 Introduction 

The system consists of a computer monitor to present visual information, two near-IR 

light sources1 at the sides of the monitor that illuminate the eye and produce two corneal 

reflections (glints), and a video camera with a near-IR filter, centered under the monitor, that 

captures images of the subject’s eye (Fig. 2.1). This chapter describes a mathematical model 

that uses the estimated coordinates of the centers of the pupil and glints in each image of the 

eye to compute the subject’s point-of-gaze on the computer monitor. 

 

 
(a) System setup showing the video camera and the IR 

light sources 

 
(b) Sample eye image showing the pupil and the two 

corneal reflections (glints) 

Figure 2.1: System setup and sample eye image. 

 

 Section 2.2 details the assumptions used to develop the mathematical model. Section 

2.3 defines the coordinate systems involved in the model. Section 2.4 develops the 

geometrical-optical model, which is the core of the mathematical model. Sections 2.5 and 2.6

                                                 
1 Each light source has 20 near-IR (850 nm) LEDs. 
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 discuss the transformations between the different coordinate systems. Section 2.7 addresses 

the implementation of the equations to estimate the point-of-gaze from the coordinates of the 

centers of pupil and glints, while Section 2.8 considers the implementation of the equations 

to solve the inverse problem. 

 

2.2 Model assumptions 

The following set of assumptions was used to develop the mathematical model: 

- The corneal bulge resembles a convex spherical mirror [1]. 

- The center of corneal curvature and the pupil center, as well as the center of rotation 

of the eye, are on the optic axis of the eye. 

- The nodal point of the eye is assumed to be coincident with the center of corneal 

curvature. 

- The video camera is modeled as a pinhole camera [42]. 

- The system configuration is fixed and its parameters (i.e. position of the light sources 

and position and orientation of the camera relative to the monitor) can be measured 

accurately.  

- The parameters of the eye (i.e. radius of curvature of the cornea, distance between the 

center of corneal curvature and pupil center, and horizontal and vertical angles 

between the visual axis and the optic axis of the eye) are subject specific and can be 

estimated accurately through a calibration procedure (Chapter 3). 

- The coordinates of the centers of the pupil and glints in the image of the eye can be 

estimated accurately for each image. 

The validity of the assumption that the corneal bulge resembles a convex spherical 

mirror is discussed in Chapter 4. 

 

2.3 Coordinate systems 

Three coordinates systems are involved in the mathematical model: world coordinate 

system, camera coordinate system and image coordinate system. 
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2.3.1 World coordinate system 

The world coordinate system is a right-handed 3-D Cartesian coordinate system 

whose axes are represented by upper-case letters (X, Y, Z). The XY-plane is coincident with 

the plane of the monitor and the origin is at the center of the screen, with the X-axis 

horizontal (Fig. 2.2(a)). These coordinates are measured in units of length, more specifically, 

in mm. 

 

2.3.2 Camera coordinate system 

The camera coordinate system is a right-handed 3-D Cartesian coordinate system 

whose axes are represented by lower-case letters (x, y, z). The xy-plane is coincident with the 

plane of the CCD2 image sensor and the origin is at its center. The x-axis is in the direction of 

the rows, and the z-axis is coincident with the optic axis of the camera (Fig. 2.2(b)). These 

coordinates are also measured in units of length, typically in mm. 

 

2.3.3 Image coordinate system 

The image coordinate system is a 2-D coordinate system whose axes represent the 

row and column coordinates measured in pixels from the upper-left corner of the image (Fig. 

2.2(c)). These coordinates are represented by lower-case letters (r, c). 

 

 

 

 

 

 

 

 

 

Figure 2.2: Coordinate systems: (a) world coordinate system, (b) camera coordinate system, and (c) image 

coordinate system. 

 

                                                 
2 CCD = Charge-Coupled Device 
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2.4 Geometrical-optical model 

Based on the laws of specular reflection and a pinhole camera model, a ray-tracing 

diagram can be drawn (Fig. 2.3) and a system of equations that describes the point-of-gaze as 

a function of the coordinates of the centers of the pupil and glints in the camera image can be 

constructed. Throughout this discussion, all vectors are column vectors in the world 

coordinate system, unless stated otherwise. 

Figure 2.3: Ray tracing diagram (not to scale). 

 

Consider a ray that comes from the center of light source 1, l, and reflects at a point q 

on the corneal surface such that the reflected ray passes through the nodal point of the 

camera, o, and intersects the camera image plane at u. As seen in Fig. 2.3, the condition that 

q is on the corneal surface, can be represented as 

R=− cq . (2.1) 

The laws of reflections state that the angle of incidence (i.e. the angle between the incident 

ray and the normal at the point of reflection) and the angle of reflection (i.e. the angle 

between the reflected ray and the normal at the point of reflection) are equal, and that the 

incident ray, the reflected ray and the normal at the point of reflection are coplanar. Noting 
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that vector (q – c) is normal to the spherical surface at q, the two previous conditions can be 

expressed as 

qlcqqoqocqql −⋅−•−=−⋅−•− )()()()(  (2.2) 

and 

0=−•−×− c)(qq)(oq)(l  , (2.3) 

respectively. 

Since the reflected ray passes through the nodal point of the camera, we have that the 

points q, o and u are collinear, which can be expressed in parametric form as 

)( uooq −+= qk  ,  for some qk . (2.4) 

Similarly, for light source 2, the following equations result: 

R=− cs  , (2.5) 

smc)(ss)(osoc)(ss)(m −⋅−•−=−⋅−•−  , (2.6) 

0=−•−×− c)(ss)(os)(m  , (2.7) 

)( woos −+= sk  ,  for some sk . (2.8) 

For the pupil center, p, we can write two equations, corresponding to the distance K 

between the pupil center and the center of corneal curvature, c, and the fact that the ray 

coming from p and passing through the nodal point, o, intersects the camera image plane at 

v. These conditions can be written as 

K=− cp  (2.9) 

and 

)( voop −+= pk  ,  for some pk  , (2.10) 

respectively. 

Now, consider the problem of reconstructing the optic axis of the eye as the line 

defined by points c and p, i.e. the center of corneal curvature and the pupil center. Let’s 

assume that the parameters of the system l, m and o, the parameters of the eye R and K, and 

the positions of the images of the centers of pupil and glints in world coordinates u, v and w 

are known. Equations (2.1) thru (2.10) constitute a system of 7 scalar equations and 3 vector 

equations that are equivalent to a total of 16 scalar equations. The unknowns are the four 

points c, p, q and s and the scalar parameters kq, ks and kp. At 3 scalar components per point, 
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the total number of unknowns amount to 15. Consequently, there are enough equations to 

solve for the unknowns and reconstruct the optic axis of the eye, as explained in detail in 

Section 2.7. If only one glint is considered, the number of scalar unknowns reduces to 11, 

while the total number of scalar equations reduces to 10, making it impossible to reconstruct 

the optic axis of the eye without using some other constraints. 

The point-of-gaze is defined by the intersection of the visual axis with the scene. The 

visual axis is the line defined by the nodal point of the eye3 and the center of the fovea (i.e. 

the high-acuity region of the retina corresponding to 0.6 to 1º of visual angle), and is deviated 

from the optic axis [1]. In a typical adult human eye, the fovea falls about 4-5º temporally 

and about 1.5º below the point of intersection of the optic axis and the retina [43]. 

Figure 2.4: Orientation of the optic axis of the eye. 

 

Since the system of equations that was developed at the beginning of this section 

allows for the reconstruction of the optic axis rather than the visual axis, the relation between 

the two axes has to be modeled. The orientation of the optic axis of the eye can be described 

by the pan (horizontal) angle �eye and the tilt (vertical) angle �eye defined in Fig. 2.4, where 

the world coordinate system is translated to the center of rotation of the eye, d. If the 

horizontal and vertical angles between the optic and visual axes are given by �eye and �eye, 

respectively, the orientation of the visual axis can be expressed by the pan angle (�eye +�eye) 

                                                 
3 Actually, the eye has two nodal points, 0.3 mm apart. For the sake of simplicity, a single nodal point is 
considered. 

-Zd 

Yd 

Xd 

�eye 

�eye 

c 

d 
D Xd // X 

Yd // Y 
Zd // Z 

optic axis of the eye 

p 
K 

d : center of rotation 
c : center of corneal curvature 
p : pupil center 



Chapter 2: Mathematical model 

 

18

and the tilt angle (�eye +�eye), where all angles are signed. As it can be seen in Fig. 2.4, the 

angles �eye and �eye can be obtained from c and p by solving the following equation: 













−
+=

eyeeye

eye

eyeeye

K

θϕ
ϕ

θϕ

coscos

sin

sincos

cp  . (2.11) 

The optic axis and the visual axis intersect at the nodal point of the eye. The nodal 

point moves relative to the center of corneal curvature with different degrees of eye 

accommodation but the distance between them remains within 1 mm [1]. For this reason and 

for the sake of simplicity, the nodal point is assumed to be coincident with the center of 

corneal curvature. Fig. 2.5 shows a schematic cross section of the right eye seen from above.  

From this discussion, the visual axis can then be described as 






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

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+
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+=

)cos()cos(

)sin(
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eyeeyeeyeeye

eyeeye

eyeeyeeyeeye

gk

αθβϕ
βϕ

αθβϕ
cg  (2.12) 

for all kg. Since by definition the scene is at Z = 0, the point-of-gaze is given by the previous 

equation for a value of kg such that the Z-component of g, gZ, equals 0, that is, 

)cos()cos( eyeeyeeyeeye

Z
g

c
k

αθβϕ ++
=  . (2.13) 

It should be noted that �eye < 0 for the right eye and �eye > 0 for the left eye, while �eye > 0. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Schematic cross-section of the right eye seen from above, showing the optic and visual axes. 
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 The development of this section assumed that the positions of the centers of the 

images of pupil and glints are expressed in world coordinates. However, in general they are 

given in pixels in the image coordinate system and need to be transformed to camera 

coordinates and then to world coordinates in order to estimate the point-of-gaze. The 

following two sections describe the relation among these three coordinate systems (see 

definitions in Section 2.3). 

 

2.5 Perspective transformation and transformation between world and 

camera coordinate systems 

As mentioned previously, the camera is modeled as a pinhole camera [42]. The 

perspective transformation, i.e. the projection of 3-D points onto the camera image plane, is 

roughly depicted in Fig. 2.3. An example of perspective transformation is shown for clarity 

in Fig. 2.6 for an object point q, an image point u, and a camera with the center of its image 

plane at t and its nodal point at o, where all these points are in world coordinates. The nodal 

point of the camera corresponds to the center of its lens. 

Figure 2.6: Perspective transformation. 

 

The camera geometry can be characterized either by the center of the image plane, t, 

and the nodal point, o, or by the center of the image plane, the orientation of the optic axis 
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given by the pan and tilt angles �cam and �cam and the distance between the nodal point and 

the image plane, represented by �. Both characterizations are similar, as shown in Fig. 2.7, 

where a translated copy of the world coordinate system is placed with its origin at t as a 

reference. Formally, this relation is given by the following equation: 












+=

camcam

cam

camcam

θϕ
ϕ

θϕ
λ

coscos

sin

sincos

to  . (2.14) 

The value of ��is obtained from the Gaussian lens formula 

lengthfocal lensmagedistance ilensbjectdistance o

111 =
−

+
−

 , (2.15) 

where ����distance image–lens and the distance object–lens is a typical value of the distance 

between the eye and the camera lens� As it will be shown later, the accuracy of the value of � 

is not critical. 

Figure 2.7: Camera geometry. 

 

In order to provide a more general description, a rotation of the camera around its 

optic axis by an angle �cam is allowed, as shown in Fig. 2.8. In that figure, the x0-axis is 

perpendicular to the Y-axis. 
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Figure 2.8: Rotation of the camera around its optic axis by an angle �cam. 

 

The relation between the world coordinate system and the camera coordinate system 

can be analyzed in two equivalent ways. One approach is described here and the other in 

Appendix A. A point defined by u = [Xu Yu Zu]
T in the world coordinate system is represented 

by (xu, yu, zu) in the camera coordinate system. Note that for points in the image plane zu = 0 

and therefore points in the image plane can be described in the camera coordinate system as 

(xu, yu). 

The transformation between the world coordinate and the camera coordinate systems 

stems naturally from Fig. 2.6: a point u in world coordinates can be transformed into camera 

coordinates just by projecting the vector (u – t) on each one of the camera coordinate axes. 

Formally, 

camux itu •−= )(  , (2.16) 

camuy jtu •−= )(  , (2.17) 

camuz ktu •−= )(  , (2.18) 
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where icam , jcam and kcam are the unit vectors in the direction of the x, y and z axes, 

respectively, expressed in world coordinates. Note that equation (2.18) is included for the 

sake of completeness. Conversely, 

tkjiu +++= camucamucamu zyx  . (2.19) 

Note that the previous equations can be written as 
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respectively. 

 The unit vectors icam , jcam and kcam are obtained as follows. From Figs. 2.6 and 2.7, 

and equation (2.14), it should be clear that 












=

camcam

cam

camcam

cam

θϕ
ϕ

θϕ

coscos

sin

sincos

k  . (2.22) 

 The unit vector icam,0 (Fig. 2.8) is perpendicular to kcam and j (the unit vector in the 

direction of the Y-axis, namely [0 1 0]T), hence 

cam

cam
cam kj

kj
i

×
×=0,  . (2.23) 

Then, 

0,0, camcamcam ikj ×=  . (2.24) 

 It can be observed from Fig. 2.8 that 

0,0, sincos camcamcamcamcam jii κκ +=  , (2.25) 

0,0, cossin camcamcamcamcam jij κκ +−=  . (2.26) 

Substitution of equations (2.22), (2.25) and (2.26) into equation (2.21) allows for the 

transformation between the camera coordinate system and the world coordinate system. 
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2.6 Transformation between the image coordinate system and the camera 

coordinate system 

 In order to estimate the point-of-gaze in the computer screen, the centers of pupil and 

glints in the image of the eye, that are given in pixels in the image coordinate system, have to 

be converted to the camera coordinate system and then to the world coordinate system. The 

relations between the camera coordinate system and the image coordinate system are 

illustrated in Fig. 2.9.  

 

Figure 2.9: Relations between the camera coordinate system and the image coordinate system. 

 

Formally, for a point with row coordinate r and column coordinate c in pixels, the 

corresponding coordinates (x, y) in units of length in the camera coordinate system are 

obtained as 

(1,1) c (column) 

r
(row)

object as seen from the camera and 
image captured by the camera 

image on the camera image plane 
(as seen from the back of the image 
plane – looking towards the object) 

image on the camera image plane 
(as seen from the front of the image 
plane – looking from the object) 

nodal point of the camera 
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where ccenter and rcenter are, respectively, the column coordinate and row coordinate of the 

center of the image in pixels and pixel pitch is the distance in units of length between 

adjacent pixels. It is assumed that the pixels are square, i.e. the pixel pitch is the same along 

the columns and along the rows. As an example, for a typical image of 640 pixels x 480 

pixels, ccenter = 320.5 and rcenter = 240.5. 

 

Correspondence between light sources and glints in the image of the eye 

 It is worthwhile to express the correspondence between the light sources and the 

glints explicitly as shown in the following table: 

Light 
source 

Point of reflection on 
the cornea 

Image in world 
coordinates 

Image in camera 
coordinates 

Position of the image point in 
the image of the eye 

l q u (xu, yu) Right 
m s w (xw, yw) Left 

Table 2.1: Correspondence between light sources and glints in the image of the eye. 

 

2.7 Implementation of the equations to estimate the point-of-gaze 

Assume that the positions of the light sources (l and m), the extrinsic parameters of 

the camera (t, �cam, �cam, �cam and �), the intrinsic parameters of the camera (pixel pitch, 

ccenter and rcenter) and the parameters of the eye (R, K, �eye and �eye), are known. The position 

of the nodal point of the camera (o) is then calculated using equation (2.14). The 

measurement and estimation of the above parameters are discussed in Chapter 3. 

 It was shown in Section 2.4 that the coordinates of the center of corneal curvature, c, 

and the pupil center, p, can be computed from the coordinates of the images of the centers of 

pupil and glints and then this information can be used to reconstruct the optic axis of the eye. 

From the optic axis, the visual axis can be reconstructed, and the point-of-gaze can be found 

as the intersection of the visual axis with the computer screen using equations (2.12) and 

(2.13). This section shows how to rearrange the equations in Section 2.4 to reduce the 

number of unknowns and improve computation speed. 

 The development in Section 2.4 assumes that the coordinates of the images of the 

centers of pupil and glints are given in world coordinates. Since the coordinates of the centers 
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of pupil and glints in the digitized image of the eye are expressed in pixels in the image 

coordinate system, they have to be transformed first to camera coordinates as explained in 

Section 2.6 (equation (2.27)) and then to world coordinates as described in Section 2.5 

(equation (2.19) or (2.21)). After these two transformations, the images of the centers of 

pupil and glints are described in world coordinates by the points v, u and w, respectively.  

 The laws of reflection and the pinhole camera model imply that points l, q, o, u and c, 

are all in the same plane; this fact is formally described by equations (2.3) and (2.4) together. 

Similarly, points m, s, o, w and c, all share another plane; this fact is formally expressed by 

equations (2.7) and (2.8) together. These conditions imply that points o and c belong to both 

planes and, consequently, to the line that results from the intersection of both planes. The 

normal of the first plane can be written as )()( olou −×− , given that l, o and u are known. 

The normal of the second plane can be written as )()( owom −×− , given that m, o and w are 

known. Hence, the direction of the line that results from the intersection of both planes is 

given by 

b
b

b =norm  ,  where  )]()[()]()[( owomoloub −×−×−×−=  . (2.28) 

If 0b ≠ , the center of corneal curvature c can be expressed in parametric form as 

normck boc +=  , (2.29) 

where kc is positive for the system configuration shown in Fig. 2.1, and represents the 

distance between the center of corneal curvature and the nodal point of the camera. The 

condition that 0b ≠  is easily met for the system configuration shown in Fig. 2.1, where the 

light sources and the camera form a visible “V”. 

 Equations (2.1), (2.4) and (2.29) can be combined to get 

Rkk normcq =−−=− buocq )(  . (2.30) 

This equation can be re-written as 

22
])([])([)( Rkkkkkk normcqnormcqnormcq =−−•−−=−− buobuobuo   (2.31) 

or 

0)(2 2222 =−+•−−− Rkkkk cqnormcq buouo  , (2.32) 
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which is a quadratic in kq. Solving for kq and keeping the negative sign of the square root (the 

positive sign corresponds to a spurious solution “behind” the center of corneal curvature, on 

the extension of the spherical corneal surface), we obtain 

2

22222 )(])[()(

uo

uobuobuo

−

−−−•−−•−
=

Rkkk
k

cnormcnormc

q  . (2.33) 

This equation can be substituted into equation (2.4) to express q as a function of the 

parameter kc. 

 Similarly, equations (2.5), (2.8) and (2.29) can be combined and solved for ks, while 

keeping the negative sign of the square root, to get 

2

22222 )(])[()(

wo

wobwobwo

−

−−−•−−•−
=

Rkkk
k

cnormcnormc

s  . (2.34) 

This equation can be substituted into equation (2.8) to express s as a function of the 

parameter kc.  

In a similar way, equations (2.9), (2.10) and (2.29) can be combined and solved for 

kp, while keeping the negative sign of the square root, to obtain 

2

22222 )(])[()(

vo

vobvobvo

−

−−−•−−•−
=

Kkkk
k

cnormcnormc

p  . (2.35) 

This equation can be substituted into equation (2.10) to express p as a function of the 

parameter kc.  

By using the above equations, the unknowns q, s, c and p are expressed as functions 

of the parameter kc. The expressions for q and c as functions of the parameter kc are 

substituted into equation (2.2), which is solved numerically for kc, to obtain a solution kc1. 

The starting point for this numerical solution is taken to be a typical value of the distance 

between the eye and the camera lens. A second solution kc2 is obtained by substituting the 

expressions for s and c as functions of the parameter kc into equation (2.6), which is also 

solved numerically for kc. In this case, for faster convergence, the value kc1 is used as the 

starting point for the numerical solution. Then, the value for the parameter kc is taken as the 

arithmetic mean of the two solutions kc1 and kc2. Using the computed value of the parameter 

kc, c is calculated with equation (2.29) and p is obtained using equations (2.10) and (2.35). 

Hence, the optic axis of the eye can be reconstructed. 
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 Having obtained c and p, the orientation of the optic axis of the eye, given by the pan 

angle �eye and the tilt angle �eye can be computed from equation (2.11) as 

K

cp YY
eye

−= arcsinϕ  (2.36) 

and 

ZZ

XX

eye

XX
eye cp

cp

K

cp

−
−−=−= arctan

cos
arcsin

ϕ
θ  . (2.37) 

 Using these values of �eye and �eye, the point-of-gaze on the computer screen, g, is 

finally calculated with equations (2.12) and (2.13). 

 The methodology developed so far in this chapter to estimate the point-of-gaze from 

the coordinates of the centers of pupil and glints in an image of the eye can be thought of as a 

function 

),(ˆˆ ρfgg =  (2.38) 

where 

][       glintrightglintrightcenterpupilcenterpupilglintleftglintleft crcrcr=f  (2.39) 

is the vector of coordinates of the centers of pupil and glints in the image of the eye 

expressed in pixels in the image coordinate system, and ρ is the vector of model parameters 

used to estimate the point-of-gaze. The notation ĝ  emphasizes that it is an estimate of the 

point-of-gaze. 

 Note that the information obtained through the computation of the point-of-gaze 

allows for the estimation of the position of the center of rotation of the eye d from  













−
+=

eyeeye

eye

eyeeye

D

θϕ
ϕ

θϕ

coscos

sin

sincos

dc  , (2.40) 

as it can be seen from Fig. 2.4. In this way, the methodology of this chapter can be also 

thought of as a function 

),(]ˆˆ[ ρfdg G=  , (2.41) 

where the notation “^” stands for estimate. 
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2.8 The inverse problem 

 Solving the inverse problem allows to calculate the coordinates of the centers of pupil 

and glints in an image of the eye from the position of the center of rotation of the eye, d, and 

the point-of-gaze, g, on the computer screen. This supports studies of the sensitivity of the 

estimation of the point-of-gaze to three type of error: (a) errors in the model parameters, (b) 

errors in the estimation of the coordinates of the centers of pupil and glints in each image of 

the eye, and (c) fixation errors during calibration. 

 Assuming that the system and eye parameters, including the distance between the 

center of rotation and the center of corneal curvature, D, are known, the inverse problem can 

be solved in several steps. The first step is to calculate the position of the center of corneal 

curvature, c. The value of c could be computed using equation (2.40) but the values of �eye 

and �eye are needed. For this purpose, equations (2.12) and (2.40) can be combined to get 
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dg  , (2.42) 

which can be solved numerically for �eye, �eye and kg, thus allowing to obtain c from equation 

(2.40). In order to reduce computation time, note that in the context of Fig. 2.5 and equations 

(2.12) and (2.40), c can be computed from d and g going through the following steps:  

(i) Take a first approximation to the visual axis as the line that goes through d and g. 

This is a reasonable approximation since the distance between c and g is two orders of 

magnitude greater than the distance between d and c. With this idea, we can write that 

dg
dg

−
−≈
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 (2.43) 

and take the first approximation to the pan and tilt angles of the optic axis �eye,0 and �eye,0 

from 

dg
dg

−
−=
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 (2.44) 

obtaining 
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eye
YY

eye

dg βϕ −
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arcsin0,  (2.45) 
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eye dg

dgdg αα
βϕ

θ −
−
−−=−

+−
−= arctan

)cos(
arcsin

0,
0, dg

 . (2.46) 

(ii) Using these values of �eye,0 and �eye,0 compute the first approximation to the center 

of corneal curvature as 
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(iii) Set an iteration counter i = 1. 

(iv) Take a further approximation to the visual axis as the line that goes through c(i-1) 

and g as 
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to obtain 
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(v) Using these values of �eye,i and �eye,i compute a new approximation to the center of 

corneal curvature as 
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(vi) Increment the iteration counter i by 1. Steps (iv) and (v) can be repeated until 

ε≤− − )1(ii cc whereε is a specified tolerance. However, in practice, the result for i = 2 is 

used. When c = c2 is adopted and the coordinates of the images of the centers of pupil and 
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glints in the image of the eye are calculated as explained in this Section, the distance between 

the estimate of the point-of-gaze computed as discussed in Section 2.7 and the actual point-

of-gaze is less than 10-4 mm, which can be neglected. 

Following the calculation of the value of c, it is now possible to find the points of 

reflection, q and s, independently of each other. The point of reflection q can be obtained 

from the system of equations given by equations (2.1) thru (2.3). In that case there are three 

unknowns, namely, the three scalar components of vector q. However, calculations are sped 

up if those equations are rearranged such that the number of unknowns is reduced to one. For 

this purpose, note that equation (2.3) can be rewritten as 

0=−•−×− c)(qc)(oc)(l  (2.52) 

and equation (2.1) can be expressed as (Fig. 2.10) 

qR νcoscoc)(qc)(o −=−•−  (2.53) 

and 

)cos( qqR νω −−=−•− clc)(qc)(l  , (2.54) 

where 

cocl
c)(oc)(l

−−
−•−=

 
arccosqω  . (2.55) 

 

Figure 2.10: Representation of q in parametric form. 

 

Equations (2.52) thru (2.54) can be written in matrix form as 

�q 

�q 

l 

o 
q

c 



Chapter 2: Mathematical model 

 

31













−−
−=−

)cos(

cos

0

)(

qq

q

R

R

νω
ν

cl

cocqQ  , (2.56) 

where 













−
−

−×−
=

T

T

T

)(

)(

)]()[(

cl

co

cocl

Q  (2.57) 

and hence, from equation (2.56), q can be expressed as a function of the single parameter �q 

as 
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 Equation (2.58) is substituted into equation (2.2), which is solved numerically for �q, 

taking 2/0, qq ων =  as the starting point. Then, q is obtained using equation (2.58).  

Similarly, s is expressed in parametric form as 
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arccossω  . (2.61) 

Equation (2.59) is substituted into equation (2.6), which is solved numerically for �s, 
taking 2/0, ss ων = as the starting point. Then, s is obtained using equation (2.59). 

 The pupil center, p, can be computed directly using equation (2.11). Once p, q and s 

are known, we can find the respective images v, u and w in the camera image plane. Towards 

this end, consider the image of the pupil center and rewrite equation (2.10) as 
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p)(oov −+= vk  . (2.62) 

Given that the center of the camera image plane is given by point t and vector (o – t) defines 

the optic axis of the camera, normal to the image plane, the condition that v is in the image 

plane can be written as 

0)()( =−•− totv  . (2.63) 

Substituting equation (2.62) into (2.63), solving for kv and substituting back into (2.62), we 

obtain 

p)(o
toop
toto

ov −
−•−
−•−+=

)()(

)()(
 . (2.64) 

Similarly, 

q)(o
tooq
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−•−+=

)()(
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 , (2.65) 

)
)()(

)()(
s(o

toos
toto

ow −
−•−
−•−+=  . (2.66) 

 Finally, the coordinates of the centers of pupil and glints in world coordinates v, u 

and w are transformed to camera coordinates as explained in section 2.5 (equations (2.16) 

and (2.17) or equation (2.20)) and then to image coordinates as shown in section 2.6 

(equation (2.27)). 

 The methodology developed in this section can be thought of as a function 

),,( ρdgff =  (2.67) 

where g is the point-of-gaze, d is the position of the center of rotation of the eye, ρ is the 

vector of model parameters and f is the vector of coordinates of the centers of pupil and 

glints in the image of the eye (equation (2.39)). 
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3. Estimation of system and eye parameters  
 

3.1 Introduction 

 In order to apply the methodology developed in the previous chapter to estimate the 

point-of-gaze on the computer screen, several system and eye parameters must be known. 

The system parameters, namely the positions of the light sources and the position and 

orientation of the camera relative to the monitor, are measured. Given that the system 

configuration is fixed, these measurements are carried out only once. The system was 

configured in such a way that it is relatively easy to measure these parameters accurately. 

The positions of the centers of the light sources (l and m) are obtained by direct 

measurements using rulers and calipers. The tilt angle of the camera (�cam) is measured with 

a goniometer that is part of the system setup. The position of the center of the camera image 

plane (t) is measured indirectly, as it is calculated from the position of the axis of rotation of 

the camera holder relative to the screen, the position of the center of the image plane relative 

to the axis of rotation and the tilt angle of the camera. The pan angle of the camera (�cam) and 

the angle of rotation around the optic axis of the camera (�cam) are typically set to 0º, 

although these two parameters are calculated as part of a calibration procedure in order to 

provide two additional degrees of freedom that contribute to improved estimation accuracy 

under real experimental conditions. The distance between the nodal point of the camera and 

the camera image plane (�) is calculated from the focal length of the camera lens and a 

typical value of the distance between the cornea and the nodal point of the camera using 

equation (2.15). The typical value of the distance between the cornea and the nodal point of 

the camera is not critical, as it will be shown later. The remaining system parameters, which 

are needed for the transformation from image coordinates in pixels to camera and world 

coordinates, are the coordinates of the center of the image in pixels and the pixel pitch. If a
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 digital camera is used, these intrinsic parameters are obtained from information provided by 

the manufacturers of the camera and the image sensor. However, if an analogue camera is 

used, information about the image acquisition board (frame grabber) is also required. 

 The parameters of the eye, namely the radius of curvature of the cornea (R), the 

distance between the center of corneal curvature and pupil center (K), and the horizontal and 

vertical angles between the visual axis and the optic axis (�eye and �eye), are subject specific 

and cannot be measured easily. Consequently, these four parameters are obtained through a 

calibration procedure that is performed once for each subject. 

 The nominal values of the system parameters and typical values of the eye parameters 

are given in Appendix B. The following section formulates the calibration problem. Section 

3.3 presents a calibration example with experimental data. In Section 3.4 the sensitivity of 

the point-of-gaze estimation methodology to errors in model parameters is studied. Section 

3.5 shows how the calibration procedure can help to compensate for errors in parameters that 

are not directly estimated by the calibration procedure. In Section 3.6 the effects of errors in 

the estimation of pupil and glints centers in the eye images are studied. Section 3.7 discusses 

the effects of fixation errors during the calibration procedure and summarizes the 

observations of this chapter. 

 

3.2 Calibration procedure 

The four eye parameters R, K, �eye and �eye, and the system parameters �cam and �cam 

are optimized through a calibration procedure. In this procedure, the subject is asked to fixate 

a sequence of known points gi, i = 1, 2, …, N on the screen (typically, 9 evenly distributed 

points). In order to stabilize the point-of-gaze at the desired position, a stimulus consisting of 

a circle that reduces its diameter and collapses on itself is used. 

 Typically, for each point gi, 100 images of the eye are acquired and the positions of 

the pupil and glints centers are estimated for each image. The results are then averaged to 

reduce the estimation error, producing the corresponding vectors of estimated coordinates of 

pupil and glints centers if̂ , i = 1, 2, …, N. These vectors have the form 

][       glintrightglintrightcenterpupilcenterpupilglintleftglintleft crcrcr=f  . (3.1) 
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 Using these data, the values of the parameters are chosen such that the sum of the 

square errors between the estimated and intended points of gaze is minimized. Towards the 

formulation of the calibration problem, equation (2.38) is rewritten as ])  [,(ˆˆ fixedcal ρρfgg =  

where fixedρ  is the vector of parameters that are fixed and calρ  is the vector of parameters that 

are optimized by the calibration. The calibration problem is then formally stated as 

][     ,     ])  [,ˆ(ˆmin
1

2

camcameyeeyecal

N

i
ifixedcali KR

cal

κθβα=−∑
=

ρgρρfgρ  . (3.2) 

This minimization problem is a multiparametric nonlinear least squares optimization 

problem. 

 In practice, a set of constraints based on the knowledge of eye anatomy and the 

physical characteristics of the system defines a region of feasibility for the solution. These 

constraints are bounds on the six parameters that are optimized by the calibration procedure 

and on a measure of the distance between the eye and the camera for each of the calibration 

points. Note that as part of the procedure to estimate the point-of-gaze, the position of the 

center of corneal curvature c is computed for each if̂ , i = 1, 2, …, N, hence oc −i  can be 

computed as a measure of the distance between the eye and the nodal point of the camera. 

The starting point and the bounds for the optimization problem are detailed in table 3.1. Note 

that the starting point is given by the typical/nominal values of the parameters that are 

optimized by the calibration procedure. Also note that the optimization constraints are rather 

loose, however they prevent the optimization algorithm from seeking a local optimum in a 

region that has no physical meaning. 

 
Parameter Starting point Min Max 

R 7.8 mm 3 mm 20 mm 

K 4.75 mm 2 mm 15 mm �eye
 –5º for the right eye, 5º for the left eye  –10º 10º �eye 1.5º –5º 5º �cam 0º –8º 8º �cam 0º –5º 5º 

Nii  , ,2 ,1  , K=− oc � N/A 400 mm 1000 mm 

Table 3.1: Starting point and bounds for the calibration problem. 
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The calibration problem is solved as a general constrained optimization problem 

using a Sequential Quadratic Programming (SQP) algorithm [45, 46]. In the implementation 

of the SQP algorithm [46], gradients are calculated using an adaptive finite difference 

method. The computation of the finite difference gradients involves perturbing each of the 

variables in turn and calculating the rate of change in the function being optimized (objective 

function). The size of these perturbations is set adaptively within an interval whose extremes 

are chosen by the user. The performance of the optimization algorithms can be sensitive to 

truncation and round-off errors in the calculation of the finite difference gradients. If the 

minimum perturbation size is too small, it may result in significant error in the computation 

of the finite different gradients. If the minimum perturbation size is too large, the 

approximation to the gradient may be too coarse. In some problems, an adequate range of the 

perturbation size can help to overcome the effects of small discontinuities on the calculation 

of the finite difference gradients. In the case of the calibration problem, small discontinuities 

can arise from error propagation through the numerical computation of the objective 

function. 

The performance of the optimization algorithm for the calibration problem, expressed 

as in equation (3.2), was evaluated with several simulated examples with known solution and 

it was observed that a minimum step size on the order of 10-6 and a maximum step size of  

10-1 led to a reasonable performance. In practice, under the assumption that the actual 

solution is close to the typical values of the calibration parameters, a change of variables was 

introduced with the aim of improving convergence, both in terms of speed and accuracy. 

Although this change of variables is not fully justified in general, it shows good behavior 

even if the solution is not close to the typical values of the parameters. Increased 

convergence speed cannot be guaranteed in all cases but the scaling associated with the 

change of variables is favorable for the computation of the finite difference gradients and the 

adoption of the search direction, thus making it attractive. Such change of variables is 

described in Appendix C. 

 

3.3 Calibration example with experimental data 

A calibration example with fixation data for subject E.G. without optical correction, 

is presented in Fig. 3.1. In this example, calibration data was collected as the subject fixated 
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9 points on the computer screen (table 3.2). These points are indicated by diamonds in Fig. 

3.1 (the radius of the dashed circles centered on the diamonds is 10 mm). In this way, a set of 

vectors of coordinates of pupil and glints centers was obtained and used to optimize the 6 

calibration parameters. Using these parameters, the point-of-gaze estimate was computed for 

each fixation point on the screen. These estimation results are indicated by asterisks in Fig. 

3.1. A second independent set of vectors of coordinates of pupil and glints centers was 

collected in the same manner and the calibration parameters obtained with the first set (C.S.) 

were used to estimate the point-of-gaze. The corresponding estimates are indicated by 

pentagrams in Fig. 3.1. It is clear that the results obtained for each data set are consistent with 

each other, and the errors associated with them are very similar. This figure also shows that 

there is a small underestimation error in the vertical direction, while in the horizontal 

direction there is a marked overestimation error when the gaze is above the screen center and 

underestimation error below the screen center. The point-of-gaze estimates show a clear 

pattern that opens upwards/closes downwards.  

There are several possible sources of error: (a) errors in the measurement and 

estimation of system and eye parameters, (b) errors in the estimation of the coordinates of 

pupil and glints centers, (c) errors in the fixation points during the calibration procedure, and 

(d) modeling errors. Since the results obtained from two independent data sets are consistent 

with each other, it is likely that the second and third sources of error are not playing a major 

role. The above sources of error, except modeling errors, are analyzed in the following 

sections. Modeling errors will be discussed in Chapter 4. This analysis provides insight into 

the effects of each type of error on the point-of-gaze estimation. 

 

i gX (mm) gY (mm) gZ (mm) 
1 -132 100 0 
2 0 100 0 
3 132 100 0 
4 -132 0 0 
5 0 0 0 
6 132 0 0 
7 -132 -100 0 
8 0 -100 0 
9 132 -100 0 

Table 3.2: Coordinates of the points of gaze used for the calibration under experimental conditions. 
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Figure 3.1: Calibration example with fixation data for subject E.G. without optical correction. 

 

3.4 Sensitivity of the point-of-gaze estimation to errors in the eye 

parameters and some system parameters  

 In this section, simulations are used to study the sensitivity of the point-of-gaze 

estimation methodology to errors in the eye parameters and some system parameters. The 

parameters to be considered in this study are R, K, �eye, �eye, �cam, �cam, �cam and the typical 

value of the distance between the cornea and the nodal point of the camera (this value is used 

to calculate �). The objective is to analyze the variation of the r.m.s. error in the point-of-

gaze estimation as a function of each of these parameters considered individually. 

For R, K, �eye, �eye, �cam, �cam and �cam, the sensitivity study is done as follows:  

(i) For a given position of the center of rotation of the eye, d, and a set of points of 

gaze on the screen {g1, g2, …, gN}, the coordinates of the pupil and glints centers in the 

image of the eye are calculated using equation (2.67) as ),,( ρdgff ′= ii , i = 1, 2, …, N, where 

ρ′ is the vector of eye and system parameters with the typical/nominal values given in 

Appendix B, except for the parameter that we want to study, which varies over a certain 

interval. 

(ii) The point-of-gaze is estimated with equation (2.38) as ),(ˆˆ oρfgg ii = , i = 1, 2, …, 

N, where oρ  is the vector of eye and system parameters with the typical/nominal values given 

in Appendix B.  
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(iii) The r.m.s. error in the estimation of the point-of-gaze is evaluated as  
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The position of the center of rotation of the eye d = [0 70 650]T mm and the 9 points 

of gaze listed in table 3.3 are considered4.  

 

i gX (mm) gY (mm) gZ (mm) 
1 -130 100 0 
2 0 100 0 
3 130 100 0 
4 -130 0 0 
5 0 0 0 
6 130 0 0 
7 -130 -100 0 
8 0 -100 0 
9 130 -100 0 

Table 3.3: Coordinates of the points of gaze on the computer monitor used for the simulations. 

 

For the intervals considered, the r.m.s. error, as a function of the magnitude of the 

deviation of each parameter from its typical/nominal value, increases in a slightly nonlinear 

manner for R (Fig. 3.2) and almost linearly for K, �eye, �eye, �cam, �cam and �cam. The 

sensitivity relative to each parameter, considered individually, is summarized in table 3.4. 

Particularly, this table shows that the sensitivity to errors in �cam is small. 

 
Figure 3.2: R.m.s. error in the estimation of the point-of-gaze as a function of the radius of corneal curvature. 

 

The study of the sensitivity of the point-of-gaze estimation error to changes in the 

distance between the cornea and the nodal point of the camera (dcnp –this value is used to 
                                                 
4 For d = [0 70 650]T mm the distance between the cornea and the nodal point of the camera is approximately 
625 mm. 
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compute �) is carried out in a similar way with the exception that the position of the center of 

rotation of the eye, d, varies. More specifically, consider the situation in which the center of 

rotation of the eye adopts different positions dj, j = 1, …, M along the optic axis of the 

camera (the lens is refocused in order to keep a sharp image) but a fixed typical value of the 

dcnp of 625 mm is used to estimate the point-of-gaze. For each point dj, the dcnp and the 

r.m.s. error in the estimation of the point-of-gaze can be computed and used to describe the 

r.m.s. error as a function of the deviation of the actual dcnp from the typical value. As shown 

at the bottom of table 3.4, the estimation of the point-of-gaze is robust to error in the estimate 

of the distance between the cornea and the nodal point of the camera.  

 

Parameter 
Sensitivity of the r.m.s. error in the estimation of the point-

of-gaze to the deviation from the typical value 

Interval considered, 

Typical / nominal value 

R 

~53 mm/mm or ~41 mm/10% for 0.8 Rtyp<R<0.9 Rtyp, 

~42 mm/mm or ~33 mm/10% for 0.9 Rtyp<R<Rtyp, 

~34 mm/mm or ~26.5 mm/10% for Rtyp<R<1.1 Rtyp, 

~28 mm/mm or ~22 mm/10% for 1.1 Rtyp<R<1.2 Rtyp 

 [6.2,9.4] mm or ~[–20,20] %, 

Rtyp  = 7.8 mm 

K 
~59 mm/mm or ~28 mm/10% for K<K typ, 

~63 mm/mm or ~30 mm/10% for K>Ktyp 

[3.8,5.7] mm or [–20,20] %, 

Ktyp = 4.75 mm �eye ~11.6 mm/degree [–7,–3] º, �eye, typ = –5º �eye ~11.7 mm/degree [–0.5,3.5] º, �eye, typ = 1.5º �cam ~3.4 mm/degree [–3,3] º, �cam, nom = 0º �cam ~0.6 mm/degree [25,29] º, �cam, nom = 27º �cam ~7 mm/degree [–2,2] º, �cam, nom = 0º 

dcnp 
~0.31 mm/10 cm for dcnp< dcnptyp,  

~0.28 mm/10 cm for dcnp> dcnptyp 

[500,800] mm,  

dcnptyp = 625 mm 

Table 3.4: Sensitivity of the estimation of the point-of-gaze relative to different parameters. 

 

In order to gain further insight into the effects of errors in the above parameters and 

the interactions among them, the patterns of the estimation error can be studied through 

simulations. This is done in a similar way to that described above but in this case the 

parameter of interest adopts a single value rather than varying over an interval. The 

parameters considered here are R, K, �eye, �eye, �cam and �cam. 
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- Error pattern relative to R 

 Suppose that the actual value of R (radius of corneal curvature) is 5 % larger than the 

typical value used to estimate the point-of-gaze. The estimates of the point-of-gaze for this 

case, as well as the actual points of gaze are shown in Fig. 3.3 (the dashed circles have 10 

mm of radius). As it can be seen in this figure, R has a combination of offset and gain effects. 

In this example, the offset is approximately –1.4 mm in the horizontal direction and –11.8 

mm in the vertical direction, while the gain is very close to 95 % of the correct gain in both 

directions. In other words, if the offset error were removed, the remaining error is an 

underestimation error of 5 %. 

An intuitive explanation for this reduction in gain can be given as follows. For a fixed 

position of the center of rotation of the eye, if the radius of corneal curvature increases, the 

distance between glint centers in the eye image also increases in the same proportion. As the 

eye rotates, the pupil center moves relative to the glints. Since the distance between glints 

increased, any given movement of the pupil center appears to be proportionally smaller 

relative to the distance between glints. This makes eye rotations seem smaller, explaining the 

reduced gain observed in Fig. 3.3. The opposite occurs if R is smaller. 

 

- Error pattern relative to K 

 Suppose that the actual value of K (distance between the pupil center and the center 

of corneal curvature) is 5 % larger than the typical value used to estimate the point-of-gaze. 

The estimates of the point-of-gaze for this case, as well as the actual points of gaze are shown 

in Fig. 3.4. As it can be seen in this figure, K also has a combination of offset and gain 

effects. In this example, the offset is approximately 2.7 mm in the horizontal direction and 

11.5 mm in the vertical direction, while the gain is close to 105 % of the correct gain in both 

directions. In other words, if the offset error were removed, the remaining error is an 

overestimation error of 5 %.  

An intuitive explanation for the increment of gain can be given as follows. If K 

increases, so does the radius of rotation of the pupil center (D+K, see Fig. 2.4). This makes 

the movement of the pupil center larger than what would be expected if K had the typical 

value. In turn, this makes eye rotations seem larger, explaining the increased gain observed in 

Fig. 3.4. The opposite occurs if K is smaller. 
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Figure 3.3: Error pattern when the actual value of R is 

5 % larger than the typical value used to estimate the 

point of gaze. 

Figure 3.4: Error pattern when the actual value of K is 

5 % larger than the typical value used to estimate the 

point of gaze. 

 

Comparing this example with the previous one (Fig. 3.3), it can be observed that the 

deviations of the estimates of the point-of-gaze are approximately similar but in opposite 

directions. Fig. 3.5 shows that the r.m.s. error in the estimation of the point-of-gaze as a 

function of R and K has a valley where the error is small. In fact, if that figure is re-plotted as 

a function of  

1, −=
−

=
typtyp

typ
norm R

R

R

RR
Ro  (3.4) 

and 

1, −=
−

=
typtyp

typ
norm K

K

K

KK
Ko  , (3.5) 

where normR ,o  and normK ,o  represent the fractional change of R and K relative to their typical 

values, the valley is in fact at approximately 45º relative to the normR ,o -axis. This means that 

variations of the same proportions and in the same direction in R and K tend to compensate 

for each other. 

 

- Error patterns relative to �eye and �eye 

 A deviation in the actual value of �eye (horizontal angle between the visual and optic 

axes) relative to the value used to estimate the point-of-gaze, produces, essentially, a pure 

offset in the horizontal direction. A deviation in the actual value of �eye (vertical angle 

between the visual and optic axes) relative to the value used to estimate the point-of-gaze, 
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produces, essentially, a pure offset in the vertical direction. These two parameters have an 

offset effect but they are decoupled from each other. Fig. 3.6 shows that the r.m.s. error as a 

function of �eye and �eye is cone-shaped. This is consistent with the observations made above. 

 

  
Figure 3.5: R.m.s. error in the estimation of the point-

of-gaze as a function of R and K. 

Figure 3.6: R.m.s. error in the estimation of the point-

of-gaze as a function of �eye and �eye. 

 

- Error pattern relative to �cam 

 Suppose that the actual value of �cam (pan angle of the camera) is 3° larger than the 

nominal value used to estimate the point-of-gaze. The estimates of the point-of-gaze for this 

case, as well as the actual points of gaze are shown in Fig. 3.7. As it can be seen in this 

figure, �cam has a mixture of offset and rotation-like effects. The offset is about –10.4 mm in 

the horizontal direction. The central row of the point-of-gaze estimates forms an angle of      

–0.762º with the horizontal axis and the central column of the point-of-gaze estimates forms 

an angle of –0.138º with the vertical axis. This observation indicates that the distortion of the 

pattern of point-of-gaze estimates would be more adequately modeled as an affine 

transformation rather than as a simple combination of rotation and translation (Euclidean 

transformation). Note that an error of 3º was simulated because with smaller errors it is more 

difficult to appreciate the distortion pattern. 

 

- Error pattern relative to �cam 

 Suppose that the actual value of �cam (angle of rotation of the camera around its optic 

axis) is 1° larger than the nominal value used to estimate the point-of-gaze. The estimates of 
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the point-of-gaze for this case, as well as the actual points of gaze are shown in Fig. 3.8. This 

figure shows that �cam has a mixture of rotation-like and offset effects. The offset is about     

–5.9 mm in the horizontal direction. The central row of the point-of-gaze estimates forms an 

angle of –1.264º with the horizontal axis and the central column of the point-of-gaze 

estimates forms an angle of –1.008º with the vertical axis. As in the previous example, this 

observation indicates that the distortion of the pattern of the point-of-gaze estimates would be 

more adequately modeled as an affine transformation rather than as a simple combination of 

rotation and translation. Note that �cam and �cam have effects of similar nature and can be 

considered somewhat coupled. Fig. 3.9 shows that the r.m.s. error in the estimation of the 

point-of-gaze as a function of �cam and �cam has a valley where the error is small, which 

means that along that valley the effects of errors in �cam and �cam compensate for each other 

to some extent. The orientation of that valley can be described as 47.0/ −≅∆∆ camcam θκ . 

If the calibration were carried out only for the eye parameters, the offset error could 

be compensated for by �eye, but the rotation-like error introduced by �cam and �cam could not 

be compensated. Fig. 3.10 shows that the r.m.s. error in the estimation of the point-of-gaze as 

a function of �eye and �cam also presents a valley where �eye compensates to some extent for 

the deviation of �cam. The orientation of that valley can be described as 43.3/ −≅∆∆ eyecam αθ . 

 

  

Figure 3.7: Error pattern when the actual value of �cam 

is 3° larger than the nominal value used to estimate the 

point-of-gaze. 

Figure 3.8: Error pattern when the actual value of �cam 

is 1° larger than the nominal value used to estimate the 

point-of-gaze. 
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Figure 3.9: R.m.s. error in the estimation of the point-

of-gaze as a function of �cam and �cam. 

Figure 3.10: R.m.s. error in the estimation of the point-

of-gaze as a function of �eye and �cam. 

 

3.5 Compensation for errors in system parameters that are not calculated 

by the calibration procedure 

 The purpose of this section is to show how the calibration procedure can compensate 

for errors in system parameters that are not calculated by the calibration algorithm. The 

parameters to be considered are the positions of the light sources and the position of the 

center of the camera image plane.  

This study is done as follows: 

(i) For a given position of the center of rotation of the eye, d1, and a set of points of 

gaze on the screen {g1, g2, …, gN}, the coordinates of pupil and glints centers on the image of 

the eye are calculated using equation (2.67) as ),,( 1 ρdgff ′= ii , i = 1, 2, …, N, where ρ′ is the 

vector of eye and system parameters with the typical/nominal values given in Appendix B, 

except for the parameter that is studied, which takes a different value, and the value of the 

distance between the cornea and the nodal point of the camera, which is calculated for the 

particular value of d. 

(ii) Using the vectors if , a calibration (equation (3.2)) is performed, obtaining the 

vector of optimum calibration parameters, calρ . The elements of the vector of fixed system 

parameters, fixedρ , used for the calibration, have the nominal values given in Appendix B. In 

this case, the vector of fixed system parameters is represented by o ,fixedρ . 
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(iii) For a given set of positions of the center of rotation of the eye {d1, d2, …, dj, …, 

dM} and a set of points of gaze on the screen {g1, g2, …, gi, …, gN}, the coordinates of the 

pupil and glints centers on the image of the eye are calculated using equation (2.67) as 

),,(, ρdgff ′= jiji , i = 1, 2, …, N, j = 1, 2, …, M. 

(iv) The point-of-gaze is estimated with equation (2.38) as ])  [,(ˆˆ  ,,, ofixedcaljiji ρρfgg = , 

i = 1, 2, …, N, j = 1, 2, …, M. 

(v) The r.m.s. error in the estimation of the point-of-gaze is evaluated for the position 

of the center of rotation of the eye adopted for the calibration (d1) as  
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and for all the tested positions of the center of rotation {d1, d2, …, dM} as 
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 The values of gi used for the simulations are listed in table 3.3, while the values of dj 

are listed in table 3.5. In these simulations, errors of 10 mm in the measurements of the 

position of one of the light sources (m) and errors of 5 mm in the estimate of the position of 

the center of the camera image plane (t) were evaluated. The results obtained are summarized 

in table 3.6, where the estimation error before calibration (U, uncalibrated) is given for 

comparison with the estimation error after calibration (C, calibrated). Note that even though 

the errors considered here are very large compared to the accuracy of the measurements of 

those parameters, the remaining r.m.s. error in the point-of-gaze estimation after calibration 

is very small. 

 The point-of-gaze estimation error due to errors in the measurements of the 

coordinates of a light source can be large before calibration but can be reduced dramatically 

with calibration. In the case of errors in the estimate of the coordinates of the center of the 

camera image plane, the estimation error is relatively small even without calibration but can 

be made significantly smaller with calibration. 

 These results and the low sensitivity of the estimation of the point-of-gaze relative to �cam and the distance between the cornea and the nodal point of the camera (used to calculate 
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�), show that the measurement accuracy of the fixed system parameters is not a critical factor 

for the performance of the methodology developed in Chapter 2. 

 

j dX (mm) dY (mm) dZ (mm) j dX (mm) dY (mm) dZ (mm) 
1 0 70 650 15 25 45 600 
2 -30 95 650 16 -25 25 600 
3 0 95 650 17 0 25 600 
4 30 95 650 18 25 25 600 
5 -30 70 650 19 -35 125 700 
6 30 70 650 20 0 125 700 
7 -30 45 650 21 35 125 700 
8 0 45 650 22 -35 100 700 
9 30 45 650 23 0 100 700 
10 -25 65 600 24 35 100 700 
11 0 65 600 25 -35 75 700 
12 25 65 600 26 0 75 700 
13 -25 45 600 27 35 75 700 
14 0 45 600 

 

    
Table 3.5: Positions of the center of rotation of the eye used for the simulations. 

 

 

Situation C/U r.m.s. error for d1 [mm] r.m.s. error for {d1, d2, …, d27} [mm] 

C 0.1589 0.2274 
mm 10 , += nomXX mm  

U 5.9563 5.9563 

C 0.3017 0.8214 
mm 10 , += nomYY mm  

U 9.7012 9.7057 

C 0.1517 0.3233 
mm 10 , += nomZZ mm  

U 4.8434 4.8648 

C 0.1548 0.1865 
mm 5 , += nomXX tt  

U 1.0556 1.0687 

C 0.0546 0.2132 
mm 5 , += nomYY tt  

U 0.7547 0.7804 

C 0.0274 0.1810 
mm 5 , += nomZZ tt  

U 0.3678 0.4113 

Table 3.6: Estimation error before and after calibration due to deviation of the values of some system 

parameters that are not adjusted by the calibration procedure. 
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3.6 Effects of errors in the estimation of the coordinates of pupil and glints 

centers in the eye images 

 The purpose of this section is to illustrate the effects that errors in the estimation of 

the coordinates of pupil and glints centers in the eye images have on the point-of-gaze 

estimation. In order to do this, the vectors of coordinates of pupil and glints centers if̂ , i = 1, 

2, …, 9, which are used in the calibration procedure, are computed as 

∑
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where d=[0 70 650]T mm, gi, i = 1, 2, …, 9 are listed in table 3.3, and oρ  is the vector of 

system and eye parameters with the typical/nominal values given in Appendix B. The noise 

is defined as 

][  , ,  , ,  , ,  , ,  , ,  , , , jiglintrightjiglintrightjicenterpupiljicenterpupiljiglintleftjiglintleftji crcrcr ∆∆∆∆∆∆=∆f  

(3.9) 

where jiglintleftr  , , ∆ , jicenterpupilr  , , ∆  and jiglintrightr  , , ∆  are independent Gaussian random variables 

with zero-mean and standard deviation of � = 0.06 pixel, while jiglintleftc  , , ∆ , jicenterpupilc  , , ∆  and 

jiglintrightc  , , ∆  are independent Gaussian random variables with zero-mean and standard 

deviation of�� = 0.09 pixel. The characteristics of the above random variables are based on 

experimental data. The image processing algorithms used to estimate the coordinates of pupil 

and glints centers in the eye images and the associated estimation errors are discussed in [47]. 

 These simulation conditions correspond to a stationary ideal eye with spherical 

cornea that fixates exactly on the intended points of gaze, but the coordinates of pupil and 

glints centers that are computed from each eye image suffer from an estimation error. This 

estimation error is modeled as additive zero-mean Gaussian noise. 

 Fig. 3.11 shows an example of a simulation carried out as explained above. The 

calibration was performed for the vectors of coordinates of pupil and glints centers if̂ , i = 1, 

…, 9 and the point-of-gaze was estimated for each vector of coordinates of pupil and glints 

centers ji ,f , i = 1, …, 9, j = 1, …, 100 (equation (3.8)). The residual r.m.s. error of the 
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calibration was 0.1302 [mm] for this example. 

 This simulation shows that if the estimation errors of the coordinates of pupil and 

glints centers have zero-mean, the estimated calibration parameters do not induce biases to 

the estimation of the point-of-gaze. This is due to the fact that the averaging of 100 estimates 

greatly reduces the effect of the estimation error of pupil and glints centers. In addition, for 

noise with the properties used above, all the point-of-gaze estimates fall inside a circle of 10 

mm of radius (about 0.9º of visual angle for the simulated eye position) centered on the 

actual point-of-gaze. 

 
Figure 3.11: Point-of-gaze estimation after calibration, for estimation errors in the coordinates of pupil and 

glints centers. 

 

3.7 Effects of fixation errors during the calibration procedure 

 The purpose of this section is to consider the effects of fixation errors during the 

calibration procedure. The errors in the fixation points can be broadly categorized as large 

errors and small errors. A large error corresponds to the case in which the subject does not 

fixate on the point that is presented on the screen during the data collection stage of the 

calibration procedure, i.e. the subject fixates at a point that is more than 10 mm away from 

the requested point. Large errors are in general obvious and in practice lead to the repetition 

of the data collection. Large errors are not considered here. 

 Small errors are due to small eye movements that are associated with normal fixation. 

If we assume that these eye movements can result in the fixation target being projected on 

any part of the fovea, these eye movements are in a range 0.6-1º of visual angle. The 

projection of this area of position uncertainty onto a computer screen, at 65 cm from the eye, 

has a diameter that can be as large as 11.3 mm, which means that the error between the actual 
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fixation point and the point presented on the screen could be up to 5.65 mm. In order to 

simulate this situation, the vectors of coordinates of pupil and glints centers if̂ , i = 1, 2, …, 9, 

that are used for the calibration procedure, are computed as 

),,(ˆ oρdggff iii ∆+=  , (3.10) 

where d=[0 70 650]T mm, gi, i = 1, 2, …, 9 are listed in table 3.3, and oρ  is the vector of eye 

and system parameters with the typical/nominal values given in Appendix B. The errors in 

the fixation points are modeled as 

T
iiiii rr ]0sincos[ φφ=∆g  (3.11) 

where ir  is a random variable with uniform distribution over the interval [0,5] mm and iφ  is 

a random variable with uniform distribution over the interval [0,2�) radians. 

 Using this set of vectors of coordinates of pupil and glints centers if̂ , i = 1, 2, …, 9, a 

calibration is carried out and a vector of optimum calibration parameters is obtained.  This 

procedure is repeated 10 times. Fig. 3.12 shows the calibration results for each data set 

(realization of the simulation) and table 3.7 lists the residual r.m.s. error for each case. Fig. 

3.13 shows the estimation results for all ten data sets using the calibration parameters 

obtained for data set 1. In this case the overall r.m.s. error is ~3.17 mm. 

 These simulations show that in these conditions the residual r.m.s. error of the 

calibration for each of the 10 data sets has a relatively small value of less than 3.4 mm or 

about 0.3º of visual angle. In addition, it shows that if the calibration parameters obtained for 

a particular data set are used to estimate the point-of-gaze for all data sets, the estimates for 

the different data sets are consistent with each other and the overall r.m.s. estimation error 

remains relatively small (~3.17 mm). 

 In order to study the expected point-of-gaze estimation error for larger errors in the 

fixation points, the same type of simulation is also carried out when ir  (equation (3.11)) is 

uniformly distributed over the interval [0,10] mm. The calibration results for each data set are 

illustrated in Fig. 3.14 while the corresponding residual r.m.s. errors are summarized in table 

3.8. The estimation results for all ten data sets using the calibration parameters obtained for 

data set 1 are depicted in Fig. 3.15, where the overall r.m.s. error is ~7.36 mm. 



Chapter 3: Estimation of system and eye parameters 

 

51

 In this case, as expected, the accuracy of the calibration is poorer. The residual r.m.s. 

error of the calibration for each of the 10 data sets can be up to 7.5 mm or 0.66º of visual 

angle. When the calibration parameters obtained for a particular data set are used to estimate 

the point-of-gaze for all data sets, the estimates for the different data sets are less consistent 

with each other and the overall r.m.s. estimation error increases to ~7.36 mm. This implies 

that precautions should be adopted to make the fixation errors no larger than 5 mm. For this 

reason, as mentioned in Section 3.2, a visual stimulus consisting of a circle that reduces its 

diameter and collapses on itself is used as a calibration target with the purpose of making the 

fixation as accurate and stable as possible. 

 

 Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 

Rms error 

[mm] 
~3.39 ~1.77 ~2.63 ~2.02 ~2.62 ~2.11 ~1.76 ~2.66 ~1.58 ~2.04 

Table 3.7: Residual r.m.s. error of the calibration for each data set when ir  is a uniform random variable over 

the interval [0,5] mm. 

 
 Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 

Rms error 

[mm] 
~5.02 ~5.34 ~5.83 ~4.77 ~4.49 ~7.49 ~4.80 ~5.46 ~6.50 ~3.77 

Table 3.8: Residual r.m.s. error of the calibration for each data set when ir  is a uniform random variable over 

the interval [0,10] mm. 

 

  
Figure 3.12: Calibration and estimation results for each 

data set when ir  is a uniform random variable over the 

interval [0,5] mm. 

Figure 3.13: Estimation results for each data set using 

the calibration parameters obtained for data set 1 (C.S.) 

when ir  is a uniform random variable over the interval 

[0,5] mm. 
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Figure 3.14: Calibration and estimation results for each 

data set when ir  is a uniform random variable over the 

interval [0,10] mm. 

Figure 3.15: Estimation results for each data set using 

the calibration parameters obtained for data set 1 (C.S.) 

when ir  is a uniform random variable over the interval 

[0,10] mm. 

 

The results presented in Sections 3.4 thru 3.7 provide insights into the effects of 

different types of errors on the estimation of the point-of-gaze. Errors in model parameters 

were studied in Sections 3.4 and 3.5, showing that accurate measurement of the fixed system 

parameters is not critical for the performance of the point-of-gaze estimation methodology. 

In particular, it was seen that the sensitivity to measurement error of the tilt angle of the 

camera (�cam) and to errors in the estimation of the distance between the cornea and the nodal 

point of the camera (used to calculate �) is very small. It was also shown that the calibration 

procedure can compensate for measurement errors in the positions of the light sources (l and 

m) and the position of the center of the camera image plane (t). The actual values of the eye 

parameters (R, K, �eye and �eye) and the extrinsic camera parameters �cam and �cam are 

estimated accurately by the calibration procedure if other sources of error are absent. 

Section 3.6 analyzed the effect of estimation errors in the coordinates of pupil and 

glints centers in the eye images. It was shown that if the estimation errors have zero-mean, 

then averaging over a large number (e.g. 100) of estimates for each calibration point can 

significantly reduce the effect of that estimation error and the estimated calibration 

parameters do not induce biases to the estimation of the point-of-gaze. This Section gave 

examples of the effects of fixation errors during the calibration procedure on the point-of-

gaze estimation. It was observed that if the fixation errors are reasonable small (less than 5 

mm), as expected in a standard calibration procedure, the r.m.s. error of the point-of-gaze 
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estimation on a computer monitor, at 65 cm from the subject, can be expected to be about 

0.3º.  

Despite the analysis of different sources of errors, none of the cases considered above 

can explain the error pattern seen in Fig. 3.1. The reason for such a pattern can be categorized 

as a modeling error and is studied in the next chapter, where solutions to improve the 

calibration and estimation accuracy are proposed. 
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4. Estimation of the point-of-gaze for real eyes 
 

4.1 Introduction 

 An analysis of data of glints coordinates obtained experimentally (see Appendix D for 

sample eye images) showed that as subjects scan the whole computer screen, the angle given 

by the inverse tangent of the slope of the line defined by the centers of the two glints 

(equation (4.1)) can vary within a range of 5 or 6º, while for a simulated spherical cornea this 

range is less than 0.03º. Note that according to Fig. 2.2(c) and equation (4.1), that angle is 

measured clockwise from the c-axis.  

glintleftglintright

glintleftglintright

cc

rr
slope

  

  

−
−

=  . (4.1) 

 This observation suggested that the spherical approximation to the corneal surface 

might not be appropriate and might lead to significant errors when the point-of-gaze is 

calculated. This could be categorized as a modeling error. It is known [48] that the average 

corneal surface has a radius of curvature of 7.8 mm at the apex increasing to 10 mm at the 

cornea-sclera boundary. When individual cases are considered, the range of variation of the 

radius of curvature of the cornea can be greater. This asphericity of the cornea was not taken 

into account in the model presented in Chapter 2 and it might help to explain the error 

patterns observed in Fig. 3.1.  

 In order to verify this hypothesis, a non-spherical corneal model was developed. This 

model is used to study the effects of corneal asphericity on the accuracy of the point-of-gaze 

estimation methodology developed in Chapter 2, and to evaluate the performance of 

algorithms that improve the estimation accuracy. 

 The development of the non-spherical corneal model and the equations to compute 

the coordinates of pupil and glints centers for that model are presented in the next Section. In 

Section 4.3 simulation results using the proposed non-spherical corneal model are shown and 
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compared to experimental results. In Section 4.4, sub-optimal solutions to improve the point-

of-gaze estimation accuracy are proposed and their performance is evaluated with simulated 

and experimental data. Finally, Section 4.5 illustrates the effects of errors in the estimation of 

the coordinates of pupil and glints centers in the eye images, and gives the overall r.m.s. 

estimation error of the point-of-gaze estimation system computed from experimental data.  

 

4.2 Non-spherical corneal model 

 To calculate the coordinates of pupil and glints centers in an eye image for non-

spherical corneal models, given a position of the center of rotation of the eye, d, and a point-

of-gaze, g, on the computer screen, the methodology of Section 2.8 needs to be modified, as 

it was developed specifically for a spherical corneal model. This section describes a 

generalization for non-spherical corneal models. 

 

4.2.1 Corneal surface model 

 Towards the development of a non-spherical corneal model, it is necessary to define 

an eye coordinate system. This coordinate system is a right-handed 3D Cartesian coordinate 

system whose axes are represented by xeye, yeye and zeye, its origin is at the center of rotation of 

the eye, the zeye-axis is coincident with the optic axis of the eye, and the xeye-axis is always 

perpendicular to the Y-axis of the world coordinate system. 

 In this development, the corneal surface is modeled as a 10th degree polynomial 

surface of the form  

0
2

2
4

4
6

6
8

8
10

10 aaaaaazeye +++++= τττττ  , (4.2) 

where � is a function of  xeye and yeye. A 10th degree polynomial was chosen as a trade-off 

between model flexibility and model complexity. If 222
eyeeye yx +=τ , a surface of revolution is 

obtained. However, a more general model can be obtained if 2
32

2
1

2
eyeeyeeyeeye yyxx γγγτ ++=  

so that the cross-sections of the corneal surface perpendicular to the optic axis are ellipses 

instead of circles. The coefficients 1γ , 2γ  and 3γ  can be expressed as functions of the ratio 

of the lengths of the major axis to the minor axis and the orientation of the major axis of 

those ellipses. Towards this end, consider the following equation of an ellipse whose axes are 

coincident with some coordinate axes xo and yo: 
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1
2

2

2

2

=+
B

y

A

x oo  (4.3) 

subject to the constraint 

1=AB  (4.4) 

so that the area remains constant regardless of the values of A and B. Assume that A is the 

half-length of the major axis while B is the half-length of the minor axis. The ratio of the 

lengths of the major axis to the minor axis is represented by 

B

A=ξ  , 1≥ξ . (4.5) 

Equations (4.4) and (4.5) can be solved for A and B, so that equation (4.3) is rewritten as 

1 2
2

=+ o
o y

x ξ
ξ

 . (4.6) 

 Next, consider a rotation of the xoyo coordinate system relative to the xeyeyeye 

coordinate system by an angle � as shown in Fig. 4.1. This angle � represents the orientation 

of the major axis of the ellipse with respect to the xeye-axis. The xoyo and the xeyeyeye 

coordinate systems are related by 

δδ
δδ

sincos

sincos

eyeeyeo

eyeeyeo

xyy

yxx

−=

+=
 . (4.7) 

 

 

Figure 4.1: Rotation of the xoyo coordinate system relative to the xeyeyeye coordinate system. 
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 Substituting equation (4.7) into equation (4.6), an equation of the form 

12
32

2
1 =++ eyeeyeeyeeye yyxx γγγ  (4.8) 

is obtained, where 

δξ
ξ

δγ 2
2

1 in 
cos

s+=  , (4.9) 





−= ξ

ξ
δδγ 1

 sin cos 22  , (4.10) 

δξ
ξ

δγ 2
2

3 cos 
sin +=  . (4.11) 

 In this way, the corneal surface can be described in the eye coordinate system by an 

implicit equation of the form 

 , 0),,,,,( =δξaeyeeyeeyeeye zyxC  (4.12) 

such that 

2
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 , )(),,,,,(

eyeeyeeyeeye

eyeeyeeyeeyeeye

yyxx

aaaaaazzyxC

γγγτ

τττττδξ

++=

+++++−=a
 (4.13) 

where ][ 1086420 aaaaaa=a  and the coefficients 1γ , 2γ  and 3γ  are given by 

equations (4.9) thru (4.11) as a function of the elliptical cross section parameters ξ  and δ .

 In order to be able to calculate the coordinates of pupil and glints centers in an image 

of an eye whose corneal surface is described by equation (4.12), it is necessary to describe 

the corneal surface in the world coordinate system for any position of the center of rotation of 

the eye, d, and any orientation of the optic axis described by the pan angle �eye and the tilt 

angle �eye (Fig. 2.4). In this case, the corneal surface will be described by an equation of the 

form 

0),,,,,,,,( =δξϕθ ad eyeeyeworld ZYXC  . (4.14) 

 The transformation between the world coordinate system and eye coordinate system 

can be described by the following sequence of steps: 

(i) Translate the world coordinate system XYZ by d to obtain a coordinate system XdYdZd. 

Note that – Zd points to the screen. 
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(ii) Rotate the coordinate system XdYdZd around the Yd-axis by an angle �eye to obtain a 

coordinate system Xd’Yd’Zd’ (Fig. 4.2). 

(iii) Rotate the coordinate system Xd’Yd’Zd’ around the Xd’-axis by an angle �eye to obtain a 

coordinate system Xd’’ Yd’’ Zd’’ (Fig. 4.3). At this point, the Zd’’-axis is coincident with the 

optic axis of the eye with – Zd’’ pointing to the screen. 

(iv) Obtain the eye coordinate system xeyeyeyezeye by taking xeye = – Xd’’, yeye = Yd’’ and zeye = 

– Zd’’ (this is equivalent to a rotation of 180º around the Yd’’-axis). In this way zeye points to 

the screen. 

 

Figure 4.2: Rotation of the coordinate system XdYdZd around the Yd-axis by an angle �eye. 

 

Figure 4.3: Rotation of the coordinate system Xd’Yd’Zd’ around the Xd’-axis by an angle �eye. 

 

�eye 

–Zd 
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 Step (i) is described as 
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 Step (ii) is described as 
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 Step (iii) is described as 
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 Step (iv) is described as 
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 Equations (4.15) thru (4.18) can be chained to obtain 
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where 
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 By substituting equations (4.19) and (4.20) into equation (4.12), equation (4.14) is 

obtained with 
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 Having this corneal surface model, the calculation of the coordinates of pupil and 

glints centers in eye images is considered next. 

 

4.2.2 Calculation of pupil and glints centers in eye images 

 Using this non-spherical corneal model, it is possible to calculate the coordinates of 

pupil and glints centers in eye images for any position of the center of rotation of the eye, d, 

and any point-of-gaze on the computer screen, g. In order to do this, part of the formulation 

of Section 2.8 has to be modified. From the values of d and g, the pan and tilt angles of the 

optic axis of the eye �eye and �eye are calculated using the iterative procedure described by 

equations (2.43) thru (2.51). Note that even though c can no longer be considered as the 

center of corneal curvature, it still has physical meaning as the approximation to the nodal 

point of the eye (intersection of the optic and visual axes of the eye, Fig. 2.5). Using the 

computed values of �eye and �eye, the points of reflection q and s on the non-spherical corneal 

surface are computed with the equations that are developed next. Once q and s have been 

computed, the rest of the calculations to obtain the coordinates of pupil and glints centers in 

the image of the eye are carried out as explained in Section 2.8.  

 In order to compute the points of reflection q and s, the same principles of specular 

reflection considered in Chapter 2 are applied here. For the point of reflection q, the fact that 

it is on the corneal surface can be expressed as 

0),,,,,,(),,,,,,,,( == δξϕθδξϕθ adqad eyeeyeworldeyeeyeZYXworld CqqqC  . (4.22) 

 The direction of the normal at the point of reflection q is given by the gradient 

),,,,,,( δξϕθ adq eyeeyeworldC∇ . Then, the fact that the incident ray, the reflected ray and the 

normal at the point of reflection are coplanar can be described as  

0),,,,,,()()( =∇•−×− δξϕθ adqqoql eyeeyeworldC    

or equivalently as 

0),,,,,,()()( =∇•−×− δξϕθ adqoqol eyeeyeworldC  . (4.23) 

 The remaining condition is that the incidence and reflection angles are equal, which 

can be written, after rearranging terms, as  

0),,,,,,()(),,,,,,()( =−⋅∇•−−−⋅∇•− qladqqoqoadqql δξϕθδξϕθ eyeeyeworldeyeeyeworld CC

(4.24) 
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 The system of equations (4.22) thru (4.24) is solved numerically for q. For faster 

convergence, a convenient starting point for this numerical solution can be taken as the 

intersection of the optic axis with the corneal surface: 



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
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+

eyeeye

eye

eyeeye
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coscos

sin
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0d  . (4.25) 

 For the point of reflection s, the following equations result: 

0),,,,,,(),,,,,,,,( == δξϕθδξϕθ adsad eyeeyeworldeyeeyeZYXworld CsssC  , (4.26) 

0),,,,,,()()( =∇•−×− δξϕθ adsosom eyeeyeworldC  , (4.27) 

and 

0),,,,,,()(),,,,,,()( =−⋅∇•−−−⋅∇•− smadssosoadssm δξϕθδξϕθ eyeeyeworldeyeeyeworld CC

(4.28) 

 This system of equations is solved numerically for s, taking (4.25) as a starting point. 

Once q and s have been computed, the coordinates of the glints centers in the eye image are 

calculated as in Section 2.8 using equations (2.65) and (2.66). The computation of the pupil 

center p and its image is also done as in Chapter 2 using equations (2.11) and (2.64). 

 When the points of reflection q and s are computed, it is necessary to confirm that 

they are in the region where the model of the corneal surface is valid, i.e. they do not fall on 

the region that corresponds to the sclera of a real eye. A test to validate the results is to 

compute the distance between each point of reflection and the optic axis of the eye and make 

sure that it is less that some value MAXτ , which is typically about 5 mm to ensure that the 

point of reflection is not too close to what corresponds to the cornea-sclera boundary. For the 

point of reflection q, this test can be formally expressed as 

[ ] MAXeye τ≤•−−− 22
)( kdqdq  (4.29) 

or 

[ ] MAXeye τ≤•−−− 22
)( kcqcq  (4.30) 

where 
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is the unit vector in the direction of the optic axis of the eye (Fig. 2.4). For the point of 

reflection s, equation (4.29) or (4.30) is used with q substituted by s. 

 For the sake of completeness, the computation of the gradient 

),,,,,,,,( δξϕθ ad eyeeyeworld ZYXC∇ , that is used in the above equations, is described next. 

Towards this end, note that 

),,),,,(),,,(),,,((),,,,,,,,( δξδξϕθ aad ZYXzZYXyZYXxCZYXC eyeeyeeyeeyeeyeeyeworld =  . 

(4.32) 

Applying the definition of the gradient and the chain rule for differentiation, and writing in 

matrix form, the following expression can be obtained 
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From equation (4.19) it can be shown that 
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hence  −=∇=∇ dJaJad
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 Following, the gradient ),,,,,( δξaeyeeyeeyeeye zyxC∇  is considered. Note that equation 

(4.13) can be rewritten as 
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Applying the chain rule, 
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where 
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and
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 . (4.40) 

 So, by substituting equations (4.38) thru (4.40) into equation (4.37), and then 

substituting equation (4.37) into equation (4.35), ),,,,,,,,( δξϕθ ad eyeeyeworld ZYXC∇  is 

obtained. 

 

4.2.3 Model coefficients 

 Having defined the non-spherical corneal model, different vectors of model 

coefficients ][ 1086420 aaaaaa=a  are proposed, as detailed in table 4.1. 

 

 a10 a8 a6 a4 a2 a0 

Model 1 –4.1278·10-10 –1.4064·10-9 –1.7073·10-6 –2.2036·10-4 –6.4103·10-2 13.1 

Model 2 0 0 0 –1.5000·10-4 –6.4103·10-2 13.1 

Model 3 –5.7374·10-10 –1.9193·10-7 –2.4078·10-6 –4.1837·10-4 –6.0976·10-2 13.1 

Table 4.1: Selected coefficients for the non-spherical corneal models. 
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  Model 1 was obtained from least squares fitting to the ellipsoidal corneal model 

presented in [48]. Model 2 is a simple fourth order model whose coefficients were adjusted 

so that the radius of curvature is 7.8 mm at the apex and about 12.5 mm at 6 mm from the 

optic axis. This model exhibits a larger variation of the radius of curvature than model 1. 

Model 3 was adjusted by least squares fitting to obtain a desired curvature function inspired 

on experimental results obtained for a subject wearing contact lenses. Note that in all cases, 

the value of the coefficient a0, which represents the distance between the center of rotation of 

the eye and the apex of the cornea, is typtyp RDa +=0 , where typD  and typR are given in 

Appendix B. Comparative plots of the three models and a circular section with 

mm 8.7== typRR are given in Fig. 4.4. 

 It can be shown that the radius of curvature function for equation (4.2) is 
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The radius of curvature functions for the corneal models plotted in Fig. 4.4 are graphed in 

Fig. 4.5. Note that the corneal models are assumed valid only for mm 6≤τ  since the width 

of the cornea in an adult eye is about 12-13 mm. 

 It can be observed that even though the longitudinal corneal sections look pretty 

similar for mm 4≤τ , the radius of curvature function differs notably for each model. 

 

  
Figure 4.4: Plot of different longitudinal corneal 

sections. 

Figure 4.5: Radius of curvature functions for the 

different corneal models. 
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4.3 Simulations and experimental results 

4.3.1 Simulations 

Using the non-spherical corneal models proposed in the previous section, the effects 

of corneal asphericity on the point-of-gaze estimation accuracy are studied through 

simulations. The computation of the coordinates of pupil and glints centers in the camera 

image (f) can be described as a function 

])  [,,(   , systemcorneasphericalnoneyesphericalnon ρρdgff −−=  (4.42) 

where d is the position of the center of rotation of the eye, g is the point-of-gaze on the 

computer monitor, 

][  , eyeeyecorneasphericalnoneye KD βαδξaρ =−  (4.43)  

is the vector of parameters of the eye with non-spherical cornea, and  

]_[ dcnplengthfocalcamcamcamsystem tmlρ κϕθ=  (4.44) 

is the vector of system parameters. For the simulations of this section, the last four elements 

of corneasphericalnoneye   , −ρ  and all the elements of systemρ , take the typical / nominal values given in 

Appendix B, except for the value of the distance between the cornea and the nodal point of 

the camera (dcnp) which is calculated for each particular value of d.  

The simulations are carried out as follows: 

(i) For a given position of the center of rotation of the eye d1 and a set of points of 

gaze on the screen {g1, g2, …, gN}, the coordinates of the centers of pupil and glints on the 

image of the eye are calculated as ])  [,,(   ,1 systemcorneasphericalnoneyeisphericalnoni ρρdgff −−= , i = 1, 2, 

…, N.  

(ii) Using these vectors if , a calibration is performed (equation (3.2)), obtaining the 

vector of optimum values of the calibration parameters calρ . The elements of the vector of 

fixed system parameters, fixedρ , used for the calibration, have the nominal values given in 

Appendix B and is represented here as o ,fixedρ .  

(iii) For a given set of positions of the center of rotation of the eye {d1, d2, …, dj, …, 

dM} and a set of points of gaze on the screen {g1, g2, …, gi, …, gN}, the coordinates of pupil 

and glints centers on the image of the eye are calculated as 

])  [,,(   ,, systemcorneasphericalnoneyejisphericalnonji ρρdgff −−= , i = 1, 2, …, N, j = 1, 2, …, M. 
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(iv) The point-of-gaze is estimated with equation (2.38) for all the ji ,f , as 

])  [,(ˆˆ  ,,, ofixedcaljiji ρρfgg = , i = 1, 2, …, N, j = 1, 2, …, M. 

(v) The r.m.s. error in the estimation of the point-of-gaze is evaluated for the position 

of the center of rotation of the eye adopted for the calibration (d1) as  

∑∑
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(4.45) 

and for all the tested positions of the center of rotation {d1, d2, …, dM} as 
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(4.46) 

The values of gi used for the simulations are listed in table 3.3, while the values of dj 

are listed in table 3.5. The coefficients of the non-spherical corneal models are given in table 

4.1. 

 Fig. 4.6 corresponds to model 1 with ��= 1, where the dashed circles centered at the 

intended points of gaze have a radius of 10 mm. It can be observed that there is a small 

underestimation error in the vertical direction and the estimates of the point-of-gaze have a 

pattern that opens upwards/closes downwards: there is overestimation error in the horizontal 

direction when the gaze is above the screen center and underestimation error below the 

screen center. This pattern is not very prominent but is clearly visible.  

Fig. 4.7 corresponds to model 2 with ��= 1 and it can be observed that the estimates 

of the point-of-gaze also have a pattern that opens upwards/closes downwards. This pattern is 

much more prominent than that seen for model 1 and is consistent with the fact that the 

variation of corneal curvature is considerably larger for model 2 than for model 1. In 

addition, a larger dispersion of the estimates of the point-of-gaze for different positions of the 

center of rotation of the eye is observed.  

Fig. 4.8 corresponds to model 2 with ��= 1.02 and � = 45º. The purpose of this 

example is to consider a case with corneal astigmatism, more specifically a case in which the 

transversal sections of the corneal surface, perpendicular to the optic axis of the eye, are 

elliptical. The pattern of the estimates is somewhat similar to that shown in Fig. 4.7.  
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Fig. 4.9 corresponds to model 3 with ��= 1. In this case, there is overestimation error 

in the vertical direction and the estimates have a pattern that opens downwards/closes 

upwards: there is underestimation error in the horizontal direction when the gaze is above the 

screen center and overestimation below the screen center. This pattern, which is inverted 

relative to the patterns observed in the previous examples, is pretty prominent and is 

consistent with the corresponding radius of curvature function plotted in Fig. 4.5. The r.m.s. 

errors of the point-of-gaze estimation for each case are given in table 4.2. 

 

 

  

Figure 4.6: Simulation results for model 1 with ��= 1. Figure 4.7: Simulation results for model 2 with ��= 1. 

 

 

  

Figure 4.8: Simulation results for model 2 with ��= 1.02 

and � = 45º. 

Figure 4.9: Simulation results for model 3 with ��= 1. 
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Model Data set(s) R.m.s. error [mm] 

Calibration set 2.6320 Model 1 ��= 1� All positions 2.8228 

Calibration set 9.3210 Model 2 � = 1 All positions 10.1439 

Calibration set 9.2449 Model 2 ��= 1.02, � = 45º All positions 10.0194 

Calibration set 10.4445 Model 3 � = 1 All positions 10.9931 

Table 4.2: R.m.s. error of the estimation of the point-of-gaze for simulations for different non-spherical corneal 

models. 

 

 In order to gain insight regarding the behavior of the glints positions relative to each 

other for each non-spherical corneal model and to be able to compare this information to that 

obtained in real experimental situations, the following descriptors are computed:  

(i) The slope of the line defined by the centers of the two glints for each intended 

point-of-gaze, gi, for the calibration set, as defined in equation (4.1). 

(ii) The range (length of the interval) of variation of the slopes computed in (i) 

expressed in degrees as 

)minarctan()maxarctan(      i
i

i
i

slopeslopeunitsangleinvariationslopeofrange −=  . (4.47) 

 (iii) The mean distance between glints centers. 

 (iv) The standard deviation of the distance between glints centers normalized by the 

mean distance between glints centers (expressed as a percentage). 

 The slope of the line defined by the centers of the two glints for each intended point-

of-gaze gi for the calibration set is shown in table 4.3. The range of variation of those slopes, 

the mean distance between glints centers and the normalized standard deviation, are recorded 

in table 4.4.  

It can be noted that model 1 and model 2, both with ��= 1, present similar patterns of 

variation of the slope of the line defined by the glints centers since for both models the radius 

of curvature increases with the distance from the optic axis. However, model 2 shows a 

greater range of variation of the slope, as well as a greater variation of the distance between 
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glints. This is consistent with the greater variation of the curvature of model 2 relative to 

model 1.  

Model 2 with ��= 1.02 and � = 45º (model with corneal astigmatism) has similar 

ranges of variation of the slope and distance between glints but the interval of variation of the 

slope is shifted relative to that of model 2 with ��= 1. This is explained by the ellipticity of 

the corneal section perpendicular to the optic axis having an orientation given by the angle �.  

Model 3, with ��= 1, shows a pattern of variation of the slope of the line defined by 

the glints centers that is essentially inverted (opposite sign) relative to that produced by 

model 2 with ��= 1. This is consistent with the decrease in the radius of curvature of the 

corneal surface in a neighborhood of the corneal apex for model 3, as opposed to the 

monotonic increase in the radius of curvature of the corneal surface with the distance from 

the optic axis for model 2. As mentioned earlier, model 3 was inspired by experimental 

results observed for a subject wearing contact lenses. Note that as illustrated in Figs. 4.4 and 

4.5, small deviations of the corneal shape in the region of the cornea that produces the glints 

(roughly, less than 5.5 mm from the optic axis) can produce important changes in the 

curvature of the cornea. Model 3 has ranges of variation of the slope and the distance 

between glints that are similar to model 2. 

 

 
ig  

Model  

1g  2g  
3g  

4g  
5g  

6g  
7g  

8g  
9g  

Model 1, ��= 1 
-0.0075 0.0059 0.0182 -0.0047 0.0037 0.0114 -0.0021 0.0016 0.0048 

Model 2, � = 1 
-0.0259 0.0203 0.0666 -0.0145 0.0112 0.0369 -0.0059 0.0044 0.0142 

Model 2, ��= 1.02, � = 45º 
-0.0452 0.0010 0.0481 -0.0338 -0.0081 0.0184 -0.0252 -0.0150 -0.0043 

Model 3, � = 1 
0.0280 -0.0220 -0.0678 0.0191 -0.0149 -0.0461 0.0089 -0.0068 -0.0196 

Table 4.3: Slopes of the line defined by the glints centers for each intended point-of-gaze for the calibration set 

for the different simulated non-spherical corneal models. 
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 Descriptor 

Model  
Slope range [º] Mean distance glints [pixels] Normalized SD [%] 

Spherical model, R = 7.8 mm 0.0244 22.1258 0.0568 

Model 1, ��= 1 1.4708 22.4951 0.85 

Model 2, � = 1 5.2946 23.3296 3.21 

Model 2, ��= 1.02, � = 45º 5.3372 23.3166 3.11 

Model 3, � = 1 5.4833 21.7410 3.40 

Table 4.4: Range of variation of the slopes shown in table 4.3, mean distance between glints centers, and 

normalized standard deviation of the distance between glints centers, corresponding to the calibration set, for 

the different simulated non-spherical corneal models. Results for a spherical corneal model are provided for 

reference. 

 

4.3.2 Experimental results 

 This subsection describes experimental results and compares them with the 

simulation results from the previous subsection. In each experiment, the data collection 

procedure described in Section 3.2, as part of the calibration procedure, was carried out twice 

for 5 different head positions (i.e. different positions of the center of rotation of the eye). The 

eye positions for the 5 head positions are described in table 4.5. For each head position, the 

subject fixated on the 9 points on the computer screen that are given in table 3.2. The head 

position was stabilized with a chinrest, which means that the head was not perfectly still but 

its movement was limited to a range that is much smaller than the distance between any two 

of the 5 different head positions. In this way, 10 sets of 9 vectors of average coordinates of 

pupil and glints centers were obtained. One of these sets was chosen to be the calibration set 

(C.S.) and used to compute the calibration parameters (equation (3.2)). Using the parameters 

obtained from this calibration, the point-of-gaze on the computer monitor was estimated for 

the 10 sets of vectors of pupil and glints centers. It was assumed that due to the averaging 

process that is applied to the calibration data (i.e. 100 estimates of pupil and glints centers for 

each fixation point) the estimation error in the coordinates of pupil and glints centers is 

relatively small and can be neglected.  
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Position Description 

Pos. 1 
Eye at ~65 cm from the screen, approximately centered in the field of view of the camera. One of 

the sets for this position was picked as the calibration set (C.S.). 

Pos. 2 

Eye at ~65 cm from the screen, approximately vertically centered in the field of view of the 

camera, to the right hand side of the image. This corresponds to a lateral shift of ~2.5-3 cm from 

Pos. 1 to the left of the subject. 

Pos. 3 

Eye at ~65 cm from the screen, approximately vertically centered in the field of view of the 

camera, to the left hand side of the image. This corresponds to a lateral shift of ~2.5-3 cm from Pos. 

1 to the right of the subject. 

Pos. 4 Eye at ~60 cm from the screen, approximately centered in the field of view of the camera. 

Pos. 5 Eye at ~70 cm from the screen, approximately centered in the field of view of the camera. 

Table 4.5: Different head positions adopted for the experiments. 

 

 Fig. 4.10 shows the experimental results for subject B.B. (20/20 vision without 

optical correction). It can be seen that the estimates have a pattern that opens upwards/closes 

downwards, similar to that of the simulation run for model 1. Note that the dashed circles 

centered at the intended points of gaze have a radius of 10 mm. Fig. 4.11 corresponds to 

subject E.G. (medium myopia) without optical correction. The estimates of the point-of-gaze 

present a clear pattern that opens upwards/closes downwards, similar to that obtained for the 

simulations with model 2. 

 Fig. 4.12 corresponds to subject E.G. with eyeglasses. There is a clear pattern that 

opens upwards, with a somewhat larger dispersion of the estimates of the point-of-gaze than 

for the same subject without optical correction. One issue about this experiment is that the 

eyeglasses alter the path of the rays and movement of the eyeglasses relative to the system 

affects how the ray paths are altered. The geometrical-optical model of the system does not 

take into account refractive elements between the light sources and the eye and between the 

eye and the camera, especially if the refractive elements move relative to the system. This 

issue will be addressed in the future. 

 Fig. 4.13 shows the results obtained with subject B.L. (medium myopia) with contact 

lenses. In this case, the pattern of the estimates of the point-of-gaze is more complicated than 

that observed for the previous cases. On the left, the pattern closes upwards and, on the right, 

the pattern opens upwards/closes downwards. In addition, the dispersion of the estimates is 

considerably larger. It should be noted that when contact lenses are used, the glints are 
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produced by the frontal surface of the contact lens rather than the frontal surface of the 

cornea. Since the contact lenses move relative to the cornea constantly, the dispersion of the 

point-of-gaze estimates is increased.  

 

 
Figure 4.10: Experimental results for subject B.B. 

(20/20 vision without optical correction). 

 
Figure 4.11: Experimental results for subject E.G. 

(medium myopia) without optical correction. 

 
Figure 4.12: Experimental results for subject E.G. 

(medium myopia) with eyeglasses. 

 
Figure 4.13: Experimental results for subject B.L. 

(medium myopia) with contact lenses. 

 

The r.m.s. errors of the point-of-gaze estimation for each of these cases are given in 

table 4.6. The descriptors that were defined in the previous subsection are computed for each 

experiment. The slope of the line defined by the centers of the two glints is recorded in table 

4.7 for each intended point-of-gaze gi, for the calibration set. The range of variation of those 

slopes, the mean distance between glints centers and the normalized standard deviation are 

given in table 4.8. Note that in the case of simulated data the slope of the line defined by the 

glint centers either increases or decreases monotonically as the gaze moves from left to right 

(i.e. 1g → 2g → 3g , 4g → 5g → 6g , and 7g → 8g → 9g ). However, this does not always happen 
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with the experimental data, as it can be seen in table 4.7, most notably for subject B.L. with 

contact lenses. 

The estimation error patterns, the variation of the slope of the line defined by the 

glints centers, and the variation of the distance between glints centers observed in the 

experiments, suggest, when compared to the simulation results, that a non-spherical corneal 

model is a more adequate representation of a real cornea than a spherical model. In particular, 

the experimental results of subjects B.B. and E.G. without optical correction are consistent 

with the simulations for models 1 and 2, respectively. These results suggest that the error 

pattern of Fig. 3.1 can be explained by corneal asphericity. 

 

Experiment Data set(s) R.m.s. error [mm] 

Calibration set 6.0147 Subject B.B. 

(no optical correction) All sets 9.3849 

Calibration set 9.7290 Subject E.G. 

(no optical correction) All sets 11.8056 

Calibration set 7.1750 Subject E.G. 

(eyeglasses) All sets 9.6856 

Calibration set 12.9671 Subject B.L. 

(contact lenses) All sets 15.1932 

Table 4.6: R.m.s. error of the estimation of the point-of-gaze for the different experiments. 

 

   ig  

Experiment  

1g  2g  
3g  

4g  
5g  

6g  
7g  

8g  
9g  

Subject B.B. 

(no optical correction) 
-0.0360 -0.0105 0.0141 -0.0090 -0.0122 0.0041 -0.0116 -0.0132 -0.0143 

Subject E.G. 

(no optical correction) 
-0.0430 0.0006 0.0402 -0.0169 -0.0073 0.0066 -0.0037 -0.0104 -0.0051 

Subject E.G. 

(eyeglasses) 
-0.0247 -0.0051 0.0200 -0.0086 -0.0078 -0.0124 -0.0121 -0.0124 -0.0087 

Subject B.L. 

(contact lenses) 
0.0134 -0.0587 -0.0316 -0.0160 -0.0177 -0.0631 -0.0020 0.0025 -0.0358 

Table 4.7: Slopes of the line defined by the glints centers for each intended point-of-gaze for the calibration set 

for the different experiments. 
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 Descriptor 

Experiment  

Slope range  

[º] 

Mean distance glints  

[pixels] 

Normalized SD  

[%] 

Subject B.B. (no optical correction) 2.8677 21.0756 0.87 

Subject E.G. (no optical correction) 4.7640 23.7904 1.76 

Subject E.G. (eyeglasses) 2.5587 18.9135 0.60 

Subject B.L. (contact lenses) 4.3789 23.5189 3.91 

Table 4.8: Range of variation of the slopes shown in table 4.7, mean distance between glints centers, and 

normalized standard deviation of the distance between glints centers, corresponding to the calibration set, for 

the different experiments. 

 

4.4 Improvement of the point-of-gaze estimation accuracy 

 The results from the previous section suggest that the accuracy of the computation of 

the point-of-gaze could be improved if a non-spherical corneal model were used to estimate 

the point-of-gaze. However, the number of eye parameters that have to be estimated increases 

from 4 to 11 for the model developed in Section 4.2, and the number of calibration points on 

the screen should be increased accordingly. In addition, the time required to estimate the 

point-of-gaze using the non-spherical model can be more than one order of magnitude larger 

than that required by the methodology proposed in Chapter 2. For these reasons, sub-optimal 

solutions that can still use the methodology described in Chapter 2 are proposed. The 

performance of the sub-optimal solutions is evaluated in subsections 4.4.3 and 4.4.4. 

 

4.4.1 Average slope filter 

 Inspired by the observations described so far, an approach that reduces to zero the 

variability of the slope of the line defined by the glints centers is proposed. As explained in 

the previous chapter, during the calibration procedure the subject is asked to fixate a set of 

known points gi, i = 1, 2, …, N on the screen. Typically, for each point gi, 100 images of the 

eye are acquired and the positions of the pupil and glints centers are estimated for each 

image. The results are then averaged to reduce the estimation error, producing the 

corresponding vectors of estimated coordinates of the pupil and glints centers iraw  ,f̂ , i = 1, 2, 

…, N. The subscript raw is used to distinguish the original data from the transformed data 
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that will be obtained later. The vector of coordinates of pupil and glints centers rawf̂  has the 

form 

][ˆ
          rawglintrightrawglintrightcenterpupilcenterpupilrawglintleftrawglintleftraw crcrcr=f  . (4.48) 

Using the vectors iraw  ,f̂ , i = 1, 2, …, N, the average slope of the lines defined by the glints 

centers can be computed as 

∑
= −

−
=

N

i irawglintleftirawglintright

irawglintleftirawglintright

cc

rr

N
slopeavg

1  ,   ,  

 ,   ,  1
_  . (4.49) 

 In this approach, the coordinates of the glints centers are modified in such a way that 

the slope of the line defined by them has the value of the average slope defined in equation 

(4.49), while the distance between the glints centers and the position of the middle point 

between the glints remain unchanged. In this way, the slope variation is reduced to zero. 

Formally, this transformation of coordinates can be described in general as a function 

)_,(_ slopenewrawslopenew ff S=  (4.50) 
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while the coordinates of the pupil center, centerpupilr   and centerpupilc  , remain unchanged. The 

abbreviations r. g. and l. g. stand for right glint and left glint, respectively.  

 In this case, new_slope = avg_slope as defined by equation (4.49) and by applying 

the above transformation of coordinates, vectors of transformed coordinates of the form 

][ˆ
_ . ._ . .  _ . ._ . ._ slopeavggrslopeavggrcenterpupilcenterpupilslopeavgglslopeavgglslopeavg crcrcr=f  (4.53) 

are obtained. Using this methodology, the original calibration data iraw  ,f̂ , i = 1, 2, …, N, is 

transformed into new calibration data )_,ˆ(ˆ
 , ,_ slopeavgirawislopeavg ff S= ,  i = 1, 2, …, N.  Note 

that avg_slope defined in equation (4.49) is regarded as a new model parameter. Using these 

transformed data, the calibration problem becomes 
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∑
=

−
N

i
ifixedslopeavgcalislopeavg

slopeavgcal 1

2

_ , ,_ ])  [,ˆ(ˆmin
_ ,

gρρfgρ  , (4.54) 

where fixedρ  is the vector of fixed system parameters and slopeavgcal _ ,ρ  is the vector of 

parameters that are optimized by the calibration for the transformed data. 

 In order to estimate the point-of-gaze, the vector of estimated coordinates of pupil and 

glints centers rawf̂  for each eye image is transformed, as explained above, into a new vector 

)_,ˆ(ˆ
_ slopeavgrawslopeavg ff S= . Using this vector of transformed coordinates of pupil and 

glints centers slopeavg_f̂ , the point-of-gaze is estimated as explained in Chapter 2 (equation 

(2.38)) using the optimum calibration parameters slopeavgcal _ ,ρ  as 

])  [),_,ˆ((ˆ])  [,ˆ(ˆˆ _ ,_ ,_ fixedslopeavgcalrawfixedslopeavgcalslopeavg slopeavg ρρfgρρfgg S==  . (4.55) 

 By using this methodology, the accuracy of the calibration improves, as it is 

illustrated later for simulated and experimental data. However, if the center of rotation of the 

eye (d) translates relative to the position assumed during calibration, small errors in the 

estimation of the point-of-gaze occur. This is especially noticeable in the case of lateral 

translation. The source of this error is the fact that the slope of the line defined by the glints 

produced by the spherical cornea assumed to estimate the point-of-gaze does vary over a 

small interval for different eye positions and different points of gaze on the computer screen, 

rather than keeping a constant value. A refinement to deal with this problem is described in 

the following subsection. 

 

4.4.2 Two-stage slope filter 

 The methodology of the previous subsection can be refined with the addition of a 

second calibration stage, as well as a second estimation stage. The solution of the calibration 

problem represented by equation (4.54) is a vector of parameters slopeavgcal _ ,ρ . By using this 

vector of parameters, estimates of the point-of-gaze slopeavg_ĝ and the position of the center of 

rotation slopeavg_d̂ can be computed with equation (2.41) for each vector of transformed 

coordinates of pupil and glints centers slopeavg_f̂  as 
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])  [,ˆ(]ˆˆ[ _ ,___ fixedslopeavgcalslopeavgslopeavgslopeavg ρρfdg G=  (4.56) 

Then, the coordinates that the glints centers would have for an ideal eye with spherical 

cornea, having its center of rotation at slopeavg_d̂  and parameters slopeavgcal _ ,ρ , can be calculated 

with equation (2.67) as 

])  [,ˆ,ˆ(
~

_ ,__ fixedslopeavgcalslopeavgslopeavg ρρdgff =  (4.57) 

in general or as 

])  [,ˆ,(
~

_ ,_ fixedslopeavgcalslopeavg ρρdgff =  (4.58) 

for the calibration problem given that in that case the actual point-of-gaze g is known. The 

vector f
~

 has the form 

]~~~~~~[
~

      glintrightglintrightcenterpupilcenterpupilglintleftglintleft crcrcr=f  (4.59) 

and is used to calculate the corresponding slope 
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This slope value is used to refine the coordinates of the glints centers, obtaining a new vector 

of coordinates of pupil and glints centers as 

)
~

,ˆ(ˆ
_2 sloperawstagend ff S=  (4.61) 

where the function S (.) was defined in equation (4.50). 

 Through these steps the original calibration data iraw  ,f̂ , i = 1, 2, …, N are transformed 

into new calibration data istagend  ,_2f̂  with slope islope
~

. The second calibration stage is then 

formally expressed as 

∑
=

−
N

i
ifixedstagendcalistagend

stagendcal 1

2

_2 , ,_2 ])  [,ˆ(ˆmin
_2 ,

gρρfgρ  . (4.62) 

 The second estimation stage then becomes 

])  [,ˆ(ˆˆ _2 ,_2 fixedstagendcalstagend ρρfgg =  . (4.63) 

 By using this second stage, the error in the estimation of the point-of-gaze due to 

translation of the center of rotation of the eye is reduced (illustrated later). The two sub-
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optimal approaches described in the previous and present subsections support the simplified 

model assumption of a spherical corneal surface while improving the estimation accuracy.  

 

4.4.3 Simulations 

 The purpose of this subsection is to evaluate, through simulations, the performance of 

the sub-optimal filters proposed above. The simulations are carried out for the data used in 

subsection 4.3.1. 

 Fig. 4.14(a) (same as Fig. 4.6) shows the results corresponding to model 1 with ��= 1 

using the raw data. It can be observed that the estimates of the point-of-gaze have a pattern 

that opens upwards/closes downwards. This pattern is not very prominent but is clearly 

visible. When the average slope filter is used, that pattern disappears, as shown in Fig. 

4.14(b). However, for each intended point-of-gaze the estimates form three clearly 

distinguished clusters. These clusters are due to lateral displacement of the center of rotation 

of the eye and are an artifact of the average slope filter. The two-stage slope filter overcomes 

that problem as illustrated in Fig. 4.14(c). The corresponding values of the r.m.s. error of the 

estimation of the point-of-gaze for the calibration set and for all the positions of the center of 

rotation of the eye are given in table 4.9. The improvement given by the two-stage slope filter 

is apparent. Note that the dashed circles centered at the intended points of gaze have a radius 

of 10 mm. 

 Fig. 4.15(a) (same as Fig. 4.7) shows the results corresponding to model 2 with ��= 1 

using the raw data. It can be observed that the estimates of the point-of-gaze also have a 

pattern that opens upwards/closes downwards. This pattern is much more prominent than that 

seen for model 1 and there is a larger dispersion of the estimates of the point-of-gaze for 

different positions of the center of rotation of the eye. The average slope filter dramatically 

improves the accuracy of the estimates, as shown in Fig. 4.15(b), and the two-stage slope 

filter additionally reduces the dispersion of the estimates, as illustrated in Fig. 4.15(c). The 

benefit of using the two-stage slope filter is clear, as seen in this figures and in table 4.9. 

 Fig. 4.16(a) (same as Fig. 4.8) shows the results corresponding to model 2 with 

02.1=ξ  and � = 45º using the raw data. The purpose of this example is to consider a case 

with corneal astigmatism. The pattern of the estimates is somewhat similar to that shown in 

Fig. 4.15(a). The average slope filter and the two-stage slope filter clearly improve the 
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accuracy of the estimates, as shown in Figs. 4.16(b) and 4.16(c), respectively, and in table 

4.9. However, as it can be seen in table 4.9, the accuracy of the estimates in this case 

(elliptical section) is not as good as for model 2 with ��= 1 (circular section). 

 Fig 4.17(a) (same as Fig. 4.9) shows the results corresponding to model 3 with ��= 1 

using the raw data. In this case, the estimates have a pattern that opens downwards/closes 

upwards, inverted relative to the previous examples. This pattern is pretty prominent, in 

consistence with the corresponding curvature function plotted in Fig. 4.5. The average slope 

filter clearly removes that pattern and improves the accuracy of the estimates, as shown in 

Fig. 4.17(b), while the two-stage slope filter additionally reduces the dispersion of the 

estimates, as seen in Fig. 4.17(c). The values of the r.m.s. error given in table 4.9 support the 

above observations.  

Based on the examples studied through simulations, it can be seen that the 

methodology proposed in this chapter satisfactorily overcomes the problem of asphericity of 

the corneal surface. 

 

Model Data set(s) Raw data Average slope filter Two-stage slope filter 

Calibration set 2.6320 0.5874 0.5977 Model 1 ��= 1� All positions 2.8228 2.5305 0.6949 

Calibration set 9.3210 1.9267 2.0461 Model 2 � = 1 All positions 10.1439 3.3104 2.2887 

Calibration set 9.2449 4.0168 4.1425 Model 2 ��= 1.02, � = 45º All positions 10.0194 4.9143 4.3495 

Calibration set 10.4445 2.4610 2.5675 Model 3 � = 1 All positions 10.9931 3.9367 2.9658 

Table 4.9: R.m.s. error of the estimation of the point-of-gaze for simulations for different non-spherical corneal 

models, using the proposed filters vs. raw data. All errors are in mm. 
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Figure 4.14: Simulation results for model 1 with ��= 1, 

using (a) the raw data, (b) the average slope filter and 

(c) the two-stage slope filter. 

Figure 4.15: Simulation results for model 2 with ��= 1, 

using (a) the raw data, (b) the average slope filter and 

(c) the two-stage slope filter. 
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Figure 4.16: Simulation results for model 2 with ��= 1.02 and � = 45º, using (a) the raw data, (b) the 

average slope filter and (c) the two-stage slope filter. 

Figure 4.17: Simulation results for model 3 with ��= 1, 

using (a) the raw data, (b) the average slope filter and 

(c) the two-stage slope filter. 
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4.4.4 Experimental results 

 This subsection demonstrates the performance of the proposed filters with the 

experimental data described in subsection 4.3.2. Fig. 4.18(a) (same as Fig. 4.10) shows the 

experimental results for subject B.B. (20/20 vision without optical correction) using the raw 

data. It can be seen that the estimates have a pattern that opens upwards/closes downwards. 

Fig. 4.18(b) shows the results using the average slope filter, where that pattern is no longer 

noticeable. Fig. 4.18(c) shows the results using the two-stage slope filter and it can be clearly 

seen that the clustering of the estimates improved. Table 4.10 provides the corresponding 

r.m.s. errors of the estimation of the point-of-gaze, both for the calibration data set and for all 

10 data sets. The two-stage slope filter provides an improvement in the estimation accuracy. 

Note that the dashed circles centered at the intended points of gaze have a radius of 10 mm. 

 Fig. 4.19(a) (same as Fig. 4.11) corresponds to subject E.G. (medium myopia) 

without optical correction, using the raw data. The estimates of the point-of-gaze present a 

clear pattern that opens upwards/closes downwards. The average slope filter clearly improves 

this situation, as illustrated in Fig. 4.19(b), while the two-stage slope filter additionally 

improves the clustering of the estimates, as shown in Figure 4.19(c). The corresponding 

values of the r.m.s. errors given in table 4.10 support these observations. 

 Fig. 4.20(a) (same as Fig. 4.12) corresponds to subject E.G. with eyeglasses, using the 

raw data. There is a clear pattern that opens upwards, with a somewhat larger dispersion of 

the estimates of the point-of-gaze than for the same subject without optical correction. As 

shown in Fig. 4.20(b), the average slope filter clearly improves the situation, however, the 

two-stage slope filter does not improve the results over the average slope filter for all the data 

sets, as it can be seen in Fig. 4.20(c) and in table 4.10. Nevertheless, its performance is still 

reasonable in comparison with the other experiments.  

 Fig. 4.21(a) (same as Fig. 4.13) shows the results obtained with subject B.L. (medium 

myopia) with contact lenses, using the raw data. In this case, the pattern of the point-of-gaze 

estimates is more complicated than in the other cases. On the left, the pattern closes upwards 

and, on the right, the pattern opens upwards/closes downwards, with a considerably larger 

dispersion of the estimates. However, despite that complicated pattern and the large 

dispersion, the average slope filter provides a dramatic improvement, as illustrated in Fig. 

4.21(b). The two-stage slope filter gives a small additional improvement in the clustering of 
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the estimates, as seen in Fig. 4.21(c), and in the estimation accuracy, as detailed in table 4.10. 

 The results obtained with the experimental data show that the filters proposed in this 

section clearly improve the point-of-gaze estimation accuracy. The r.m.s. estimation error 

using the two-stage slope filter is between 46 to 77 % of the r.m.s. estimation error obtained 

when the raw data is used. In particular, for the case that exhibits the largest r.m.s. estimation 

error with the raw data (subject B.L. wearing contact lenses), the use of the two-stage slope 

filter reduced the r.m.s. estimation error by a factor of about 2.18, from 15.19 mm to 6.96 

mm. For all the experiments carried out, both the average slope filter and the two-stage slope 

filter keep the r.m.s. estimation error below 8 mm (0.7º of visual angle for an average 

distance of 65 cm between the eye and the computer screen). 

 

Experiment Data set(s) Raw data Average slope filter Two-stage slope filter 

Calibration set 6.0147 2.5814 2.7697 Subject B.B. 

(no optical correction) All sets 9.3849 7.6185 7.2346 

Calibration set 9.7290 2.3644 2.2456 Subject E.G. 

(no optical correction) All sets 11.8056 7.2527 6.7680 

Calibration set 7.1750 3.0693 2.8483 Subject E.G. 

(eyeglasses) All sets 9.6856 6.3712 6.8822 

Calibration set 12.9671 3.5908 3.4456 Subject B.L. 

(contact lenses) All sets 15.1932 7.2328 6.9609 

Table 4.10: R.m.s. error of the estimation of the point-of-gaze for experiments with different subjects, using the 

proposed filters vs. raw data. All errors are in mm. 
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Figure 4.18: Experimental results for subject B.B. 

(20/20 vision without optical correction), using (a) the 

raw data, (b) the average slope filter and (c) the two-

stage slope filter. 

Figure 4.19: Experimental results for subject E.G. 

(medium myopia) without optical correction, using (a) 

the raw data, (b) the average slope filter and (c) the 

two-stage slope filter. 
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Figure 4.20: Experimental results for subject E.G. 

(medium myopia) with eyeglasses, using (a) the raw 

data, (b) the average slope filter and (c) the two-stage 

slope filter. 

Figure 4.21: Experimental results for subject B.L. 

(medium myopia) with contact lenses, using (a) the 

raw data, (b) the average slope filter and (c) the two-

stage slope filter. 
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4.5 Effects of errors in the estimation of the coordinates of pupil and glints 

centers in the eye images 

 For the experiments described in this chapter, the coordinates of pupil and glints 

centers were obtained as the average of 100 estimates, and hence the effect of the estimation 

error was reduced. However, the estimation of the point-of-gaze in most applications is done 

for individual estimates of the coordinates of pupil and glints centers. 

Due to estimation error caused by image noise, the slope of the line defined by the 

estimates of the glints centers varies from image to image, even when the eye and gaze 

remain stationary. In order to illustrate the effect of this phenomenon, Fig. 4.22(a) shows 

results using raw data corresponding to subject E.G. without optical correction, when the 

point-of-gaze was computed for each of the 100 estimates of the coordinates of pupil and 

glints centers that were obtained for each intended point-of-gaze, and from which the 

calibration data set was obtained by averaging. Figs. 4.22(b) and 4.22(c) illustrate the results 

obtained by using the average slope filter and the two-stage slope filter, respectively. Clearly, 

the effect of the estimation error of the coordinates of pupil and glints centers is reduced by 

the application of the methodology developed in Section 4.4. The accuracy of the estimation 

of the point-of-gaze improves and the dispersion of the estimates of the point-of-gaze is 

notably reduced. 

The r.m.s. errors in the estimation of the point-of-gaze for all the data collected 

during the experiments described in subsections 4.3.2 and 4.4.4 were calculated. Table 4.11 

presents the r.m.s. errors for each experiment for the data from which the calibration set was 

obtained and for all the data. Note that a point-of-gaze estimation error of 9 mm is equivalent 

to 0.8º of visual angle when the eye is at 65 cm from the computer screen. The data in table 

4.11 suggest that point-of-gaze estimates with either the average slope filter or the two-stage 

slope filter satisfy, in r.m.s. sense, the accuracy requirements of this project (1º of visual 

angle). 
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Figure 4.22: Experimental results for subject E.G. without optical correction, using (a) the raw data, (b) the 

average slope filter and (c) the two-stage slope filter. The point-of-gaze was estimated for individual estimates of 

pupil and glints centers for the calibration data set. 

 

Experiment Data set(s) Raw data Average slope filter Two-stage slope filter 

Calibration set 8.1996 5.0101 5.1022 Subject B.B. 

(no optical correction) All sets 11.0958 8.8591 8.5246 

Calibration set 10.8812 4.3199 4.2537 Subject E.G. 

(no optical correction) All sets 12.8506 8.2941 7.8704 

Calibration set 9.8203 6.0314 5.8843 Subject E.G. 

(eyeglasses) All sets 11.8664 8.1814 8.5703 

Calibration set 14.0260 4.9648 4.8500 Subject B.L. 

(contact lenses) All sets 16.2160 8.0938 7.8425 

Table 4.11: R.m.s. error in the estimation of the point-of-gaze over individual estimates of the coordinates of 

pupil and glints centers for experiments with different subjects. All errors are in mm. 
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5. Pilot study and conclusions 
 

5.1 Introduction 

 Age-related macular degeneration (ARMD) is the leading cause of legal blindness in 

North America, affecting about 1.6 million persons over 50 years of age [41]. In macular 

degeneration, the macula (central 5-7º of the retina), which is used for fine visual tasks such 

as reading and face recognition, is damaged, resulting in a dramatic reduction in the quality 

of life. There are different variants of the disease but in most cases it ranges from impaired to 

complete central vision loss (central scotoma5). 

 A person with a central scotoma unconsciously chooses an eccentric retinal area, a 

Preferred Retinal Locus (PRL), to perform the visual tasks that the fovea used to perform, 

such as fixation, reading or tracking. Such persons perform these tasks by moving the eyes so 

that the image of the objects of interest falls within their PRL [49, 50]. Because it is in the 

periphery, the visual acuity of a PRL is lower than that of the fovea which means that 

magnification is required to compensate for the reduced resolution. 

 It has been shown that with appropriate visual aids, a great proportion of patients with 

ARMD can be successfully trained to read and perform daily tasks using eccentric viewing. 

The most common visual aids for near vision are strong positive lenses that by virtue of their 

short focal length demand that the text is held very close to the eye (typically, 4-5 cm and as 

close as 1.7 cm in extreme cases). This obviously precludes binocular vision, and is 

associated with a very small field of view. Nevertheless, the improvement in the ability to 

read is significant in comparison with no visual aids [51]. 

                                                 
5 Scotomas are retinal areas with reduced or null light sensitivity. A dense scotoma (also called absolute 
scotoma) is insensitive to very bright light, while a relative scotoma has a reduced light sensitivity compared to 
a healthy retina. 



Chapter 5: Pilot study and conclusions 

 

89

 Other type of visual aid comprises closed-circuit TV (CCTV) magnifiers [51, 52] and 

computer screen magnifiers such as that included in the Microsoft Windows operating 

system (accessibility tools). A CCTV magnifier [52] consists of a monitor, usually quite 

large, and a video camera equipped with a zoom lens. The camera and lens look down on a 

movable platform. Printed material is placed on the platform and the reader views the 

magnified image on the monitor screen. The reader moves through the text by moving the 

platform, thereby moving the material through the camera’s field of view. Computer screen 

magnifiers consist of a fixed window where the information from a region around the mouse 

pointer is displayed with the selected magnification. A key disadvantage of this type of 

approach is that the amount of information that can be displayed by the magnifier is limited 

(a few characters) while there is a lack of information regarding the location of the text that is 

being read. This leads to text navigation problems and it is fairly common for patients that 

use this type of aid to get lost in the text [52]. These approaches neglect the natural visual 

navigation skills for reading. 

 In collaboration with the Vision Science Research Program (VSRP) at the Toronto 

Western Hospital (Drs. Esther González, Sam Markowitz and Emad Eskander) we are 

developing a novel visual aid to allow subjects with ARMD to read from a computer 

monitor. The essence of the concept is to provide a magnifier that can be moved by the 

subject across the screen. A pair of crosshairs spanning the whole screen is used to provide 

information regarding the region of the screen that is being explored and to stabilize the gaze. 

The magnifier itself is a window located with the appropriate eccentricity relative to the 

center of the crosshairs, where the visual information from a region around the center of the 

crosshairs is displayed with the required magnification. One of the main objectives of our 

approach is to preserve natural visual navigation skills for reading. 

We are considering two different approaches regarding the control of the magnifier 

position. One approach consists of moving the magnifier with a pointing device such as a 

mouse or a trackball, which would make the system inexpensive. The other approach 

involves moving the magnifier with the gaze (“gaze-slaved”) so that the information of 

interest, which would be seen with the fovea if the eyes were healthy, is now always 

projected onto the PRL with adequate magnification.  
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 The next section shows some preliminary experimental results of eccentric reading 

tests with subjects with normal or corrected-to-normal vision and a simulated central 

scotoma. Section 5.3 summarizes the contributions of this thesis and describes planned future 

work. 

 

5.2 Preliminary experiments 

 Three subjects participated in these preliminary experiments. Each subject sat in front 

of a 19 in. computer monitor (18 in. visible) at a distance of 65 cm using a chinrest to ensure 

that the right eye was always in the field of view of the camera of the point-of-gaze 

estimation system. The point-of-gaze estimation system was used to monitor and record the 

subject’s point-of-gaze.  

 Each subject had to read four previously unread text fragments with the periphery of 

the retina. The first fragment was used to make the subject familiar with the experiment and 

performance was not recorded. Each subject read all four text fragments within a single 

session with brief breaks between fragments. All subjects read the same fragments in the 

same order. The reading material consisted of passages between 100 and 200 words long 

excerpted from different books intended for children between 10 and 12 years of age. The 

normal-sized text displayed on the screen was blurred to prevent the subject from reading it 

directly.  

 The central scotoma was simulated as a black disk of 7º of visual angle in diameter. 

The subject had to keep his gaze at the center of the black disk and read with the periphery of 

the retina from the eccentrically located magnifier window. The magnifier window was 

placed below the black disk since the lower visual hemifield is preferred for eccentric 

viewing by patients with ARMD whenever possible (i.e., if there is no significant lesion in 

the lower visual hemifield). The lower visual hemifield is preferred over the upper visual 

hemifield because it has better acuity and is used for most daily tasks such as locomotion. 

The eccentricity of the center of the magnifier window was about 7º below the center of the 

black disk. The height of the window subtended 7.3º and the width subtended 19.3º, 

accommodating 4 to 6 characters. The magnified characters were white on a black 

background (negative image) as this seemed to favor reading. The font used for these 

experiments was Helvetica bold, a sans serif of high readability. The magnified characters, 
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shown in the magnifier window, had a height of about 3.5º of visual angle for lowercase 

characters such as “e”, “o”, etc., and about 4.4º for lowercase characters such as “b”, “p”, 

etc., and uppercase characters. An example of the visual information presented on the screen 

is shown in Fig. 5.1. In order to make navigation easier, the vertical position of the center of 

the black disk was restricted to the lines of text only. 

The size of the magnified characters was determined using the results described in 

[53] which showed that an alphanumeric target presented with an eccentricity of � degrees 

has to be magnified by a factor of (1+1.844 �) relative to a target presented in the fovea in 

order to attain equal identification ability. If the eccentricity of the center of the magnifier 

window is about 7º, the magnification factor should be around 13.9. Now, considering that 

for a normal sighted subject there is no difficulty in reading characters that have a height of 

0.25º (15 min of arc), the magnified characters should then have a height of about 3.5º of 

visual angle. Making the magnified characters much larger is not recommended because the 

number of characters that can be perceived per fixation reduces in such a way that reading is 

impaired. 

 

 
Figure 5.1: Example of the information presented on the screen (blurred text, crosshair, black disk that 

simulates the central scotoma and magnifier window). 

 

The subject was instructed to keep his gaze at the center of the black disk for the 

duration of the experiment and read aloud with the periphery of the retina from the 

eccentrically located magnifier window. In the case where the magnifier was moved using a 

mouse, the point-of-gaze estimation system was used to monitor and record the point-of-gaze 
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in real time along with the position of the center of the black disk. If the estimate of the 

point-of-gaze was below the center of the black disk by more than a certain threshold (about 

1.5º), it was considered as an attempt to read with the fovea and the magnifier window was 

blanked. Immediately after the experiment, using the same criteria on the recorded data, an 

image of the normal-sized text (without blurring) could be displayed with markers 

superimposed on the words where an attempt to read with the fovea was suspected (Figs. 5.2 

and 5.3). The reading speed was computed for each text fragment as the number of words 

correctly read with the periphery of the retina divided by the time required to read the 

fragment of text. Table 5.1 summarizes the results. 

The results of these reading tests showed that the reading performance improved with 

practice for two of the three subjects tested. As mentioned in [51], training is fundamental for 

patients with ARMD to be able to use eccentric viewing effectively. Another observation 

from this experiment is that although the vertical position of the center of the black disk was 

restricted to the lines of text only, one of the subjects showed some text navigation problems. 

He frequently skipped a line or went back to an already read line and, even though he 

realized that and eventually found and read the correct line, this impacted on the reading 

performance. This observation suggested that it would be useful to be able to control the 

position of the magnifier using the arrow keys of the computer keyboard in addition to the 

pointing device. 

 

Subject Text 
# 

Total 
number of 
words 

Number of 
words read 
incorrectly or 
missed 

Number of words 
suspected to have 
been read with the 
fovea 

Number of words 
read correctly with 
the periphery of the 
retina 

Effective 
reading speed 
[words per 
minute] 

1 168 0 37 131 18.11 

2 184 0 4 180 30.17 B.B. 

3 180 3 2 175 33.76 

1 168 0 8 160 16.19 

2 184 0 25 159 14.72 B.L. 

3 180 0 15 165 21.20 

1 168 1 34 133 18.47 

2 184 0 65 119 15.56 M.E. 

3 180 1 70 109 13.00 

Table 5.1: Results of the reading tests. 
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Figure 5.2: Passage with markers superimposed on the words where attempts to read with the fovea were 

suspected (Text no. 1, subject B.L.). 

 
Figure 5.3: Passage with markers superimposed on the words where attempts to read with the fovea were 

suspected (Text no. 2, subject B.B.). 

 

The gaze-slaved magnifier, which uses the point-of-gaze estimation system to control 

the position of the magnifier, was also tried but it was found that reading was more difficult. 
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The main observation was that normal visual scanning patterns for reading were ineffective 

in this case. Normal reading consists of a succession of fixation-saccade6 patterns. Each 

fixation is used to perceive a string of 4 or 5 characters and is followed by a saccade to move 

the gaze to the next 4 or 5 characters [54]. In our experiment, the normal-sized text is not 

only blurred but it is also occluded by the black disk that simulates the central scotoma. It 

seems that since the text is occluded, there is no clear reference for the saccadic eye 

movements performed in normal reading. In addition, the magnifier window showed only 4 

to 6 characters (it was not possible to show more characters because of the size of the 

screen), which means that if due to lack of visual reference the amplitude of the saccades is 

larger than the length of the character string showed in the magnifier window, some 

characters are skipped, making reading difficult. However, when subjects forced themselves 

to move the gaze slowly (keeping the eyes stationary relative to the head and rotating the 

head slowly, for example), it was possible to read using the gaze-controlled magnifier. 

Another possibility would be to incorporate a filter that transforms the step-like saccades into 

smooth ramp-like movements of the magnifier. In any case, training in the use of this visual 

aid is a key issue.  

The visual aid has been recently tested with an 87 year-old patient (retired professor) 

who suffers from ARMD. The patient had a small lesion in the right eye and a large lesion in 

the left eye. Using the right eye, the patient could read large print and newspaper headlines 

without any visual aid other than his eyeglasses (visual acuity of 20/64 as tested with the 

ETDRS chart at 1 m), while the use of his left eye was very limited (considered legally 

blind). Using the proposed visual aid, the subject was able to read from the computer monitor 

using the eye that is considered legally blind (the other eye was covered by an eye-patch). 

This result is certainly encouraging. The experience with patients with ARMD will provide 

valuable information to improve the implementation of the visual aid. The point-of-gaze 

estimation system may be used in the first stage of the experiments to evaluate fixation 

stability and visual scanning patterns in patients with ARMD. 

                                                 
6 A saccade is a fast eye movement that shifts the point-of-gaze. 



Chapter 5: Pilot study and conclusions 

 

95

5.3 Conclusions 

5.3.1 Contributions 

The main contributions of this thesis are the following: 

• Development of a novel model-based free-head point-of-gaze estimation system. 

A system that estimates the point-of-gaze in real time using a geometrical-optical model 

was developed. The system does not require head attachments and allows for limited 

head movement. The current implementation of the system estimates the point-of-gaze at 

a rate of up to 12 Hz while allowing for head movements in a volume of 6 cm laterally by 

4 cm vertically by 8 cm longitudinally. The range of head movements is limited only by 

the field of view of the camera. The development of the point-of-gaze estimation system 

comprised the following milestones: 

� Development of a geometrical-optical model of the system and the eye that 

relates the coordinates of pupil and glints centers in an eye image with the 

point-of-gaze on a computer monitor. This model is used to estimate the 

point-of-gaze from the estimated coordinates of pupil and glints centers, and 

to compute the coordinates of pupil and glints centers for a given eye position 

in space and a point-of-gaze on the screen.  This model overcomes the 

problem of estimation error due to head displacement. 

� Development of a calibration procedure and evaluation of the sensitivity of 

the point-of-gaze estimation method to errors in model parameters, noise in 

the estimation of pupil and glints centers, and fixation errors during 

calibration. 

� Development of a non-spherical corneal model to study the robustness of the 

proposed point-of-gaze estimation method. 

� Development of sub-optimal solutions to improve the point-of-gaze estimation 

accuracy. 

� Experimental evaluation of the point-of-gaze estimation system. These 

experiments demonstrated that the root mean square error of the estimation of 

the point-of-gaze on the computer monitor is less than 1º of visual angle.  
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• Proposal of a novel visual aid for patients with age-related macular degeneration 

(ARMD). 

A novel visual aid to allow patients with ARMD to read from a computer monitor 

was proposed. The concept was evaluated by simulating the disease in subjects with 

healthy retina. The visual aid has been recently tested with a patient with ARMD with 

encouraging results. 

 

5.3.2 Future work 

 The current implementation of the system allows for head movements in a volume of 

6 cm laterally by 4 cm vertically by 8 cm longitudinally. The range of head movements is 

limited only by the field of view of the camera. This figures are more than enough if a 

chinrest is used to stabilize the head or if the system is used by motor disabled persons who 

cannot move the head. However, for applications involving able-bodied persons, the 

possibility of allowing for natural head movement is in general desired and, hence, a larger 

volume of allowed head movement is required. This can be accomplished with a combination 

of a higher resolution image sensor and a moving camera. An image sensor with a higher 

resolution will allow a larger field of view of the camera while keeping the effective spatial 

resolution of the camera approximately constant. 

At this stage, the point-of-gaze can be estimated at a rate of up to 12 Hz.  This is 

adequate for applications such as a gaze-slaved mouse or magnifier but other applications 

require higher estimation rates. One example is the study of changes in the visual scanning 

patterns in patients with macular degeneration for which an estimation rate of 30 Hz and 

even 60 Hz is desirable if saccadic eye movements are to be analyzed. This may be 

accomplished by the convergence of the optimization of the estimation algorithms and the 

evolution of computer technology. 

Experimental results showed that the root mean square error in the estimation of the 

point-of-gaze on the computer monitor was slightly less than 1º of visual angle. This is 

sufficient for applications such as those described in [3, 4, 5] where the subject is presented 

with slides containing four pictures of different themes and the objective is to determine the 

visual preference (dwell time, number of visits, etc.) and correlate it with the level of 

depression. On the other hand, for applications such as a gaze-slaved pointing device for 
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motor disabled persons or a gaze-slaved magnifier for persons with macular degeneration, 

better accuracy in the estimation of the point-of-gaze is desired, especially if the amount of 

information presented on the screen is not to be compromised (i.e. the size and separation of 

icons or the line spacing of text can be increased but at the cost of reducing the amount of 

information presented simultaneously).  

The results obtained in this research showed that a spherical corneal model is not, in 

general, a good model for real corneas and hence, a more complex corneal model, such as an 

ellipsoid or a higher order model could be used to improve the accuracy of the point-of-gaze 

estimation. The use of a more complex corneal model to estimate the point-of-gaze in real 

time will require increased computing power, which may be available in the near future with 

the fast evolution of computer technology. In addition, some preliminary simulation results 

showed that the robustness of the point-of-gaze estimation system can be improved by 

locating the light sources higher relative to the camera. However, such changes in the 

physical configuration of the system increase the probability of interference from the upper 

eyelid (shadow in the iris) that affects the performance of the image processing algorithms. It 

is planned to consider a more elaborate illumination configuration in which the light sources 

that produce the corneal reflections are located higher and a diffuse IR light source is used to 

overcome the eyelid interference problem. Another issue that needs further exploration is the 

calibration algorithm. This involves, possibly, more calibration target points, as well as 

reviewing which parameters should be included in the calibration procedure and the 

formulation of more elaborate calibration constraints.  

The current geometrical-optical model does not account for eyeglasses. Eyeglasses 

are refractive elements that alter the path of the light rays both from the light source to the 

cornea and back from the cornea to the camera. If the eyeglasses remain stationary relative to 

the system, which in general implies that the head does not move relative to the system, the 

estimation of the point-of-gaze is hardly affected by the eyeglasses. If the eyeglasses move 

relative to the system, the extent by which the optical path of the light rays is affected can 

change significantly and produce estimation errors of up to 2-3º (in the conditions tested). 

This problem will be addressed in the future. Another aspect of eyeglasses is that each lens 

and the frame of the eyeglasses can produce several reflections than can interfere with the 

image of the eye. These bright reflections can completely mask the pupil, rendering the 
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image of the eye unusable. This issue is not as dramatic if the eyeglasses have an 

antireflective coating. Nevertheless, it is an issue to deal with and the location of the light 

sources could be a factor. 

The development of the novel visual aid for patients with age-related macular 

degeneration (ARMD) might benefit from an improved point-of-gaze estimation system that 

can be used to control the eye-slaved magnifier. In addition, the point-of-gaze estimation 

system can be used to study fixation stability and visual scanning patterns in patients with 

ARMD. 
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Appendix A: Transformation between world 

and camera coordinate systems 
 

 This appendix presents a more traditional way in which the transformation from the 

world coordinate system to the camera coordinate system is considered as a sequence of 

steps:  

(i) translate the world coordinate system XYZ by t to obtain the coordinate system 

XtYtZt (Fig. A.1),  

(ii) rotate the coordinate system XtYtZt around the Yt-axis by an angle �cam to obtain 

the coordinate system Xt’Yt’Zt’ (Fig. A.2),  

(iii) rotate the coordinate system Xt’Yt’Zt’ around the Xt’-axis by an angle �cam to 

obtain the coordinate system x0y0z0 (Fig. A.3),  

(iv) rotate the coordinate system x0y0z0 around the z0-axis by an angle �cam to obtain 

the camera coordinate system xyz (Fig. A.4). 

 Step (i) is described by 
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Step (ii) is modeled as 
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 Step (iii) is given by 
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 And step (iv) can be written as 
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 Equations (A.1), (A.2), (A.4) and (A.6) can then be chained to get 
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Noting that the transformation matrices A, B and C are orthonormal, which implies that 

TAA =−1 and so on, we can write the inverse equation as  
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Note that the comparison between equations (2.21) and (A.8) yields 

[ ]camcamcam kjiABC =  . (A.10) 
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Figure A.1: Translation by t. 

 

 

 

 

Figure A.2: Rotation of the camera around the Yt-axis by an angle �cam. 
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Figure A.3: Rotation of the camera around the Xt’-axis by an angle �cam. 

 

 

Figure A.4: Rotation of the camera around its optic axis by an angle �cam. 
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Appendix B: Typical values of the eye 

parameters and nominal values of the system 

parameters  
 

Parameter Description 
Typical / Nominal value 

Reference / 

Comments 

D 
Distance between the center of corneal curvature 

and the center of rotation of the eye 
5.3 mm [1] 

R Radius of corneal curvature 7.8 mm [1, 44]  

K 
Distance between the center of the pupil and the 

center of corneal curvature 
4.75 mm [44] αeye 

Horizontal angle between visual and optic axes 

of the eye 

–5º for the right eye, 

5º for the left eye 
[43] βeye 

Vertical angle between visual and optic axes of 

the eye 
1.5º [43] θcam Pan angle of the camera 0º  φcam Tilt angle of the camera 27º  κcam 

Angle of rotation of the camera around its optic 

axis 
0º  

l Light source 1 [–249.1 –142.2 5.4]T mm  

m Light source 2 [249.1 –142.2 5.4]T mm  

t Center of the camera image plane [0 –232.16 48.38]T mm*  

focal length Focal length of the camera lens 35 mm  

dcnp 
Distance between the cornea and the nodal point 

of the camera 
625 mm  

ccenter  Column coordinate of the image center 320.5 pixels  

rcenter Row coordinate of the image center 240.5 pixels  

pixel pitch Distance between adjacent pixels in the CCD 7.4 µm  

Table B.1: Typical values of the eye parameters and nominal values of the system parameters.
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*: The value of t is computed as 
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Appendix C: Change of variables for the 

calibration problem 
 

 In Section 3.4, the root mean squared error of the estimation of the point-of-gaze was 

studied as a function of the deviation of the actual value of each calibration parameter from 

the typical/nominal value used to estimate the point-of-gaze. Each parameter was 

individually considered in a neighborhood of its typical/nominal value and the root mean 

squared error showed to be a linear or approximately linear function of the magnitude of the 

deviation of the parameter value. This implies that the mean squared error of the estimation 

of the point-of-gaze as a function of the deviation of each calibration parameter from the 

typical/nominal value can be described by a quadratic or approximately quadratic function. 

Hence, the objective function of the calibration problem 

∑
=

−=
N

i
ifixedcamcameyeeyeicamcameyeeye KRKRf

1

2

])            [,ˆ(ˆ) , , , , ,( gρfg κθβακθβα  (C.1) 

can be approximated by a quadratic function of six variables, at least in a neighborhood of 

the optimum point. The vectors if̂  are the vectors of coordinates of pupil and glints centers 

obtained for each calibration point gi, fixedρ  is the vector of fixed system parameters, and the 

calibration parameters are given explicitly. 

 It was also observed that for each parameter the slope of the r.m.s. error as a function 

of the deviation of the parameter from the typical/nominal value is different and that there are 

interactions among parameters. This implies then that the level hyper-surfaces of the 

objective function are approximately hyper-ellipsoids whose axes are, in general, not parallel 

to the axes corresponding to the design variables (i.e. the calibration parameters). 

Conditioning and, hence, convergence of the calibration problem could be improved if a 

change of variables, namely an affine transformation, were applied to the objective function 

so that the level hyper-surfaces of the objective function become approximately 



Appendix C: Change of variables for the calibration problem 

 

112

hyper-spherical. However, since the objective function has six variables, this problem is 

difficult and computationally expensive to analyze. For this reason, only a simplified analysis 

for a particular simulated situation and taking the variables in pairs according to their 

interactions is presented in this appendix. This analysis is carried out under the assumption 

that the actual optimum point of the calibration problem is very close to the point 

corresponding to the typical/nominal values of the calibration parameters. 

 For this analysis, the vectors if̂  of coordinates of pupil and glints centers, that are 

used in the evaluation of the objective function, are computed with equation (2.67) as 

),,(ˆ oρdgff ii = , where d = [0 70 650]T mm, the calibration points gi are listed in table 3.3 (N 

= 9) and oρ  is the vector of eye and system parameters with the typical/nominal values given 

in Appendix B. 

  One of the observations made in Section 3.4 is that the parameters R and K have both 

offset and gain effects and that they can be considered coupled to each other as changes of 

the same proportions and in the same direction in both parameters have opposite effects that 

cancel each other out to a certain degree. Fig. C.1 shows a plot of the objective function as a 

function of R and K with all other parameters fixed at their typical / nominal values, that is, 

) , , , , ,(  , , , , nomcamnomcamtypeyetypeyeKRf κθβα . Clearly, there is a valley where the value of the 

objective function is small. Moreover, if that surface is re-plotted as a function of 

1, −=
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=
typtyp

typ
norm R

R

R

RR
Ro  (C.2) 

and 

1, −=
−

=
typtyp

typ
norm K

K

K

KK
Ko  , (C.3) 

where normR ,o  and normK ,o  represent the fractional change of R and K relative to their typical 

values, the valley is in fact at approximately 45º relative to the normR ,o -axis, in concordance 

with the observation stated above. 

 The presence of the valley suggested that convergence could be improved if a change 

of variables, that makes the surface of Fig. C.1 approximate a circular paraboloid, was 

introduced. Towards this end, two new variables XRK and YRK are defined such that the XRK-
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axis is coincident with the valley and the YRK-axis is perpendicular to the valley. Formally, 

the variables normR ,o  and normK ,o  are related to the new variables by 



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2

2

,

,oo  . (C.4) 

 The next step is to scale the new variables so that the level curves are approximately 

circular rather than elliptical. The XRK-axis can then be compressed by a factor RKk such that 

the level curves are approximately circular. Formally, this is done by introducing other two 

new variables x1 and x2, such that 

1xkX RKRK =  , (C.5) 

2xYRK =  . (C.6) 

For example, the level curve for f = 1 is approximately elliptical with a ratio between the 

lengths of the major axis (direction of the valley) and the minor axis (perpendicular to the 

valley) of about 19. Thus, a value of 19=RKk  was adopted. 

 
Figure C.1: Objective function plotted as a function of R and K. 

 

Another observation that was made in Section 3.4 is that the parameters �eye and �eye 

have an offset effect but their effects are independent of each other. This is in fact what can 

be seen from Fig. C.2, where the objective function has been plotted as a function of �eye and �eye while all other parameters remained fixed at their typical / nominal values, that is, 

) , , , , ,(  , , nomcamnomcameyeeyetyptyp KRf κθβα . 
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 In this case, the level curves are already circular. However, the variables should be 

scaled such that the level curves have approximately the same diameters as for the objective 

function as a function of x1 and x2. Formally, this is done, by translating to the origin and 

introducing two new variables x3 and x4, as 

3 , xktypeyeeye αβαα =−  , (C.7) 

4 , xktypeyeeye αβββ =−  . (C.8) 

Comparing the level curves for f = 1, it is seen that a compression by a factor of about 34 is 

required. Hence, 34=αβk  was adopted. 

 

Figure C.2: Objective function plotted as a function of �eye and �eye. 

 

 It was also seen in Section 3.4 that �cam and �cam have rotation-like effects and that 

they are coupled to each other to a certain extent. Fig. C.3 shows a plot of the objective 

function as a function of �cam and �cam with all other parameters fixed at their typical values, 

that is, ) , , , , ,(  , , camcamtypeyetypeyetyptyp KRf κθβα . This case also presents a valley where the 

value of the objective function is small, evidence of some mutual compensation between �cam 

and �cam. 

 The presence of this valley also suggested that convergence could be improved if a 

change of variables such that the level curves become approximately circular, with a scaling 

consistent with that of the other variables, was introduced. With this purpose, two new 

variables X�� and Y�� are defined such that the X��-axis is coincident with the valley while the 
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Y��-axis is perpendicular to the valley. If the orientation of the valley in the �cam-�cam 

coordinate system relative to the �cam-axis is represented by �, the relation between the old 

variables and the new variables can be formally expressed as 
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cam
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 (C.9) 

where °−≅ 32.25ψ . 

 The next step is to compress along the valley by a factor 1,θκk  in order to obtain 

circular level curves, followed by a scaling in both axes by a factor 2,θκk  for consistence with 

the other variables. This is formally expressed, after introducing two new variables x5 and x6, 

as 

51,2, xkkX θκθκθκ =  , (C.10) 

62, xkY θκθκ =  . (C.11) 

 Analyzing and comparing the level curves for f = 1, it is found that 4.71, ≈θκk  and 

532, ≈θκk , hence these values were adopted. 

 

Figure C.3: Objective function plotted as a function of �cam and �cam. 
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 The change of variables can be summarized as follows 
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 Then, the objective function in the new variables can be expressed as 

),,,,,(*)(* 654321 xxxxxxff =x . Figs. C.4, C.5 and C.6 show plots of the new objective 

function as a function of the new variables, corresponding to Figs. C.1, C.2 and C.3, 

respectively. The goal of the transformation of variables for this simplified approach has 

been clearly achieved. 

Although this change of variables is not fully justified in general, it shows good 

behavior even if the solution point is not close to the typical values of the parameters. 

Increased convergence speed cannot be guaranteed in all cases but the scaling associated with 

the change of variables is favorable for the computation of the finite difference gradients and 

the adoption of the search direction in the optimization algorithms, thus making it attractive 

in practice.  

Using the above affine transformation, the calibration problem becomes 

),,,,,(*min)(*min 654321
,,,,, 654321

6
xxxxxxff

xxxxxx
=

ℜ∈
x

x
 , (C.13) 

where the starting point is usually taken as x = [0 0 0 0 0 0]T. This problem is solved as a 

general constrained optimization problem, with the same constraints as in Section 3.2, using 

a Sequential Quadratic Programming (SQP) algorithm [46]. In this case, a minimum step size 

on the order of 10-7 to 10-8 and a maximum step size of 10-1 lead to a stable numerical 

calculation of the gradient. 
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Figure C.4: New objective function as a function of x1 and x2. 

 

 
Figure C.5: New objective function as a function of x3 and x4. 

 

 
Figure C.6: New objective function as a function of x5 and x6. 

 

 Finally, another approach is described briefly. This approach is also based on the 

observations made in Section 3.4 and under the assumption that the actual optimum point of 

the calibration problem is very close to the point corresponding to the typical/nominal values 

of the calibration parameters. 
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 It was mentioned above that the objective function is an approximately quadratic 

function in a neighborhood of the optimum point. With this idea in mind, it can be said that 

)()(
2

1
)( ,, ooo calcal

T
calcalcalf ρρHρρρ −−≈  (C.14) 

in a neighborhood of o,calρ , the point that minimizes the objective function. The matrix oH  is 

the Hessian matrix (matrix of second order derivatives) of the quadratic approximation at o,calcal ρρ = , and is positive definite since o,calρ  is the minimizer. 

 Given that this matrix oH  determines the shapes and orientation of the level hyper-

surfaces, and hence the conditioning of the problem, the idea is to introduce a change of 

variable 

Axρρ =− o,calcal  (C.15) 

such that equation (C.14) becomes 

AxHAxx oTTf
2

1
)(*

~ =  (C.16) 

and has level hyper-surfaces that are approximately hyper-spherical. To accomplish this, it is 

required that 

IAHA kT =o  , (C.17) 

where k is a constant and I is a 6 by 6 identity matrix. This equation can be rewritten as 

1−−= AAH Tko  . (C.18) 

By defining 

1−= AR k  (C.19) 

the previous equation can be rewritten as 

RRH T=o  , (C.20) 

which is the Cholesky factorization of oH . If oH  is computed and the Cholesky factors are 

obtained, the transformation of variables can be rewritten as 

xRρρ 1
,

1 −=−
k

calcal o  , (C.21) 

where the constant k is adopted in consistence with the minimum step size used for the 

numerical approximation to the gradient used by the optimization algorithm. Note, however, 

that this procedure requires the numerical computation of the Hessian matrix oH , which is 
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computationally expensive as it requires 36 = 729 function evaluations. In fact, this procedure 

was tried with the same simulated example and it was found that the numerical computation 

of oH  is sensitive to the step size used, as it can produce an indefinite Hessian matrix even 

though it is known that oH  has to be positive definite. Using a step size of 10-5 for R and K 

and a step size of 10-4 for �eye, �eye, �cam and �cam, a positive definite Hessian matrix was 

obtained and the desired goal was attained in a small neighborhood of o,calρ . However, this 

approach is only justified if the actual solution is in a small neighborhood of o,calρ . In a 

general calibration situation, this approach may not provide any advantage over the approach 

discussed at the beginning of this appendix. For this reason, a transformation of variables as 

described in the first part of this appendix is used for the calibration of the point-of-gaze 

estimation system. The calibration problem is open to refinements as part of future work. 
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Appendix D: Samples of eye images 
 

 This appendix shows samples of eye images obtained when subjects fixated on the 9 

points on the computer screen that are given in table 3.2. 

 

 

       
 

       
 

       
 

Figure D.1: Sample eye images for subject B.B. (20/20 vision without optical correction). 
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Figure D.2: Sample eye images for subject E.G. (medium myopia) without optical correction. 
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Figure D.3: Sample eye images for subject E.G. (medium myopia) with eyeglasses. 

(Note the large reflections produced by the eyeglasses and the reflection of the frame on the cornea). 
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Figure D.4: Sample eye images for subject B.L. (medium myopia) with contact lenses. 


