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Hybrid Signal-and-Link-Parametric Speech Quality
Measurement for VoIP Communications
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Abstract—A hybrid signal-and-link-parametric approach to
speech quality measurement for voice-over-Internet protocol
(VoIP) communications is described. Connection parameters are
used to determine a base quality representative of the trans-
mission link. Degradation factors, computed from perceptual
features extracted from the decoded speech signal, are used to
quantify distortions not captured by the connection parameters.
The algorithm is tested on speech degraded by acoustic noise,
temporal clippings, and noise suppression artifacts, thus simu-
lating degradations present in wireless-VoIP tandem connections.
Hybrid measurement is shown to overcome the limitations of pure
link parametric and pure signal-based measurement methods,
resulting in better measurement accuracy for modern VoIP com-
munications. In addition, the proposed algorithm incurs modest
computational overhead relative to pure link parametric measure-
ment and attains up to 88% reduction in processing time relative
to the ITU-T standard P.563 signal-based algorithm.

Index Terms—Live call monitoring, quality impairments, speech
distortions, speech quality measurement, voice-over-Internet pro-
tocol (VoIP).

I. INTRODUCTION

V OICE-over-Internet protocol (VoIP) has increased in pop-
ularity over the past few years, mainly due to its low cost

and capability of integrating data and real-time voice traffic on
existing Internet protocol (IP) network infrastructures. IP net-
works are optimized for data communications, where variable
losses and delay are not critical since retransmission can be per-
formed. With voice communications, however, retransmission
of missing packets is not a viable option and packet losses have
become a major source of perceptual quality degradation. Com-
monly, packet loss concealment (PLC) strategies are used to re-
place lost packets and to improve speech quality. Nonetheless,
VoIP links need to be constantly monitored such that necessary
actions can be taken in order to maintain acceptable quality of
service (QoS) [1].

For the purpose of real-time VoIP quality monitoring and
control, automated objective speech quality measurement
is required. Objective measurement replaces expensive and
time-consuming subjective quality tests. Objective methods
can be classified as either signal based or link parametric.
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Signal-based methods use perceptual features computed from
the speech signal to estimate subjective quality. Link para-
metric methods, on the other hand, use connection parameters
to estimate quality. For IP networks, connection parameters
can include codec and PLC type, packet loss pattern (random
or bursty), packet loss rate, jitter, and delay. Commonly, con-
nection parameters are obtained from the real-time transport
protocol (RTP) header [2], real-time transport control protocol
(RTCP) [3], and RTCP extended reports (RTCP-XR) [4].

While signal-based algorithms perform well for traditional
telephony applications, recent research has shown that al-
gorithm performance may decrease when applied to VoIP
communications. Several independent studies have shown that
signal based schemes can be sensitive to connection parameters
[5]–[8], as well as attain high “per-call” quality estimation
errors [8]–[10]; such limitations restrict the usefulness of
signal-based methods for online quality monitoring and control
applications. Additionally, high computational complexity
also acts as a major limiting factor for the widespread use of
standard signal-based measures for online QoS control. As
a consequence, link parametric methods have gained wide
popularity in recent years. Studies have shown that signal
based methods can be up to 1000 times more computationally
complex (in terms of millions of instructions per second) than
link parametric methods [10]. Representative link parametric
models include ITU-T Recommendation G.107 (E-model) [11]
and proprietary algorithms, such as Telchemy’s VQmon [12].

Link parametric performance, however, can be severely af-
fected by distortions that are not captured by connection pa-
rameters. Sources of such distortions can include acoustic noise,
temporal clippings, and tandem connections with links that do
not convey upstream equipment and signal conditions down-
stream (e.g., [13]). According to [14], [15], the number of wire-
less-VoIP tandem connections has grown substantially in the
last few years, and it is just a matter of time before such con-
nections become ubiquitous. With wireless-VoIP tandem condi-
tions, speech signals are corrupted by varying levels and types
of background noise prior to packetization. Moreover, advanced
wireless communications standards such as the selectable mode
vocoder (SMV) [16] are equipped with noise suppression capa-
bilities. It is a known fact that noise suppression algorithms can
introduce unwanted perceptual artifacts, such as the so-called
“musical noise” phenomenon [17]. As will be shown here, back-
ground noise and artifacts introduced by noise suppression al-
gorithms pose a serious threat to the performance of link para-
metric algorithms.

In this paper, a method that overcomes the limitations of
both pure signal based and pure link parametric quality mea-
surement is presented. A hybrid signal-and-link-parametric
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approach to single-ended quality measurement of packet speech
is proposed, based on extending the work described in [8]. The
method makes use of IP connection parameters such as codec
and PLC type, packet size, and packet loss pattern to determine
a “base quality” representative of specific transmission links.
Degradation factors are then computed from perceptual features
extracted from the speech signal and are used to adjust the base
quality accordingly. Our experiments focus on distortions that
are not captured by connection parameters, such as those that
occur in modern wireless-VoIP tandem connections. Distor-
tions include VoIP speech codec impairments in combination
with degradations caused by packet losses, temporal clippings,
background acoustic noise, or noise suppression artifacts. The
proposed method is shown to incur modest computational over-
head relative to pure link parametric approaches. Combined
with improved measurement accuracy, hybrid measurement is
shown to be better suited for online monitoring of modern VoIP
communications.

The remainder of this paper is organized as follows. In
Section II, an overview of subjective and objective speech
quality measurement is presented; previous hybrid approaches
proposed in the literature are also discussed. Section III de-
scribes experiments which highlight the limitations of pure
signal-based and link parametric approaches, thus serving
as motivation for hybrid signal-and-link-parametric quality
measurement. In particular, the sensitivity of P.563 to different
VoIP network parameters is discussed. Section IV describes
the architecture of the proposed algorithm, and experimental
results are detailed in Section V. Algorithm computational
complexity is discussed in Section VI, and conclusions are
presented in Section VII.

II. SPEECH QUALITY MEASUREMENT

In this section, a brief overview of subjective speech quality
measurement is given in Section II-A; objective speech quality
measurement is discussed in Section II-B.

A. Subjective Measurement

Subjective speech quality measurement plays a key role in
characterizing the quality of telecommunications products and
services. It is known, for example, that the perceived quality of a
speech signal processed by a novel speech coding algorithm, or
transmitted over a novel network architecture, significantly in-
fluences the end user’s experience with the system. Subjective
speech quality assessment attempts to quantify this user experi-
ence. Moreover, the results of subjective evaluations can be used
to define performance targets, to ensure appropriate product be-
havior, to define national and international standards, as well as
to benchmark objective quality measures [18].

The majority of subjective measurement tests can be grouped
into two classes: listening and conversational tests. Listening
tests, as the name suggests, involve listeners “passively” rate
(on a prespecified scale) the quality of the short-duration speech
signal they have just heard. Conversational tests, on the other
hand, are interactive and listeners are asked to rate the quality
of a call based on the listening quality and on their ability to
converse during the call. Conversational tests account for addi-
tional factors such as echoes and delays.

Listening quality tests are widely used by the telecommuni-
cations industry. The International Telecommunication Union
(ITU-T) has published several recommendations describing
guidelines for conducting subjective evaluations of listening
quality in order to obtain reliable test results [19]–[21]. The
most widely used subjective listening test method makes use
of a listener panel to measure speech quality on an integer
absolute category rating (ACR) scale ranging from 1 to 5, with
1 corresponding to bad speech quality and 5 corresponding to
excellent speech quality. The average of the listener scores is
termed the subjective mean opinion score (MOS). Current MOS
terminology recommends the use of abbreviations MOS-LQS
and MOS-CQS to distinguish between listening quality and
conversational quality subjective MOS, respectively [21].

B. Objective Measurement

Despite being the most valid quality measurement method,
subjective tests are expensive and time-consuming. Hence,
for the purpose of real-time VoIP quality monitoring and
control, objective speech quality measurement is required.
Objective methods aim to deliver estimated quality scores
that are highly correlated with the quality scores obtained
from subjective listening experiments. Objective measure-
ment methods can be classified as either signal based or link
parametric. Signal-based approaches can be further classified
as double-ended (also known as end-to-end) or single-ended,
as described in the remainder of this section. Current MOS
terminology recommends the use of abbreviations MOS-LQO
and MOS-LQE to distinguish between listening quality MOS
obtained from an objective model and E-model planning
MOS estimates, respectively [21]. Similarly, abbreviations
MOS-CQO and MOS-CQE are used for conversational quality.
The focus of this paper will be on objective listening quality
measurement.

1) Double-Ended Signal-Based Measurement: Double-
ended measurement systems [Fig. 1(a)] are “comparison-based”
and depend on some form of distance metric between the input
(clean) and output (degraded) speech signals to estimate sub-
jective quality. Representative algorithms include perceptual
speech quality measure (PSQM) [22], measuring normalizing
block (MNB) [23], [24], and statistical data mining quality
assessment [25]. ITU-T Recommendation P.862, also known
as perceptual evaluation of speech quality (PESQ), represents
the current state-of-art double-ended algorithm for traditional
telephony applications [26]. Recent research, however, has sug-
gested decreased PESQ performance for VoIP communications
and sensitivity to connection parameters such as speech codec
and PLC type, packet size, packet loss rate, and packet loss
pattern (e.g., [5], [6], [9]).

2) Single-Ended Signal-Based Measurement: Single-ended
measurement systems [Fig. 1(b)] do not require access to a
clean reference signal and commonly rely on models of norma-
tive speech behavior. In [27], vector quantizer (VQ) codebook
representations of perceptual features of clean speech are used.
In [28], VQ codebooks are replaced by Gaussian mixture prob-
ability models to improve quality measurement performance.
Other proposed schemes have made use of vocal tract models
[29] and spectro–temporal representations of normative speech
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Fig. 1. Block diagram of (a) double-ended and (b) single-ended signal-based
objective measurement, (c) link parametric measurement, and (d) hybrid signal-
and-link parametric measurement.

behavior [30] for single-ended quality measurement. ITU-T
Recommendation P.563 represents the current state-of-art
single-ended algorithm for traditional telephony applications
[31]. Recent research, however, has suggested that P.563 per-
formance is also compromised for VoIP applications [6]–[8]. In
addition, the experiments described in Section III also suggest
algorithm sensitivity to different VoIP connection parameters
and high per-call estimation errors.

3) Link Parametric Measurement: Link parametric models
[Fig. 1(c)] make use of network parameters to estimate lis-
tening and/or conversational subjective quality. The E-model is
a widely used transmission planning tool that describes several
parametric models of specific network impairments and their
interaction with subjective quality [11]. The basic assumption
is that transmission impairments can be transformed into psy-
chological impairment factors, which in turn, are additive in
the psychoacoustic domain. A transmission rating factor is
obtained from the impairment factors by

(1)

where , , and represent speech transmission impair-
ment factors (e.g., impairments due to quantization distortion),
delay impairment factors (e.g., impairments due to echoes), and
effective equipment impairment factors (e.g., impairments due
to packet loss for different codec types), respectively. de-
scribes a base factor representative of the signal-to-noise ratio
(SNR) and an advantage factor. The rating ranges from 0
(bad) to 100 (excellent) and can be mapped to MOS-CQE (if
delay impairment factors are considered) or MOS-LQE using
equations described in ITU-T Recommendation G.107 Annex
B [11].

Over the years, an extensive list of equipment impairment
factors has been derived [11], [32], [33]. In addition, ITU-T
Recommendations P.833 [34] and P.834 [35] have been pro-
posed to describe methodologies used to obtain equipment im-
pairment factor values from subjective tests and instrumental
models such as PESQ, respectively. More recently, new method-

ologies have been proposed to compute equipment impairment
factors for wideband speech codecs [36]. As mentioned previ-
ously, the E-model is a transmission planning tool and is not rec-
ommended for online quality measurement. Hence, several ex-
tensions have been proposed to improve E-model performance
for online monitoring. It is known, for example, that the simpli-
fying assumption that impairments are additive in the perceptual
domain does not hold true for high levels of “orthogonal” (un-
related) impairments. Proprietary algorithms, such as VQmon,
use nonlinear impairment combination models that are shown
to be more accurate when high levels of dissimilar impairments
are present [37].

As will be shown here, extended E-model implementations
provide accurate estimates for many VoIP scenarios, as well as
attain low per-call quality estimation errors. Experiments de-
scribed in Section III, however, suggest that link parametric per-
formance can be severely affected by distortions that are not
captured by connection parameters. Examples of such distor-
tions include varying levels of acoustic noise, noise suppression
artifacts, and temporal clippings. These shortcomings motivate
the need for a hybrid signal-and-link-parametric methodology.
Previously proposed hybrid architectures are described next; our
proposed method is described in detail in Section IV.

4) Hybrid Measurement—Previous Investigations: Hy-
brid signal-and-link parametric measurement [Fig. 1(d)] uses
link parameters in addition to the voice payload to estimate
subjective quality. A few hybrid approaches have been pro-
posed previously. In [38] and [39], PESQ is used to estimate
the quality of the received speech signal and the estimated
MOS-LQO is converted into an equipment impairment factor
which, along with transmission delay estimates, is input to
the E-model. While such approaches are useful to quickly
obtain nontabulated equipment impairment factors, the high
computational complexity, the need for a clean reference signal,
and the sensitivity of PESQ to connection parameters make
them impractical for online QoS control. Moreover, the use of
PESQ for systems equipped with noise suppression algorithms
is not recommended [40], thus limiting its usability in modern
wireless-VoIP tandem conditions.

More recently, the work described in [41] proposes a hybrid
methodology where temporal clippings and SNR are estimated
from the degraded speech signal in a single-ended manner using
complex signal-processing techniques. RTP and RTCP analysis
is used to obtain the packet loss rate. Different impairment
models are computed and combined with the E-model for a
final quality rating. The algorithm is shown to correlate well
with PESQ quality scores; however, due to the aforementioned
PESQ limitations, it is not obvious if the method accurately
predicts subjective quality. Moreover, the performance and
complexity of the hybrid scheme is not compared to benchmark
algorithms such as the E-model and P.563; thus, its improve-
ment over existing algorithms is still unknown.

III. MOTIVATION FOR HYBRID SIGNAL-AND-LINK PARAMETRIC

SPEECH QUALITY MEASUREMENT

In this section, experiments are described which motivate
the need for hybrid signal-and-link parametric quality measure-
ment. Experiments are carried out with a subjectively scored
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database, as described in Section III-A. The sensitivity of
P.563 to different VoIP network parameters is investigated in
Section III-B. Limitations of pure link parametric approaches,
here characterized by the performance of an extended E-model
implementation, are discussed in Section III-C.

A. Database Description

A bilingual (English and French) subjectively scored speech
database is used in our experiments. The speech database con-
tains a wide range of typically encountered VoIP scenarios. In
particular, it comprises speech processed by G.711, G.729 and
Adaptive Multi-Rate (AMR) codecs, with the latter operating
at full rate (12.2 kb/s). The PLC used for G.711 is described
in [42]; G.729 and AMR have their own built-in PLCs. Speech
signals processed by G.711 with a simple silence insertion PLC
scheme are also included. Packet durations of 10, 20, and 30 ms
are used, except for AMR where only 20-ms packets are avail-
able. Random and bursty losses are simulated at 1, 2, 4, 7, and
10% with the ITU-T G.191 software package [43]; the Bellcore
model is used for bursty losses. Losses are applied to speech
packets, thus simulating a transmission network with voice ac-
tivity detection (VAD).

To investigate the limitations of pure link parametric mea-
surement methods, several signal-based distortions are gener-
ated in combination with codec distortions (with and without
packet losses). Signal-based distortions include temporal clip-
pings, acoustic background noise, and noise suppression arti-
facts. In order to maintain the simplifying E-model assump-
tion that impairments are additive in the perceptual domain, low
levels of noise and packet loss rates are used. Temporal clip-
ping distortions are either manually generated by replacing the
beginning of a talkspurt with a copy of the noise floor, or sim-
ulated by forcing VAD false negatives in the G.711 and G.729
codecs. Acoustic noise distortions are generated by corrupting
clean speech with three noise types (hoth, babble, and car) at
two SNR levels (10 and 20 dB). Noisy speech is then processed
by the three aforementioned speech codecs (singly or in tandem)
with and without packet losses. In the former scenario, random
and bursty packet losses are simulated at 2% and 4%.

Noise suppression artifacts in combination with codec dis-
tortion are used to further simulate impairments introduced by
wireless-VoIP tandem connections. Here, two noise suppression
algorithms are tested. The first is the spectral subtraction algo-
rithm available in the Adobe Audition software; a suppression
factor of 75% is used. The second is the state-of-art noise sup-
pression algorithm available as a preprocessing module in the
SMV codec. Speech is corrupted by four noise types (Hoth, car,
street, and babble) at three SNR levels (0, 10, and 20 dB). Noisy
speech is processed by the noise suppression algorithms and the
noise-suppressed signal is input to the G.711, G.729, or AMR
speech codec.

The raw speech files were recorded in an anechoic chamber
by four native Canadian French talkers and four native English
talkers (half male and half female). Reference speech signals
were filtered using the modified intermediate reference system
(MIRS) send filter according to ITU-T Recommendation P.830
Annex D [20]. Degraded speech signals were further filtered

using the MIRS receive filter. In both instances, speech signals
were level adjusted to 26 dBov (dB overload) and stored with
8-kHz sampling rate and 16-bit precision. Similar to the ITU-T
Supp. 23 dataset [44], each speech file comprises two sentences
separated by an approximately 650-ms pause.

The subjective MOS test was conducted in 2006 following the
requirements defined in [19] and [20]. Sixty listeners (native in
each language; roughly half male and half female) participated
in each listening quality test. The headphones used were Bey-
erdynamic DT 770 and the ambient noise level in the listening
room was kept at around 27–28 dBA. A total of 300 degradation
conditions are available per language. Of the 300 impairment
conditions, 146 are due to packet losses, 21 to temporal clip-
ping, 31 to acoustic noise and codec distortion, 54 to acoustic
noise, codec distortion and packet losses, and 48 are due to
noise suppression and codec distortion. The tests described in
Section III-B make use of the 146 packet loss degradation con-
ditions (total of 1168 speech files), and the tests in Section III-C
make use of the 85 noisy speech conditions (total of 672 speech
files).

B. Limitations of Pure Signal Based Measurement

In this section, statistical analysis is used to assess the
relationship between P.563 performance and four connection
parameters: codec-PLC type, packet size, packet loss pattern
(random or bursty), and packet loss rate. For real-time quality
monitoring and control applications, objective quality measures
are required to attain low per-call estimation errors. Hence,
we use per-call MOS residual as the performance criterion.
MOS residual is given by MOS-LQO minus MOS-LQS
(or MOS-LQE minus MOS-LQS) and is abbreviated as
“LQO-LQS” (or “LQE-LQS”) in Figs. 2–4. Analysis of
variance suggests that two parameters have significant main
impacts on P.563 accuracy, as described in Section III-B1. Two
significant two-way interaction effects on P.563 accuracy are
described in Section III-B2.

1) One-Way Interactions: One-way interaction analysis sug-
gests that codec-PLC type and packet loss rate incur signifi-
cant main effects on P.563 accuracy ; the box
and whisker plots depicted in Fig. 2(a) and (b) illustrate this
behavior, respectively. The boxes have lines at the lower quar-
tile, median, and upper quartile values; the whiskers extend to
1.5 times the interquartile range. Outliers (data with values be-
yond the ends of the whiskers) are represented by the symbol
“ .” From Fig. 2(a), it can be seen that P.563 performance is
strongly dependent on packet loss rates. P.563 underestimates
MOS-LQS for low loss rates and overestimates MOS-LQS for
higher loss rates; MOS residuals greater than 2 MOS points are
obtained at a 10% loss rate.

Fig. 2(b) suggests that P.563 attains high per-call estimation
errors, in particular for the G.711 PLC scheme. According to
[31], P.563 has only been validated for PLC schemes in CELP
(codebook-excited linear prediction) codecs (e.g., G.729); this
can explain the poor performance obtained for G.711. Nonethe-
less, for the G.729 codec, P.563 attains residual errors that can
be greater than 1.5 MOS point; on a five-point MOS scale, this
can be the difference between having acceptable and unaccept-
able quality [9]. Moreover, the smallest median MOS residual
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Fig. 2. Significant one-way effects of (a) packet loss rates and (b) codec-PLC
type on P.563 accuracy. For comparison purposes, (c) depicts nonsignificant
effects of codec-PLC type on extended E-model accuracy.

occurs with the simple G.711 silence insertion loss conceal-
ment scheme; this can be explained by the fact that P.563 is
equipped with a temporal clipping detection module. As will be
shown in Section III-B2; however, this does not hold true for

Fig. 3. Significant two-way interactions of (a) codec-PLC type and loss rate,
and (b) loss rate and loss pattern on P.563 accuracy.

high packet loss rates. For comparison purposes, Fig. 2(c) de-
picts the nonsignificant effects of speech codec-PLC type on ex-
tended E-model (described in Section III-C) performance. The
substantially smaller residual errors validate the accuracy of the
extended E-model implementation and corroborate the popu-
larity of link parametric measurement for VoIP online quality
monitoring.

2) Two-Way Interactions: Two-way statistical analysis has
suggested two significant two-way interaction effects on P.563
performance: codec-PLC type and packet loss rate ,
and loss pattern and packet loss rate . Box and
whisker plots depicted in Fig. 3(a) and (b) illustrate this be-
havior, respectively. From Fig. 3(a), it can be seen that P.563 un-
derestimates MOS-LQS for low packet loss rates for both G.711
and G.729 codecs. The simple silence insertion scheme attains
median residual values closer to zero, except for high packet loss
rates (10%) where it attains the highest residual median value.
The largest residual errors (outliers) occur for the G.711 codec
under a 10% packet loss rate.
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Fig. 4. Significant one-way effects of (a) noise level and (b) noise type on ex-
tended E-model accuracy.

Moreover, Fig. 3(b) suggests that P.563 accuracy varies less
for random losses than for bursty losses. For low packet loss
rates, median residual MOS values are similar for both random
and bursty packet losses. For higher loss rates, bursty losses at-
tain median residual MOS values almost one-quarter of a MOS
point higher than random losses. Relative to link parametric
measurement, P.563 is shown to be more sensitive to connec-
tion parameters and to attain higher per-call estimation errors.

C. Limitations of Pure Link Parametric Measurement

Parameters used in the E-model represent terminal, network,
and environmental quality factors which are assumed to be
known a priori. Extended E-model implementations propose to
estimate E-model parameters (e.g., SNR) in real-time [41]. In
this experiment, an extended E-model implementation is used.
Nontabulated equipment impairment factors are obtained from
subjectively scored speech data and the noise level is computed
using the clean reference speech signals. Note that link para-
metric measurement is favored with this unrealistic assumption

that true noise level information is available online. Commonly,
only estimated noise levels are available, as in the experiment
described in Section V. Here, statistical analysis is used to
investigate the effects of noise level, noise type, and noise and
packet loss on extended E-model measurement performance.
The analysis suggests significant one-way interaction effects
of noise level and noise type ; the box
and whisker plots depicted in Fig. 4(a) and (b) illustrate this
behavior, respectively.

From the plots, it can be observed that the extended E-model
underestimates MOS-LQS and has a higher residual MOS vari-
ance for lower noise levels SNR dB and for babble
and car noise. On the other hand, we observe that noise level
does not show significant effects on P.563 accuracy. P.563 is
equipped with a “noise analysis” module which not only esti-
mates the SNR, but also takes into account other spectrum-re-
lated measures such as high frequency (2500–3500 Hz) spec-
tral flatness. It is observed, however, that P.563 performance is
lower for babble and car noise, both of which have “low-pass”
characteristics.

The experiments described in Sections III-B and III-C serve
as motivation for a hybrid methodology which combines the
strengths of both link parametric and signal-based approaches.
In our hybrid approach, IP connection parameters are used
to obtain a base quality representative of network connec-
tions characterized by each specific set of parameter values.
Signal distortions not captured by the connection parameters,
such as acoustic noise, are captured by perceptual features
extracted from the speech signal. Next, a description of the
proposed algorithm is given. It will be shown that, by using
statistical models of normative speech codec behavior, a simple
scheme can be devised that overcomes the limitations of pure
signal-based and pure link parametric measurement methods.

IV. ARCHITECTURE OF PROPOSED ALGORITHM

The overall architecture of the proposed algorithm is depicted
within the dotted lines in Fig. 5. Offline, E-model ratings and
subjective listening tests are used to determine the base quality
of several VoIP communications scenarios. As an embodiment
of the proposed approach, we obtain base quality values for
commonly used codec-PLC types with different packet sizes,
under different packet loss patterns and packet loss rates. Base
quality values are stored in a lookup table for fast online oper-
ation. Statistical models, in particular Gaussian mixture (GM)
models, are designed using perceptual features extracted from
speech signals processed by the various speech codecs operating
under clean reference conditions. Reference GM model param-
eters, as defined in Section IV-B, are also stored in a lookup
table for each codec. The speech codecs used in our experiments
are described in Section III-A.

Online, IP header-extracted parameters are used to obtain the
base quality and reference GM model parameters from lookup
tables. Once packets are decoded and PLC is performed, the
speech signal is level-normalized and filtered. Perceptual fea-
tures are then extracted from the preprocessed test signal. The
VAD labels the feature vector of each frame as either active or
inactive. The extracted features are compared to stored models
of normative codec operation behavior via a simple consistency
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Fig. 5. Architecture of the proposed hybrid signal-and-link-parametric quality
measurement algorithm.

measure. Temporal discontinuity detection is used to detect tem-
poral clippings, an impairment which occurs commonly in VoIP
communications [45]. Lastly, a MOS-mapping module is used
to map the base quality, computed consistency measures, noise
spectrum tilt, and detected temporal discontinuities to a final
MOS-LQO. A more detailed description of each signal-based
processing block is provided in the remainder of this section.

A. Preprocessing, VAD, and Feature Extraction

The preprocessing module performs level normalization and
IRS filtering. The level of the speech signal is normalized to

26 dBov using the P.56 voltmeter [46] and the MIRS filter
is applied to emulate the handsets used in listening tests. Voice
activity detection is employed to label speech frames as active
or inactive; the VAD from the G.729 codec [47] is used.

Perceptual linear prediction (PLP) cepstral coefficients [48]
are extracted from the speech signal and serve as primary
features. The coefficients are obtained from an “auditory spec-
trum,” constructed to exploit three essential psychoacoustic
properties: critical band analysis, equal-loudness preem-
phasis, and cubic-root compression. The auditory spectrum is
approximated by an all-pole autoregressive model, whose coef-
ficients are transformed to th-order PLP cepstral coefficients

. The zeroth cepstral coefficient is employed as
an energy measure [49], and is chosen from previous
experiments [50]. When describing the PLP vector for a given
frame , the notation and will be used.

Differential PLP cepstral coefficients are also used as a mea-
sure of signal spectral dynamics. In particular, delta and double-
delta cepstral coefficients are used. Delta coefficients represent
the local time derivatives (slope) of the cepstral sequence and
are computed as [51]

(2)

where the normalization factor is omitted as it does
not affect the simulation results. Delta coefficients indicate the

rate of change (speed) of spectral components; in our simula-
tions is used. Double-delta coefficients are the second-
order local time derivatives of the cepstral sequence and are
computed using (2) as . Double-
delta coefficients indicate the acceleration of the spectral com-
ponents.

Lastly, motivated by the results described in Section III-C,
noise-related features are extracted. Pilot experiments are car-
ried out with noise spectral flatness and noise spectrum tilt; the
latter (henceforth referred to as ) resulted in superior per-
formance and is used throughout the remainder of this paper. As
in [52], is approximated by the first-order linear prediction
coefficient averaged over inactive speech frames.

B. Gaussian Mixture Reference Models

Reference models of normative codec behavior are de-
signed for commonly used speech codecs. For active speech
frames, GM models are trained for PLP cepstral coeffi-
cients appended with delta and double-delta coefficients, i.e.,

. For inactive speech frames,
GM models are obtained from PLP cepstral coefficients, i.e.,

. A Gaussian mixture model is a weighted
sum of component densities

(3)

where , are the mixture weights, with
, and are -variate Gaussian densities with

mean vector and covariance matrix . The parameter list,
, defines a particular Gaussian mixture den-

sity, where . In our experiments, diagonal co-
variance matrix Gaussian components are used.

The expectation–maximization (EM) algorithm [53] is com-
monly used to obtain from training data. The disadvantage of
the EM approach is that the number of Gaussian components
has to be determined a priori. Large may result in a model
that overfits the training data, whereas small may result in
models that are not accurate. Commonly, the approach taken is
to try several values of and use the one that results in supe-
rior performance on an unseen test set [8]. Here, an alternate ap-
proach is taken and a recursive (greedy) EM algorithm is used.
Greedy EM implementations estimate model parameters and the
number of components simultaneously.

We experiment with a pruning approach which starts with a
large number of components and uses a stochastic approxima-
tion recursive learning algorithm to prune irrelevant components
[54], and a progressive approach which starts with a single com-
ponent and adds components sequentially [55]. In order to guard
against overfitting, the largest admissible is chosen such that
the training ratio (ratio between number of scalar parameters
that need to be estimated during training and the number of
training samples available) is maintained above an empirically
set value of 100. In our experiments, it is observed that both
implementations result in similar performance and is
chosen for active frames and for inactive frames.
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C. Consistency Calculation

In [8], signal-based distortions were measured by means of
the Kullback–Leibler distance between offline-trained reference
models and GM models obtained online from the test speech
signal. While the approach was shown to be effective, real-time
operation becomes questionable as speech packets need to be
stored in order for accurate online GM models to be obtained.
Here, for the benefit of low computational complexity and real-
time operation, a reference-model consistency measure is used.
For a given speech signal, the consistency between the
observation and the reference GM models is defined as the nor-
malized (log-)likelihood

(4)

where denotes the set of all
feature vectors that have been classified as belonging to a given
speech class (active or inactive). Normalization is required as

varies for different test signals.

D. Temporal Discontinuity Detection

Temporal discontinuities (also known as “clippings”) are
a known source of quality degradation in VoIP systems [45].
Front-end, midspeech (short mutes), and back-end clippings
may occur due to erroneous VAD decisions, erroneous line
echo cancelation decisions, or simple silence insertion PLC
schemes. Here, a simple energy-thresholding scheme is pro-
posed and temporal discontinuities are detected by evaluating
abrupt changes in .

From our experiments, abrupt stops (back-end clippings) can
be accurately detected if

Abrupt starts (front-end clippings) are detected if . Ex-
periments on our databases show that with this simple energy-
thresholding scheme, approximately 98% of front-end clippings
are correctly classified. On the other hand, approximately 10%
of “normal” abrupt starts, such as those experienced with cer-
tain plosive consonants (e.g.,/d/), are misclassified as clippings.
To improve classification performance, more complex machine
learning methods can be used [50]. Since abrupt starts have,
intuitively, less significant impact on perceived speech quality
[30], [56], such classification errors are shown not to be detri-
mental to overall speech quality measurement. For the sake of
reduced computational complexity, the simple energy-thresh-
olding scheme is used in the experiments described in Section V.
Lastly, midspeech clippings are detected when an abrupt stop is
followed by an abrupt start during speech activity. The mute
length is estimated from the number of consecutive frames for
which .

Previous studies suggest that frequency of occurrence and
midspeech clipping duration are two major factors affecting
subjective quality [56]. We define frequency of occurrence as
the ratio of the number of detected discontinuities over active
speech duration (clips/second); frequency of occurrence is

computed for front- and back-end clippings ( and , respec-
tively). For midspeech clippings, subjective tests suggest that
similar quality is attained for high occurrence of short mutes
and low occurrence of long mutes [56]. As a consequence,
frequency of occurrence is computed for midspeech clippings
of short duration and long duration . Mutes
between 10–70 ms are classified as short duration and mutes
between 70–260 ms as long duration.

E. MOS Mapping

Machine learning tools are used to devise an accurate map-
ping between the base quality MOS , computed consistency
measures, noise spectrum tilt, and clipping frequency-of-occur-
rence to a final MOS-LQO. Here, a support vector (SV) re-
gressor [57], trained on subjectively scored data, is used. The
input to the MOS mapping module is the eight-dimensional fea-
ture vector consisting of

MOS

A subset of the ITU-T Supplement 23 (experiment 3) data-
base [44], along with material from three other proprietary
databases, are used to train the MOS mapping module. The
Supplement 23 subset includes speech processed by the G.729
codec (singly or in tandem conditions) with random and bursty
losses at 3% and 5%. Clean and noisy conditions (street, hoth
and vehicle noise at an SNR dB) are included. Proprietary
databases include temporal-clipped speech material, speech
processed by the G.711 codec with 3% random packet losses,
and noisy speech. The latter includes speech degraded by car
and street noise SNR dB and processed by the SMV
codec, operating at full and half rate (8.5 and 4 kb/s, respec-
tively), with 1% random losses. A total of 2672 speech samples
are used to train the MOS mapping function.

V. EXPERIMENTAL RESULTS

The proposed hybrid signal-and-link parametric measure-
ment algorithm is tested on a subset (1232 speech samples) of
the corpus described in Section III-A. The subset includes 154
impairment conditions covering temporal clipping, noise and
codec distortion, noise and packet losses, and noise suppres-
sion and codec distortion. Hence, the test set covers distortions
which are not captured by connection parameters, such as
those present in modern wireless-VoIP tandem connections.
We emphasize that degradation conditions and speech files
available in the test set are distinct from those in the training
set, thus are unseen to the proposed algorithm. Comparisons
are carried out with P.563 and the extended E-model.

To the best of our knowledge, equipment impairment factor
values for noise suppression algorithms are not available. In fact,
artifacts introduced by such enhancement schemes are depen-
dent on noise type and noise levels. As a consequence, pure link
parametric measurement is performed in a manner similar to
that of [41], where the SNR is estimated online and used in the
extended E-model rating. Here, the SNR is estimated with the
P.563 “noise analysis” module described in [31]. While such an
approach is useful to quantify noise artifacts that remain after
enhancement, it does not account for distortions that arise during
speech activity. The proposed hybrid scheme overcomes this
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TABLE I
PER-CONDITION PERFORMANCE OF HYBRID, PURE LINK PARAMETRIC (EXTENDED E-MODEL), AND PURE SIGNAL-BASED

(P.563) MEASUREMENT. RESULTS ARE REPORTED BEFORE AND AFTER THIRD-ORDER POLYNOMIAL REGRESSION

limitation by computing consistency measures for both active
and inactive speech segments.

Correlation and root-mean-square error are used as
algorithm figures of merit. Correlation between MOS-LQS and
MOS-LQO (or MOS-LQE) is obtained via Pearson’s formula

(5)

where is the average of (which represents the MOS-LQS),
and is the average of (which represents MOS-LQO or MOS-
LQE). The error is given by

(6)

We report improvement in correlation incurred by the proposed
scheme over pure signal-based or link parametric measurement
by the so-called “ -improvement” measure

(7)

where the subscripts “hybrid” and “pure” represent the pro-
posed hybrid scheme and either pure signal-based or pure
link parametric measurement algorithms, respectively. The

-improvement measure indicates the percentage reduction of
the performance gap to perfect correlation. Improvement in
attained by using the proposed algorithm is reported by means
of the conventional percentage reduction in root-mean-square
error .

As recommended in [31], results in Table I are reported on
a per-condition basis where condition-averaged MOS-LQS and
condition-averaged MOS-LQO (or MOS-LQE) are used to es-
timate and . Results are reported before and after third-order
monotonic polynomial regression. As can be seen, the proposed
method improves on pure link parametric measurement by ap-
proximately 38% and 15% in terms of and , respectively (post
third-order mapping). Improvements of approximately 36% and
26% ( and , respectively) are attained relative to pure signal-
based measurement. For comparison purposes, PESQ attains

and with the mapping described in [58].
Thus, the hybrid single-ended scheme offers somewhat lower

than the state-of-art double-ended standard algorithm. Note,
however, that the usage of PESQ is not recommended for sys-
tems that include a noise suppression algorithm. Furthermore,
statistical analysis shows that noise type and noise level have

TABLE II
PER-CALL ROOT-MEAN-SQUARE ERROR � OF HYBRID, PURE LINK

PARAMETRIC AND PURE SIGNAL-BASED MEASUREMENT

insignificant effects on the performance of the proposed hybrid
scheme.

As mentioned previously, for online quality monitoring ap-
plications, per-call residual MOS error is an important perfor-
mance metric. Per-call is reported in Table II for extended
E-model, P.563, and the proposed hybrid scheme. As can be
seen, the proposed algorithm attains reductions in per-call of
approximately 13% and 26% relative to pure signal-based mea-
surement and pure link parametric measurement, respectively.
From Table II, it can also be observed that under noisy and
wireless-VoIP tandem conditions, P.563 attains smaller per-call
residual errors than the extended E-model, thus corroborating
the fact that pure link parametric measurement is compromised
for degradations not captured by connection parameters.

Furthermore, careful analysis of the quality estimates ob-
tained by the proposed scheme has suggested that per-call
estimation errors are, on average, 23% larger for noise-sup-
pressed speech relative to noisy and temporal-clipped speech.
This behavior is expected as quantifying perceptual distor-
tions of noise-suppressed speech is a difficult task and has
been the focus of current objective [59] and subjective quality
measurement research [60]. With the advance of signal-based
measurement for noise-suppressed speech, improved hybrid
measurement performance is expected.

VI. ALGORITHM COMPUTATIONAL COMPLEXITY

In this section, algorithm computational complexity is
discussed in Section VI-A. To further reduce complexity, a
VAD-integrated processing scheme is proposed and described
in Section VI-B.

A. Computational Complexity

As mentioned previously, pure link parametric measurement
has gained widespread use due to its low computational com-
plexity. As a consequence, it is important to measure the com-
putational overhead incurred by the signal-based branch of the
proposed algorithm. We use algorithm processing time as a mea-
sure of computational complexity. Processing time is defined as
the time it takes to process ten speech files randomly selected
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TABLE III
ALGORITHM PROCESSING TIME FOR P.563 AND THE PROPOSED HYBRID

SCHEME, WITH AND WITHOUT VAD-INTEGRATED PROCESSING

from the test set described in Section V. With the exception of
the VAD algorithm (taken from the ANSI-C G.729 reference
implementation), the proposed algorithm is implemented using
Matlab version 7.2 Release 2006a. Simulations are run on a PC
with a 2.8-GHz Pentium 4 processor and 2 GB of RAM. The ten
files combined have a total length of 62.57 s. Algorithm pro-
cessing times for the Matlab implementation of the proposed
algorithm and the ANSI-C reference implementation of P.563
are reported in Table III. The column labeled “% ” describes
the percentage reduction in processing time obtained by the pro-
posed scheme relative to P.563. As can be seen, a reduction in
processing time of approximately 53% is attained; note that a
complete C implementation of the proposed algorithm would
further increase the speedup.

B. VAD-Integrated Processing

An in-depth analysis of the computational complexity of
each operational module depicted in Fig. 5 shows that over 75%
of the algorithm processing time is attributable to voice activity
detection. To further reduce processing time, the proposed
algorithm can take advantage of the fact that in most VoIP
codec implementations, VAD decisions are transmitted by the
encoder and are readily available at the decoder. Moreover,
in the event of a lost packet, VAD decisions are predicted
by the decoder based on previously received packets. Hence,
the hybrid scheme can reuse these VAD decisions in lieu of
recomputing them. To investigate the gains obtained with such
“VAD-integrated” processing, we use the Matlab implemen-
tation of the G.723.1 speech codec described in [61] where
inactive frames are detected as “null frames” in the G.723.1
bitstream. Table III also exhibits the gains obtained with the
VAD-integrated hybrid quality measurement scheme. As can be
seen, an overall reduction in processing time of approximately
88% can be attained relative to P.563.

VII. CONCLUSION

A hybrid signal-and-link-parametric quality measurement
algorithm for packet speech is proposed. Experiments de-
scribed herein serve to demonstrate the gains obtained by
combining the strengths of pure signal-based and pure link
parametric quality measurement paradigms to devise a more
comprehensive quality measurement scheme. The proposed
hybrid methodology improves on pure link parametric ap-
proaches by measuring distortions that are not captured by
connection parameters. Furthermore, lower per-call estimation
errors are attained relative to pure signal based measurement.
Additionally, the proposed scheme is shown to have modest

computational overhead relative to pure link parametric mea-
surement, and when operated in an integrated manner, can
attain computational complexity that is 88% lower than the
ITU-T standard P.563 algorithm. Moderate computational
complexity, low per-call estimation errors, and the ability to
account for distortions not captured by connection parameters
are valuable attributes for online speech quality monitoring, in
particular for modern VoIP communications.
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