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Abstract. Identifying gene function has many useful applications especially in 
Gene Therapy. Identifying gene function based on gene expression data is much 
easier in prokaryotes than eukaryotes due to the relatively simple structure of 
prokaryotes. That is why tissue-specific expression is the primary tool for 
identifying gene function in eukaryotes. However, recent studies have shown 
that there is a strong learnable correlation between gene function and gene 
expression. This paper outlines a new approach for gene function prediction in 
mouse. The prediction mechanism depends on using Artificial Neural Networks 
(NN) to predict gene function based on quantitative analysis of gene co-
expression. Our results show that (NN) can be extremely useful in this area. 
Also, we explore clustering of gene functions as a preprocessing step for 
predicting gene function. 

1 Introduction 

Gene function prediction is one of the primary goals of Bioinformatics. Identifying 
gene function can be extremely useful in many ways, especially in Gene Therapy [5]. 
Identifying gene function in prokaryotes is much easier than eukaryotes due their 
lower structural complexity and number of genes. Tissue-specific gene expression is 
the most widely used predictor for gene function in mammals; for example, genes 
expressed in tongue are most probably involved in tasting. However, this method has 
not been scientifically justified. Recent studies showed that there is a strong learnable 
correlation between gene function and gene expression [18]. According to Zhang et 
al, predicting gene function their expression is more effective than using tissue-
specific function as a guide [18]. In this paper, we explore a new approach for gene 
function prediction in mouse based on a quantitative analysis of gene co-expression. 
We will try to learn this correlation using machine learning techniques to predict gene 
function category from gene expression.  

The machine learning technique used in this work is Neural Networks (NN). As we 
describe in the next section, Support Vector Machines (SVM) and graphical models 
have been used in related work. In spite of their scalability and huge learning and 
classification capabilities, (NN) has not, to our knowledge, been used to predict gene 
function in higher order organisms than yeast. According to Baldi, (NN) are superior 
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classification machines, and in theory they can approximate any reasonable function 
to any degree of required precision [2]. In the same source, authors showed that (NN), 
with the right modeling, can be extremely useful in various Bioinformatics problems, 
such as sequence encoding and correlation, prediction of protein secondary structure, 
and prediction of signal peptides and their cleavage sites.    

In this work we used the back-propagation algorithm (BP) to predict gene 
functions from gene expression. Introducing (BP) was a landmark in Neural Networks 
(NN) [6]. The earliest description of (BP) was presented by Werbos in his PhD 
dissertation in 1974 [15]; however, it did not gain much publicity until it was 
independently rediscovered by Le Cun, Parker, Hinton and Williams [7]. Multilayer 
perceptrons (MLP) is perhaps the most famous implementation for (BP). It has been 
very successfully used in many applications in various domains, such as prediction, 
function approximation and classification. For classification, MLP is considered a 
super-regression machine that can draw complicated decision borders between 
nonlinearly separable patterns [6].  The nonlinearity power of MLP is due to the fact 
that all its neurons use a nonlinear activation function to calculate their outputs. If a 
linear activation function is used, the whole MLP becomes a simple linear regression 
machine. Different activation functions and our justification for the one used in our 
own work will be mentioned in more detail in the network topology section later. 

Unlike (SVM), MLP does not need additional projection for the input space. Also, 
MLP can be implemented in two versions: first is the Soft-Max version, which has 
only one output neuron to be activated with a certain input, while the other has more 
than one output activated, which is a very powerful feature of MLP as it allows the 
possibility that a gene might be involved in more than one function. In this work we 
used MLP in three different ways: Firstly, we used it as a binary classifier, in which 
the input is gene expression measurements and the desired output is a single Go-
category. Having 922 different Go-categories, this will result in about 1000 binary 
classifiers.  In the second approach, we unleashed the power of the MLP as a super 
regression machine by training it with the same input as before but with all 922 Go-
categories as the desired output. This approach not only discovers the relation among 
co-expressed genes but also ties those expressions to many possible functions. 
Finally, we tried clustering gene annotations into distinct groups using the K-means 
algorithm; then, we used those groups as the desired output for the network. The last 
method aimed to make the problem easier for the network and to reduce the huge 
training time required by the second method. For full explanation about K-means the 
reader is directed to Michell [9] 

Our results show that NN is a good candidate for predicting gene function from 
expression. As a binary classifier, MLP is very successful and posses the advantage of 
eliminating the need for the kernel function needed by SVM. As a super regression 
machine, MLP was able to predict the whole set of 922 possible functions for each 
gene but with the drawback of lots of training time needed. Due to the nature of the 
data, as we will see later, grouping genes annotations and using those groups as the 
desired output for the network did not produce as good results as the first two 
methods. 

The paper is organized as follows: The next section relates this work to previous 
work in Bioinformatics. Then, we briefly describe the source of the data used, the 
reasons for its integrity, and the necessary preparation steps to make it ready for our 
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NN implementation. The NN topology, activation function selection and justification 
for our decisions are also presented. Following that, the setup and results for each of 
our three NN approaches are sketched. Finally, concluding remarks and future work 
are discussed. 

1.1   Related work 

Using gene expression for predicting gene functions has been proven to be so 
effective in prokaryotes. For eukaryote, tissue-specific expression is widely used for 
predicting genes functions [18]. However, the correlation between gene expression, 
sequence and gene functions has attracted the attention of many bioinformaticians. In 
[3], the authors used a probabilistic approach to correlate gene sequence and 
expression. In [5], there is an investigation of gene function by identifying 
interactions between a protein and other macromolecules. Some bioinformaticians 
tried to predict gene functions only from the pattern of the GO-annotation categories 
vocabulary mentioned at the Gene Ontology (GO) database without considering the 
gene expression. In [11], Oliver et al used Bayesian networks and decision trees to 
model the relationship among different Go-categories vocabulary, only 41 genes out 
of 100 manually assessed were judged to be true. Although the success rate is not 
high in [11] research, it revealed the possible relationship among different GO-
categories which can be logically reflected to the annotated genes themselves.  

SVMs are the most widely used machine learning approach to predict genes 
functions from genes sequences and expressions. In [8], the authors used SVM to 
functionally classify genes by using gene expression data from DNA microarray. 
They used gene expression of 2,467 genes with known function from the budding 
yeast Saccharomyce cerevisiae measured in 79 different DNA microarrays. To be 
able to use SVMs, authors converted the unsupervised learning problem into a 
supervised one by masking the actual function to be predicted into a binary 
classification problem, whether the gene might be involved in this function or not. 
Still, this work used yeast and not higher order organisms; also, the classification is 
binary and the performance is assessed against other basic classification algorithms 
like Fisher’s linear discriminant and decision trees.  

In 2004, Arunachalam et al used SVM to predict gene function based on the 
nucleotide sequences mentioned in the (GO) database. Although there is no gene 
expression involved, this research is relevant because it uses the same method to 
predict gene function from tissues taken from different species ranged from as simple 
as yeast to as complicated as mouse [1].The authors provided a mechanism to 
measure confidence estimates for their predictions. 

The first attempt to use NN to predict gene function class from gene expression 
was in 2002 by Mateos et al [20]. In that work, the classes used to train the MLP were 
taken from the Yeast Genome Database at the Munich Information Center for Protein 
Sequences (MIPS) functional catalog.   

The most related work is by Zhang et al in [18], where gene expression is used as 
SVM input to predict gene function category. This work is very important in many 
ways. First of all, it is for mouse genes which are homologous to human genes. Also, 
authors showed the shortcomings of depending on tissue-specific information to 
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predict gene function and the crucial need for another method. The dataset of the 
microarray generated for this work is a public resource for mammalian functional 
genomics. The authors stated four reasons that support the integrity and validity of 
their data. Finally, it uses specific 922 GO-categories mentioned at [10]. Again, 
authors provided a mechanism to measure the accuracy of their predictions through a 
recall value. The reader is directed to [18] and [13] for full details about this work.  

Instead of using SVM, we used MLP for prediction and K-means for clustering. 
Our work goes beyond binary classification by predicting all possible functions the 
gene might be involved in simultaneously, which expresses the relation between the 
expression level and all possible functions. To decrease the required training time, we 
used K-means to group genes based on their annotations into distinct annotation 
groups and then trained the MLP to predict gene group number instead of predicting 
the whole 922 vector of annotations.  

In our project, we used the same dataset as in [13]; the next section describes what 
portion of the data is used and how it is preprocessed. 

2 Data preparation  

Data used for this paper is provided by Zhang et al [13]. The reader is directed to [18] 
for a complete explanation of the data gathering process. The authors designed their 
own microarray to contain nearly 40,000 genes from 55 different mouse tissues. From 
those 40,000 only 21,266 confidently detected transcripts were extracted. Those are 
the ones that exceeded the 99th percentile of intensities from the negative controls. 
From those 21,266 genes, only 7,388 genes have at least one specific Go-category; 
the rest were considered negative genes because their annotations were too general. 
We will refer to these 7,388 genes as the annotated genes. 

 
Our data preparation process has three stages: first, extracting the expression 

microarray data of the annotated genes; second, constructing a binary matrix that 
describes the annotations associated with each of those genes, and finally clustering 
those binary vectors. 

 
As input to this data preparation process, two matrices were downloaded from 

[13]: the 21,266 X 55 matrix of the microarray data and the two-column annotation 
matrix, the microarray data is normalized and centered by subtracting the mean. Then, 
the two-column annotation file is parsed to extract all distinct genes and all distinct 
annotations. Following that, a two dimensional binary matrix 7,383 X 922 is created; 
in which, each annotated gene has a binary vector denoting all of the 922 annotations. 
If the gene is annotated in a Go-category, its corresponding bit is set to 1 otherwise to 
0. 

This binary matrix is the desired output of the MLP. If we chose only one Go-
category as a desired output, the MLP will work as a binary classifier; if we 
considered more than one column as an output, the MLP will have number of output 
neurons equal to the number of GO-categories we are considering.  
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3 Neural network topology selection 

Selecting an appropriate network topology is one of the main difficulties of using NN 
in classification; that is why Wang and Huang used Extreme Learning Machine 
(ELM) algorithm instead of NN in spite of the potential promising results of NN in 
classifying protein sequence [14]. In addition to network parameters like learning rate 
and momentum, NN topology is also determined by its size, synaptic weights 
connections, and the hidden-units activation function. By network size we mean the 
number of hidden layers and number of hidden units in each layer. Network size is a 
measurement of the system complexity and it is directly proportional to the training 
time required. The less complex the network is, the less its tendency to memorize the 
training set. That is why MLP size reduction is always recommended when possible 
[19] [6]. Based on the type of network, we used different techniques to reduce the 
network size as we will elaborate in subsequent sections. In general, the most 
common way to reduce network size is weight pruning as mentioned by Zurada and 
Haykin [19] [6], which suggests removing the ineffective weights during training. 
Instead of pruning only the weights, we started with number of hidden units equal to 
twice the number of the input features. Then, without affecting the cross validation 
(CV) error, we kept dividing this number by 2. The number of input neurons is 
constant in all our networks and equal to the number of tissues which is 55.  

Concerning the synaptic weights connections, there are two types of MLPs: the 
standard MLP in which each layer is fully connected to its next layer only; the second 
type is the Generalized Feed Forward (GFF) network which is a generalization of the 
MLP such that connections can jump over one or more layers. In theory, an MLP can 
solve any problem that a generalized feedfoward network can solve [6]. In practice, 
however, generalized feedfoward networks often solve the problem more efficiently. 
In our experiments, in the case of group number prediction, GFF required fewer 
training epochs than the MLP and it showed fewer tendencies to memorize. Because 
there is no theoretical foundation of the possible performance discrepancy between 
MLP and GFF, we did a lot of experimentations to determine which network to use. 
The following section justifies our selection for the MLP activation function.  

3.1   Activation function selection 

The nonlinearity power of MLP is due to the fact that all its neurons use a nonlinear 
activation function to calculate their outputs. If a linear activation function is used, the 
whole MLP will become a simple linear regression machine. Not only determining 
the decision borders, but the value of the activation function also determines the total 
signal strength the neuron will produce and receive. In turn, that will affect almost all 
aspects of solving the problem in hand, such as the quality of the network initial state, 
speed of conversion and the efficiency of the synaptic weights updates. 

As a result, a careful selection of the activation function has a huge impact on the 
MLP classification performance. In theory, the (BP) is universal in this matter, so any 
activation function can be used as long as it has a first derivative. In practice, 
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activation functions can be categorized into three basic types [16]: linear, logistic (e.g. 
Sigmoidal) and Radial Basis Functions (RBF) (e.g. Gaussians).  

In our work we used the sigmoidal activation function. The Statlog report in [4] 
showed that the sigmoidal activation function has very good performance in 
classification. Also, in [14] Wang and Huang showed that the sigmoidal function 
outperformed the RBF in the ELM algorithm for protein classification. A thorough 
comparison in [12] showed that the sigmoidal function constantly outperformed other 
activation functions. In addition, from a mathematical perspective, negative output is 
not desired in our problem because the expected output is either always binary or a 
group number which is never negative.  

The Sigmoid function is sometimes called the nonsymmetric logistic function [6] 
because its output is between 0 and 1. Using this function the unit output will be: 

1
1 ii no

e−=
+

                                                      Derivative is : (1 )i io o−  (1) 

            
Where in  is the net input for unit (i), that is: 

i ij j ij
n w x= +Θ∑ . The reader is 

directed to [17] where there are more net input calculations and activation functions. 

3.2   Regularization, convergence criteria and error measurement  

Cross Validation (CV) is our main method for regularization and stopping. Before 
training starts, the data set is divided into 3 subsets: validation set, 5 % of the whole 
dataset; testing set, 15% of the dataset and the remaining examples are used for 
training. Once the network starts, its initial state after 50 epochs is recorded and the 
whole training stops if the CV Mean Square Error (MSE) did not improve for 100 
consecutive epochs. The best weights are saved once the CV starts to increase and 
used for testing. 

For error measurement, we based our comparison on the (MSE) because the actual 
error rate of classification sometimes becomes misleading depending on the output 
values [4]. That is why in Statlog report experiments, they did not use the error rate 
most of the time and used other measurement like average cost [4]. The (MSE) is 
twice the average cost. 

4 Neural networks as a binary classifier 

In this approach we used NN as a binary classifier machine. The input is the gene 
microarray expression level and the output is 1 or 0 depending on whether the gene is 
predicted to be in the desired Go-Category or not respectively. A separate NN is 
needed for each function. So nearly 1K binary classifiers are needed to predict all 
GO-Categories using this approach. Instead of using only one output for the network, 
we used two binary output neurons to well assess the network accuracy. The ordered 
pair (0, 1) means the same as 0 and (1, 0) means the same as 1. 
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Due to space limitations, we present only prediction results for the GO-Categories 
with maximum gene participation. Those categories are the best example of the 
network performance in this type of problem as they provide the maximum 
generalization and hence are the hardest to predict. Table 1 summarizes the prediction 
results for the selected GO-Categories. With some statistical data analysis from the 
above prepared data, we found most of the categories have gene participation of less 
than 20; the maximum participation is 455 genes in the “lipid metabolism 
[GO:0006629]” category. It is clear from the way we prepared our data that the 
minimum participation will be 1 and never 0. Figure 1 shows the overall gene 
participation distribution. This highly skewed and non-uniform distribution of the 
desired output might make the network performance questionable because the 
maximum gene participation in any category is 6.15%. So in many cases the network 
might tend to sacrifice the positive output for the sake of negative output and still the 
MSE will be low.  

 
Fig. 1. Overall gene participation distribution for all categories 

4.1   More expressive dataset  

To prove our hypothesis without getting affected by the non-uniform data distribution 
mentioned above, we prepared a balanced dataset as a subset of the originally 
prepared data. The number of examples in this dataset is 990, containing nearly equal 
numbers of positive and negative genes for the “lipid metabolism [GO:0006629]”  
category. As we will see from the results, the network recorded a much lower training 
MSE than the previous experiment in spite of the fewer training examples. The actual 
output of the network test examples is presented in table 2. 

4.2   Results  

We did binary classification for GO-Categories with a gene participation of at least 
350. That gave us 10 categories to predict.  The following table summarizes the 
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results for the 10 selected Go-Categories: where, A is the number of positive genes, B 
is the training MSE, C is the CV MSE, D is the testing MSE and E is the training time 
in seconds. (Note: cells B, C, D are divided by 10-3)  

Table 1. Binary prediction results for the selected GO-Categories 

Function Name Go-category A B C D E 
lipid metabolism  GO:0006629 455 47.726 74.236 43.3793 195 
intracellular protein transport  GO:0006886 454 46.539 35.539 42.299 1054 
carbohydrate metabolism  GO:0005975 446 45.141 34.291 51.039 19281 
cation transport  GO:0006812 410 42.293 42.405 42.220 944 
response to abiotic stimulus  GO:0009628 396 38.608 27.702 58.423 38148 
response to pest/pathogen/parasite  GO:0009613 394 42.712 65.791 32.425 480 
cytoskeleton org. and biogenesis  GO:0007010 392 41.041 29.260 41.503 1212 
neurogenesis  GO:0007399 371 46.374 46.374 33.157 384 
cell-cell signaling  GO:0007267 361 38.951 45.093 32.468 695 
mitotic cell cycle  GO:0000278 350 36.708 21.205 50.843 42360 

  
The above table reflects an acceptable performance for the MLP to predict gene 
function from its expression level. But, we used a balanced dataset from the lipid 
metabolism [GO:0006629]  category to asses the MLP performance in case of a 
balanced dataset. In this dataset, the NN achieved a training MSE of 10 - 7  in 
approximately 10 hours of training. The testing MSE was 0.247147. The actual output 
of the testing results is summarized in the following table where D and A stand for the 
desired and actual outputs respectively. 

Table 2. Actual NN results for the balanced sub-dataset 

  
D
0 

D
1 A 0 A 1 D

0 
D
1 A 0 A 1 D

0 
D
1 A 0 A 1 

1 0 0.999215 0.000785 1 0 0.429985 0.570019 1 0 0.999167 0.000833 
1 0 1.001267 0.00127 0 1 0.391373 0.60863 1 0 0.00031 1.000306 

0 1 0.0012 1.001202 1 0 0.999388 0.000613 0 1 0.994135 0.005865 

0 1 0.00018 1.000176 0 1 0.999378 0.000622 1 0 0.998971 0.00103 

1 0 1.000075 7.4E-05 0 1 0.09959 0.900412 0 1 0.997675 0.002326 

0 1 8E-06 1.000009 1 0 0.0014 1.001399 1 0 0.00956 1.009562 

1 0 0.777683 0.222318 0 1 0.999638 0.000363 0 1 0.998558 0.001442 

1 0 0.986617 0.013384 1 0 0.999047 0.000953 0 1 0.251832 0.748172 

0 1 0.999549 0.000451 0 1 0.00318 1.003182 1 0 0.999172 0.000828 

1 0 1.001881 0.00188 0 1 0.310283 0.689721 0 1 0.966519 0.033481 

1 0 0.00018 1.000177 0 1 1.003398 0.0034 1 0 0.125626 0.874377 

1 0 0.999156 0.000844 1 0 0.999119 0.000882 0 1 0.000196 0.999805 

1 0 0.033314 0.966688 0 1 0.999297 0.000703 1 0 0.982307 0.017694 

1 0 0.983298 0.016702 0 1 0.00094 1.000937 1 0 0.999131 0.000869 

0 1 0.000224 0.999776 0 1 0.000332 0.999668 1 0 0.999056 0.000945 
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1 0 0.999263 0.000738 1 0 1.002547 0.00255 0 1 0.999296 0.000705 

1 0 1.000588 0.00059 1 0 1.000438 0.00044 1 0 0.000139 0.999862 

0 1 1.0005 0.0005 0 1 0.000245 0.999756 1 0 0.999218 0.000782 

1 0 0.998465 0.001536 0 1 0.994506 0.005494 1 0 0.998925 0.001076 

0 1 0.00455 1.004549 1 0 1.000548 0.00055 1 0 0.999724 0.000276 

1 0 0.999284 0.000716 0 1 0.999474 0.000527 1 0 0.998531 0.00147 

0 1 0.00019 1.000193 1 0 0.999405 0.000596 1 0 0.999211 0.000789 

1 0 0.977609 0.022392 1 0 0.99844 0.001561 1 0 0.231151 0.768853 

1 0 0.999154 0.000846 1 0 0.999442 0.000559 1 0 0.117864 0.882139 

1 0 0.999457 0.000542 0 1 0.971673 0.028326 0 1 1.00252 0.00252 

0 1 0.000218 0.999782 1 0 0.999129 0.000871 1 0 1.001117 0.00112 

0 1 0.000442 0.999559 1 0 1.000617 0.00062 0 1 0.994494 0.005506 

0 1 0.999625 0.000375 1 0 0.983058 0.016942 0 1 0.00215 1.002151 

5 Neural network with 1000 output (Non-Softmax). 

In this approach we tried to use the full capability of NN to simultaneously predict all 
functions the gene might be involved in as a binary vector. The same input matrix is 
used but the desired output is a binary vector of 922 bits. Although the results are 
promising, the training time was huge. We concentrated on reducing the network size 
to the lowest we can without affecting either the network initial state or the CV MSE. 
The minimum topology was 3 hidden layers with 200, 100, and 50 hidden units (from 
input to output), and there were 922 output units. After nearly 60 hours of training, we 
obtained training MSE of 0.061335, CV MSE of 0.061616 and testing MSE of 
0.061778.  

We used batch learning to reduce the training time; the network then consumed 
1059 epochs in 211673 seconds which means about 199 sec/epoch.  Those results 
along with the CV error progress show that this method is effective but with a large 
sized network and huge training time which needs specialized hardware to produce 
the best network results in a reasonable amount of time. In the next approach we will 
try to overcome these issues by grouping the annotating vectors of the genes. 

6 Neural network with K-means as a classifier 

In this approach we tried to overcome the main drawback of the previous approach 
which is the huge training time required by the NN. A sequential version of k-means 
is used to group the binary vectors denoting the genes possible annotations into k 
groups, while k is a configurable number passed in as an input parameter to the K-
means algorithm. Instead of predicting the whole binary vector, the MLP tries to 
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predict the group number the gene belongs to based on its microarray expression 
level. 

6.1   Results  

As expected, the problem became an easier one for the NN to solve and the training 
time required was far less than the Non-Softmax version. However, the network 
initial state, in terms of MSE and error percentage, was worse. By monitoring the CV 
error progress it was easy to see that the network started to memorize the training set 
after the first few epochs. The best results were obtained by using a 2-hidden layer 
GFF version, which delayed the CV error increase for many more epochs with a 
considerable improvement in terms of test MSE. Both test MSE and CV MSE were 
higher than the training MSE. The following table summarizes the results for 4 
different groupings (4 different values of k). 

 
Table 3: Results for 4 different GO-Categories groups 

# of Groups Training MSE CV MSE Testing MSE Training time in sec 
500 0.096455 7.350921 7.081350 1660 
300 0.110561 0.179318 0.179431 7560 
200 0.121474 0.294703 0.252912 790 
100 0.096305 6.743814 5.059804 24240 

 
This poor performance can be explained by the grouping distribution. As we see 

from the following histograms (figures 2 to 5) , the first group always dominates and 
has nearly 50% of the total number of vectors regardless of the number of means 
specified. Some other groups have as few as 1 member only. A careful review of [18] 
should explain this grouping behavior because, as stated, about 4475 genes are 
detected in one sample. Another clustering algorithm like Kohonen Self-Organizing 
Maps (SOM) is suggested because the group centers adapt and learn with every 
member they acquire which gives more chance for a more balanced distribution [21]. 

    Fig. 2. Genes distribution (500 groups)                 Fig. 3. Genes distribution (300 groups) 
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   Fig. 4. Genes distribution (200 groups)                    Fig. 5. Genes distribution (100 groups) 
 

7 Concluding remarks and future work 

In this work we showed that NN can effectively predict mouse gene function from 
gene expression levels. The learnable correlation between genes expression levels and 
their function categories in eukaryotes have been confirmed by our results. We 
presented three different ways to use NN to solve this problem. NN solved the binary 
classification version of the problem effectively. The actual results for a balanced, and 
hence harder, data set have been presented. Using MLP to its maximum strength to 
predict all the available categories for a certain gene showed very promising results; 
however, a huge NN size and hence lots of training time are needed. Finally, K-means 
as a clustering algorithm has been used to group similar genes into the same category 
as a preprocessing step for the NN. We showed that K-means is not the best candidate 
for this problem because it has fixed means that got readjusted only at the end of the 
training process. Another clustering algorithm that performs online learning with each 
example introduced, like Kohonen SOM, might improve this technique. Also, 
optimizing the MLP parameters using an evolutionary algorithm as in Simulated 
Annealing or Genetic Algorithms is also likely to improve the NN results mentioned 
in this paper. 
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