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The target article (Pater 2019) proposes to use neural networks to model learning within exist-
ing grammatical frameworks. This is easier said than done. There is a fundamental gap to be
bridged that does not receive attention in the article: how can we use neural networks to examine
whether it is possible to learn some linguistic representation (a tree, for example) when, after
learning is finished, we cannot even tell if this is the type of representation that has been learned
(all we see is a sequence of numbers)? Drawing a correspondence between an abstract linguistic
representational system and an opaque parameter vector that can (or perhaps cannot) be seen as an
instance of such a representation is an IMPLEMENTATIONAL MAPPING PROBLEM. Rather than rely-
ing on existing frameworks that propose partial solutions to this problem, such as harmonic gram-
mar, | suggest that fusional research of the kind proposed needs to directly address how to ‘find’
linguistic representations in neural network representations.*

Keywords: neural networks, grammatical formalisms, cognitive science, implementational map-
ping, generative grammar

1. INTRODUCTION. On the same list (Sanz 2008) that ranked Syntactic structures
(Chomsky 1957) as the number one most influential twentieth-century work in cogni-
tive science, the number two work is David Marr’s Vision (Marr 1982). Marr proposed
that the only way to achieve an understanding of complex information-processing sys-
tems (like those found in the brain) is to simultaneously analyze them at three levels
of analysis: a COMPUTATIONAL level, where one formally defines the problem the sys-
tem is solving, specifying which inputs must map to which outputs; an ALGORITHMIC-
REPRESENTATIONAL level, where one spells out a METHOD for arriving at an output,
given a particular input—a formal hypothesis about how the system encodes informa-
tion, and how it manipulates it; and an IMPLEMENTATIONAL level, which details the
physical system itself. Generative grammar standardly proposes to analyze language
cognition at the first two levels, leaving the problem of how such a system would ac-
tually be implemented in the brain open—Ileaving open, thus, the nature of the link
between the algorithmic-representational theory and the physical implementation.
Specifying and evaluating any such link is a difficult problem in itself—call it the M-
PLEMENTATIONAL MAPPING PROBLEM.

Pater’s (2019) proposal for closer interdisciplinary integration between generative
grammar and neural network research immediately runs up against the implementa-
tional mapping problem. Neural network models—while not brains, or even brain mod-
els—are complex systems whose behavior cannot be understood just by inspecting their
internal state. By contrast, representations proposed in linguistic theories are designed
so that human researchers can write and read them—hypotheses of the kind that Marr
had in mind for his intermediate level, explicit enough to be programmed on a com-
puter, yet high-level enough to be understood. They are not directly comparable with
the internal states of neural networks, which are simply long sequences of numerical
parameters. Pater writes: “When neural network modeling is INTEGRATED WITH gram-
matical formalisms ... , we may be able to go further in assessing the extent to which
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GRAMMATICAL REPRESENTATIONS can be learned from experience’ (p. e64, emphasis
mine). The sketch Pater outlines is missing a component critical to an integration of this
kind. If the network is seen as the implementation, then a fundamental part of the work
of “integration’ with grammatical formalisms consists in solving the mapping problem.

In principle, feedforward networks can implement any grammar, or any formal rep-
resentation, or approximate it with arbitrary precision—with the basic units of repre-
sentation implemented as vectors in some numerical parameter space, and with
operations manipulating these representations corresponding to information flowing
through the network, changing its state (Hornik 1991, Leshno et al. 1993, Lin et al.
2017). This makes them attractive for simulating grammatical learning. But doing so
first requires answering some fundamental questions:

+ Given a trained network, does it make use of representations consistent with a lin-
guistic theory T? (Can we, for example, see its representations as trees: Smolensky
1988Db, Pollack 1988?) Or is such an interpretation provably untenable?

* ... or has the network APPROXIMATELY arrived at a solution within the scope of
T—for example, one for which a subset of the representations can be seen as trees?

+ Can all possible parameter settings learnable by a given class of network N (con-
strained to have a certain architecture, with a certain type of units) be seen as licit
grammars in theory T? In other words, is N constrained to learn within theory T (or
come close)?

* Conversely, can all grammars in T be implemented as networks in N?

Only when we know how to answer these questions can we address the question the
target article hopes to be able to answer by fusing the two research programs: given a
class of networks N that has the capacity to go BEYOND some theory of possible gram-
mars T, is an arbitrary network of this class guaranteed to learn a grammar in T if we give
it realistic data? Or does it require special evidence, inaccessible to the child, in order to
be constrained to grammars in T? This would allow us to conclude something useful: that
the learner must have mechanisms to constrain it to T (N is too broad), or that the theory
of learning from data is wrong, or that the theory of grammar is wrong (and should maybe
allow the alternative solutions available within N). But to arrive at these answers, we
must have an implementational mapping between network and formalism.

2. THE IMPLEMENTATIONAL MAPPING PROBLEM. When a human brain is cut open,
trees do not come fanning out, but this does not mean that this syntactic theory is
wrong. This kind of observation is the essence of Marr’s methodological program. Even
if we had access to the physical state of every cell in the brain, we would need to do
work to understand whether their activity could be seen as building trees, or as some-
thing rather different. Before we can validate an abstract theory of how the system
might work, we need some systematic theory of how the abstract elements and opera-
tions map to the physical implementation. Equally, if we wish to simulate learning of
generative grammars with neural networks as ‘hardware’, particularly in the case where
we do not force the networks to learn specific kinds of representations, we need some
system for linking an abstract formal theory to the networks’ representations. This im-
plies making the formal theory explicit—and noting which elements of it are there to
describe HOw the system does its work, rather than just characterizing WHAT it does—
and then articulating HOw WE WOULD RECOGNIZE what the network is doing.

To see the general problem, take the artificial example of addition of natural num-
bers. Addition is a function that applies to two natural numbers and results in some
other natural number. Physical implementations of addition include the proper use of an
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abacus, standard pencil and paper column-based arithmetic with carrying, or a spread-
sheet taking inputs with a keyboard and giving outputs on a computer monitor. For each
of these very different systems, we can say that addition is WHAT they do. We can only
say this with certainty, however, once we characterize exactly what addition is. A com-
putational-level description of a system implementing addition would be any complete,
accurate description of the BEHAVIOR of the two-place function add(-, -)—what kinds of
inputs does it take, and what is the relation between its inputs and its outputs? One set
of axioms for arithmetic is due to Giuseppe Peano (given in Mendelson 1997) and as-
serts, for example, that the set of manipulated elements must contain a special element
called 0, that there be a function called successor(x) which always yields an element
distinct from x, that add(x, y) yields x when y = 0—and, in all other cases, add(x, suc-
cessor(y)) = successor(add(x, y))—along with several other details. When these ax-
ioms are put together, they have as logical consequences that the inputs must be a
system equivalent to natural numbers, and they also specify uniquely what the output of
any addition must be.

The physical system itself will be quite far removed from any computational-level
description. A partial understanding of how the system works on a purely physical level
might be enough to verify whether a hypothesis about WHAT the system is doing is cor-
rect, but Marr proposes that, to meaningfully link between a computational-level de-
scription and a physical implementation, a detailed, abstract hypothesis is necessary,
which goes beyond describing WHAT a system does to making a claim about HOW it
does it. Marr calls this an ‘algorithmic-representational” description. Taking the exam-
ple of addition: how are numbers represented? Possibilities might be decimal (succes-
sor(4) = 5), binary (successor(10) = 11), unary (successor(||||) = |||||), or Roman
numerals (successor(IV) = V). Representational systems can be spelled out in formal
detail. A unary encoding, for example, contains a basic element that we write as |, is
such that every representation consists only of some number of |’s, and (drawing the
link to the computational-level description) is such that longer strings always represent
larger numbers and conversely (contrast this with a decimal system, in which ‘41’ is not
longer than “14”). In concert with formal definitions of ‘sequence’ and of ‘longer’, this
is enough to specify that a representation is unary. Then we need an algorithm: a set of
implementation-neutral steps for manipulating representations that yield results consis-
tent with the computational-level description of the system. The familiar column-wise
addition with carrying that we learn in school can be spelled out explicitly, for exam-
ple.! The characterization of a representational system and an algorithm must provably
give results consistent with the computational-level constraints.

Thus, given a hypothesis about WHAT the system does and HOw, the implementa-
tional mapping is a theory of HOW I RECOGNIZE what the system is doing when I ob-
serve it operating.” If you have been to school in the West, you can probably quickly tell
when addition is what is being done in a sequence of scribbles on paper. This back-

! The choice of algorithm and of representation are not independent: column-wise addition will work with
decimal, binary, or (with some contortions) unary representations; it will not work with Roman numerals.
And, although it can be made to work with unary representations, it is not the algorithm one typically uses.
The usual method is simple concatenation: ||| + ||| = ||||]||. But, much to the frustration of young children
everywhere, concatenation does not work as a method for adding numbers in decimal representation: 4 + 3
does not equal 43.

2 This should be kept distinct from a theory of the physical system itself. A complete understanding of the
system implies having such a theory—and constructing an implementational mapping does too—but one
could come to fully understand where the beads in an abacus can go without understanding why they go there.
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ground allows you to map numbers (the basic elements that form the inputs and outputs
of addition) onto marks on paper, and to recognize the steps of a method for adding
numbers together using these marks. Other systems implementing addition might be
completely opaque—impossible to RECOGNIZE as implementing addition—even to an
adult with a solid knowledge of how addition works: a person verbally describing the
steps of adding two numbers in a foreign language; or an undeciphered clay tablet
showing calculations (perhaps using letters of the alphabet as numbers); or a machine
that takes two sounds as input and, if both are pure tones, outputs a new pure tone with
a frequency equal to the sum of the two. Some hypothesis is therefore needed about
how the elements of the algorithmic-representational description map to the physical
reality. A system implementing unary encoding (fingers, sticks, coins) would not need
to contain actual physical lines written as |, but it would need to at least be coherent
with the representational constraint that there be a one-to-one mapping between the
‘size’ of the representation and the number represented—the relevant ‘size’ would not
need to be the physical volume, but there would need to be some such coherently defin-
able physical quantity—and this would not exist for all systems: it exists in the addi-
tion-of-pure-tones system (the frequency) but not in the abacus (there is no simple
physical measure by which the beads representing 14 on a base-ten abacus have ‘less’
of it than the beads representing 41). The steps in the algorithm, too, must be mapped to
changes of state in the physical system, in some way. Drawing these links explicitly is
what is meant by an implementational mapping.

Marr’s approach thus gives us two insights that are critical to Pater’s proposed proj-
ect of fusion. First, how’ is not ‘what’. The assertions that are meant to be taken at the
algorithmic-representational level must be cleanly distinguished from the computa-
tional-level description. The ‘what’ theory of addition contains ‘elements’ and ‘opera-
tions’, too, but the point of having two levels of description is that only the
algorithmic-representational description needs to correspond to the physical reality. For
example, the function successor(x) exists at the computational level only: there does
not need to be a basic physical operation ‘add one’ in order for a system to be correctly
described by these axioms. But a system implementing the algorithm of adding in
columns woULD need to have a physical change of state corresponding to carrying. The
implication of this is that observing that a network has the same behavior as what is pre-
dicted by some linguistic analysis is not the same as asking whether it can learn gram-
matical representations.

In this context, it is worth explicitly drawing the comparison between Marr’s program
and the reflection about the cognitive reality of grammars that happens in generative lin-
guistics. We usually tell students that the series of steps carried out ON PAPER to derive a
sentence, or a phonological surface form, are not supposed to be a theory of the steps car-
ried out IN THE MIND—no theory of the ALGORITHM is implied by the theory of the gram-
mar—but that the representations (trees, feature bundles, and so on) ARE supposed to be
cognitively interpreted; the derivational steps are interpreted as a means of stating which
representations are licit structural descriptions. Chomsky (1995) best articulates this in-
terpretation: in his criteria for DESCRIPTIVE adequacy of grammars characterizing com-
petence, he includes the criterion that the grammars yield psychologically correct
structural descriptions (representations)—not merely the (computational) criterion that
they pick out all and only the grammatical sentences of the language. He does not, how-
ever, require that a grammar give us any notion of how parsing is done on-line (an algo-
rithm).3 Under this view, the ‘operation’ merge(:, -) is an implicational relation in a

3 See pp. 17-18 of Chomsky 1995.
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system of representations (if X and Y are representations, then so is merge(X, Y)), not a
theory of a real-time processing step. The theory, under this view, is not purely computa-
tional-level (this would only be concerned with defining the correct set of utterances) nor
a complete theory at the algorithmic-representational level (because this would also in-
clude proposals of algorithms for generation and recognition).

Some researchers have, however, interpreted derivational steps as making empiri-
cally testable assertions about how structure is built up in time (Miller & Chomsky
1963, Berwick & Weinberg 1984, Phillips 1996), while other authors have suggested
that the only reasonable place to situate formal grammars is at the computational level,
specifying the function computed by the mind and nothing more (Matthews 1991).
Under that view, two theories that predict the same set of possible words, sentences, or
sound-meaning pairs would be equivalent; their rules, representations, and derivations
are purely instrumental. Regardless of how we use generative grammars, the spelled-
out reflection is what is important. For doing everyday linguistics, it may not be all that
important to regularly draw up the list of which elements of the formal theory are meant
to be interpreted as ‘real” and which are not. This exercise is critical for doing learning
in neural networks to see if the networks learn ‘the same thing’ as we have proposed in
some theory, because it serves to explicitly delimit the success criterion.

Second, of course, Marr’s program asks us to spell out the details of the ‘how do
I recognize it’ theory, making it clear that this is not trivial. The opacity of neural net-
work representations poses a central challenge to any attempt to use them to imple-
ment grammars.

3. IMPLEMENTATIONAL MAPPING AND THE PROJECT OF FUSION. Pater (2019) points to
two existing points of convergence between neural network research and generative
grammar. First, harmonic grammar, a fully developed linguistic theoretical framework
based on constraint interaction, and an existing connectionist-generativist ‘fusion’; sec-
ond, a set of studies testing recurrent neural networks trained on corpora to see whether
they yield human-like judgments. The first is an implementational mapping for gram-
matical computations that is problematic in that it is very limited; the second does not
evaluate anything at the algorithmic-representational level.

Harmonic grammar was born out of a desire to come up with an abstract formal the-
ory for understanding the operations of neural networks: an implementational mapping,
with neural networks seen as the implementation of an abstract formal theory. The the-
ory could then be used by linguists, with the knowledge that there exists a way of trans-
lating linguistic analyses into learned network parameters. The system rests on two
formal mechanisms. The first, TENSOR PRODUCT REPRESENTATIONS, provides a way of
mapping between formal representations and numerical vectors. The second, HARMONY
THEORY, provides a way of formally translating between soft constraint optimization
and certain kinds of transformations that neural networks can do over tensor product
representations.

Harmony theory maps a network with two layers to a grammatical computation. The
first layer is a representation vector, linked to the second layer, which might be called a
CONSTRAINT SATISFACTION VECTOR (Smolensky 1986, Legendre et al. 1990a,b). Each
unit in the second layer represents a different constraint and has a value calculated from
the first layer in the usual way in multilayer perceptrons: by taking a linear combination
of values and passing them through an activation function. The constraint units in turn
have weights, which (by again applying the standard linear calculation) allow us to ar-
rive at a value (‘harmony’) interpretable as a degree of acceptability. The constraint
satisfaction vector is interpretable and manipulable by a linguist, giving a simple imple-
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mentational mapping for a part of the grammatical calculation. By ‘calculation’ is
meant the deduction of unknown structure: calculating interpretations from surface
forms (via phonological and morphosyntactic structure), or calculating surface pronun-
ciations in the other direction. However, harmony theory requires a rather uncommon
type of network. The network needs to do computation by ‘optimization’, rather than
using a series of feedforward multiplication/addition steps. Both the known and un-
known representations must form part of the first layer, in which case grammatical
computation can be done by holding the known elements constant and doing optimiza-
tion over the unknown representation so as to maximize harmony. There is a class of
networks (including Hopfield nets and restricted Boltzmann machines) with this “fill in
the blank’ architecture, in which a single layer contains both observed and hidden quan-
tities, but such architectures are very rare in practice. In reality, virtually any represen-
tation one can find in a modern neural network is the result of doing a series of linear
transformations followed by various types of nonlinearities, using weights that are
learned and fixed once during training. Harmony theory does not yield an implementa-
tional mapping to a constraint-based grammar in such a case.*

This major architectural difference means that harmonic grammar per se currently has
little to offer in terms of practical fusion. Indeed, as Pater (2019) points out, in practice,
HG learning is almost always modeled in the case ‘when the structure of the learning data
is supplied in whole—when all of the constraint violations of each learning datum are
known’ (p. e58)—that is to say, when only the final constraint layer is being modeled, and
the weights that make the link between representation and constraint violations are ab-
stracted away from. In this case, the model has been simplified past the point where it can
even be called a neural network. It is no longer a multilayer perceptron, but simply a sin-
gle-layer perceptron—a type of generalized linear model—which is what allows for the
use of the wide range of off-the-shelf learning algorithms alluded to in Pater’s target ar-
ticle. Omitting the representation from consideration means that little rests on the big, fu-
sional questions put forward in the introduction. All that is being learned by the ‘network’
is a set of weights on constraints; no questions about the learnability of representations,
or the constraints themselves, are being addressed by a neural network.

Tensor product representations, a family of implementational mappings for represen-
tations (rather than for grammars and grammatical computation), are more generally
applicable. After decomposing the representational system axiomatically into its essen-
tial elements (‘roles’) and the possible values these elements can take on (‘fillers’), the
mapping hypothesis is that fillers and roles each correspond to possible vectors in the
representational space of the network, that fillers are matched to roles using a simple al-
gebraic multiplication operation, and that the resulting elements are combined using
vector addition. Complex hierarchical structures can be represented in this way, be-
cause a filler vector need not be an atomic element of the representational system
(Smolensky 1986, 1988a, Smolensky et al. 2014).

This implementational mapping scheme is one of the things that ensures the smooth
operation of harmony theory. The grammars that come out of applying the isomorphism

4 An additional, and important, part of the harmonic grammar framework is the idea that traditional gram-
matical representations, which are discrete, are approximations of real linguistic knowledge, which can have
states ‘in-between’ two discrete representations; see Smolensky & Goldrick 2016, for example. I gloss over
this part of the discussion, as it is not immediately relevant to understanding the relevance of the implemen-
tational mapping problem. This is one sense in which a network can fail to contain abstract linguistic repre-
sentations but can contain representations that are ‘close’, as alluded to in the introduction.
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just discussed to two-layer neural networks are workable only if the input layer is coded
in a ‘localist’ fashion, that is, with individual nodes or sets of nodes corresponding to in-
dividual elements of the representation. Tensor product representations, by contrast, can
yield ‘distributed’ representations. In distributed representations, individual nodes are
not identifiable with representational elements: in the worst case, all nodes may need
to be examined in order to decode any part of the representation. The existence of
the tensor product mapping scheme means that one can always find a localist recoding
for any given representation. However, tensor product representations are completely
independent of harmony theory, forming a broad family of implementational mapping
theories for representations. For example, Pater’s (2019) commentary discusses a case
of a question-answer system in which a tensor product structure is ENFORCED during
network training (Palangi et al. 2017), but with no interpretation of the final weights as
a harmonic grammar. One could easily imagine going beyond enforcing structure to
probing trained networks to understand whether they contained a tensor product encod-
ing of some grammatical representational system—in order to attempt to address the
fundamental questions outlined in the introduction.’

The second type of fusional research cited is a set of studies investigating whether re-
current neural network language models trained on corpora have human-like judgments
for agreement (Linzen, Dupoux, & Goldberg 2016). I point out here only that these
studies, while fundamentally important, do not permit us to draw the kind of conclu-
sions outlined in the introduction. Because the focus is restricted to whether the net-
works tested match human judgments—essentially, whether they generate the correct
set of strings, plus some associated gradient degree of acceptability/set membership—
these studies can inevitably tell us only about the accuracy of the models at the compu-
tational level.

To make this point more clearly, consider the recent Gulordava et al. 2018 study, a
follow-up to the tests of agreement in recurrent neural networks (RNNs) cited in Pater
2019, using a different trained model (and improving the tests). In contrast to the
Linzen, Dupoux, & Goldberg model (which the authors also retest with their new
items), the paper finds that the new RNNs pass the agreement tests, even at long dis-
tances. The authors leave open the question of what the crucial difference between the
two models is that allows one to show human-like behavior while the other fails. It is a
critical question in light of the fact that neither model is trained with any explicit bias
for hierarchical structure. But it is NOT the same as the question Pater raises in this con-
text: ‘assessing the extent to which GRAMMATICAL REPRESENTATIONS can be learned
from experience’ (p. e64). THAT question relies critically on knowing something not
only about WHAT the system does but HOw it does it. The fact that the system shows the
correct behavior does not have any straightforward implication about the nature of
the representations it is using to do so. (Chomsky’s (1975) informal reflections about
the ‘structure’-dependence of agreement merely assert that hierarchical structure serves
as the basis for a BETTER hypothesis than a purely linear rule, not that No alternative
representation could support the correct mapping; in this regard, this early discussion of
the learning problem posed by agreement is representative of later reassertions of it.) To

3> One could also imagine attempting to decode higher layers of a feedforward or recurrent network in such
a way as to allow the interpretation of these layers as making up parts of a constraint satisfaction vector, as in
harmonic grammar. This would still not permit the complete implementational mapping found in harmony
theory, however, as this would imply outputs and hidden structure that are calculated in a fundamentally dif-
ferent way, by optimization, rather than the standard feedforward mechanisms.
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see whether the better-performing system has really learned to code something we
would call syntactic hierarchy, we would need to address the implementational map-
ping problem for this type of network. We will never be able to use neural networks to
assess whether it is possible to learn (a particular type of') grammatical representations
from (a particular type of)) data if we do not have a way of assessing whether it has
learned those representations.

4. How TO PROCEED. Tensor product representations represent one framework for
stating mapping hypotheses between neural network representations and formal repre-
sentational theories, which allow for mappings between network weights and complex
hierarchical representations. There are other approaches to ‘decoding’ the action of con-
nectionist networks in terms of some interpretable ‘model’ of their behavior. Pinker and
Prince’s (1988) article, responding to the connectionist past-tense inflector of Rumel-
hart and McClelland (1986), did not provide any reusable methodological tools for un-
derstanding other neural network models; it did, however, provide a long exegesis of
the behavior of a single network, providing proof that such networks could be ‘under-
stood’ and did not need to remain black boxes. Properly within the realm of neural net-
work research, a number of techniques have been developed for assessing the relative
importance of the different input features in determining the output; relatedly, starting
in the early 1990s, a number of ‘rule extractor’ techniques were developed that could be
used to turn the parameters of neural networks into sequences of rules operating on the
(possibly continuous) input space of the network (sometimes yielding only approxima-
tions to the network’s behavior). However, none of these techniques are applicable to
the problem of extracting sequences of exact rules from the types of network architec-
tures in common usage today (Taylor & Darrah 2005, Ozbakir et al. 2010, Augasta &
Kathirvalavakumar 2012).

One of the reasons that the problem of decoding neural network information process-
ing has seen a sharp uptick in interest in recent years is probably the impact of the ‘anal-
ogy’ result of Mikolov et al. 2013. The authors demonstrated that the representation of
king, learned by a neural network solely on the basis of sequential relations in natural
text corpora, stood in the same geometric relation to the representation of queen as man
stood to woman, and, more generally, that representations in the system approximated
an implicit semantic/syntactic feature structure. The methodology used to arrive at this
conclusion provides a method for assessing, given a specific hypothesized set of binary
featural contrasts, whether one network approximates them better than another. The
method has since been applied, with some variations, to a host of other types of repre-
sentations (Dunbar et al. 2015, Gladkova et al. 2016, Linzen, Dupoux, & Spector 2016,
Chaabouni et al. 2017). The original method has been criticized as giving erroneous re-
sults in various cases and for making narrow and unmotivated assumptions about the
form of the mapping between the network’s representations and the hypothesized fea-
ture system (Levy & Goldberg 2014, Linzen 2016), but it provided both a compelling
result and a reminder of a compelling idea: there are ways of interpreting neural net-
work representations as respecting the structure of some abstract, and understandable,
theory.

A different line of research is represented by the Kriegeskorte et al. 2008 method for
assessing isomorphisms of two representational systems. This method is, in principle,
applicable to the implementational mapping problem, but it has almost exclusively
been used for comparing neural network representations against equally opaque data
from brain imaging (seen as ‘representations’ in a broad sense).
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5. ConcLusION. Pater (2019) insists on the immediate importance of a research pro-
gram that goes back to the early days of connectionism (Fodor & Pylyshyn 1988,
Smolensky 1988a, McCloskey 1991): using neural networks to advance, not as an al-
ternative to, abstract linguistic theory. This is indeed a promising research direction
whose time has come. However, before an interdisciplinary research program of the
kind envisioned by Pater can be made real, a very concrete, broad, and well-thought-out
set of formal methodologies is needed for assessing how well a particular neural net-
work aligns with a linguistic representational theory. Without careful reflection on what
it would mean for a grammatical hypothesis to be ‘instantiated’ in a neural network, and
ways to understand what kind of alternative representations a network model is propos-
ing to us, we will be lost in this endeavor.

The above discussion should not be taken to suggest that there is a general, universal
solution to the implementational mapping problem. Suppose, for example, that, in fol-
low-up research on how RNNs learn agreement, we wanted to give relative scores to two
different networks, in order to assess which one was coming closer to having learned hi-
erarchical structure, in some well-defined sense. The Mikolov et al. 2013 ‘analogy’ ap-
proach works by assessing whether minimal representational oppositions, such as those
between king and queen or man and woman (assuming that these differ minimally in
some representation of semantic gender), can be captured by doing arithmetic addition
and subtraction operations (does king — queen +man equal woman?). Tensor product rep-
resentations make a similar assumption. Both assume a specific class of implementa-
tional mappings wherein the structure of the network’s representational space is
necessarily one in which addition of two representations is the network’s way of com-
posing these representations. This may be reasonable in specific types of networks, but
it is not guaranteed to be appropriate: a network might ‘contain’ binary semantic features
in some different sense, using a structure based on something other than addition.

We already know from neuroscience that there is no single, universal way of ‘inter-
preting’ real neurons: gerbils and chickens’ neural systems for sound localization in the
horizontal plane in front of the body can be described in the same algorithmic-represen-
tational terms—calculating interaural time differences—but this information is coded
in neural firing in a fundamentally different way across the two species (see Ashida &
Carr 2011). Any attempt to ‘find’ interaural time differences in gerbils under the expec-
tation that it should be encoded in the same way as in chickens would lead to a negative
result (they are coded using neural firing rate in mammals, but not in birds). This would
lead to the false conclusion that the two species’ brains perform fundamentally different
operations, while, in fact, they perform the same operations in different ways. The prob-
lem is not insurmountable, but simply needs to be taken into account: any assessment of
the congruence between an opaque (neural network) representation and a high-level
formal theory is necessarily and inextricably bundled with the assessment of the valid-
ity of the mapping hypothesis.

The early work on linking neural network representations with more understandable
views of them as abstract rules and representations was extremely important, and it has
advanced far too slowly in the intervening years. Furthermore, it still is not always
clearly distinguished from the problem of testing whether the networks get the right an-
swer. This lack of centrality shows in the target article, which proposes extensive fu-
sion, but does not isolate implementational mapping as a critical component, or even as
a research problem. Given the complexity of the problem, I would suggest that imple-
mentational mapping represents, in fact, the bulk of the work of fusion between formal
linguistic theory and neural network research.
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