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Abstract—We describe a novel single-ended algorithm con-
structed from models of speech signals, including clean and
degraded speech, and speech corrupted by multiplicative noise
and temporal discontinuities. Machine learning methods are used
to design the models, including Gaussian mixture models, support
vector machines, and random forest classifiers. Estimates of the
subjective mean opinion score (MOS) generated by the models
are combined using hard or soft decisions generated by a classifier
which has learned to match the input signal with the models.
Test results show the algorithm outperforming ITU-T P.563, the
current “state-of-art” standard single-ended algorithm. Employed
in a distributed double-ended measurement configuration, the
proposed algorithm is found to be more effective than P.563 in
assessing the quality of noise reduction systems and can pro-
vide a functionality not available with P.862 PESQ, the current
double-ended standard algorithm.

Index Terms—Mean opinion score (MOS), objective quality
measurement, quality model, single-ended measurement, speech
communication, speech distortions, speech enhancement, speech
quality, subjective quality.

I. INTRODUCTION

THE TELECOMMUNICATIONS industry is going
through a phase of rapid development. New services and

technologies emerge continuously. The plain old telephone
system is being replaced by wireless and voice-over-internet
protocol (VoIP) networks. Service providers are faced with
offering speech services over increasingly heterogenous net-
work connections. Identifying the root cause of speech quality
problems has become a challenging task. The evaluation of
speech quality, consequently, has become critically important,
serving as an instrument for network design, development, and
monitoring, and also for improvement of quality of service.
Despite all of the advances in modern telecommunication
networks, speech quality measurement has remained costly and
labor intensive.

Speech quality is a subjective opinion, based on the user’s
reaction to the speech signal heard. A common subjective
test method makes use of a listener panel to measure speech
quality on an integer absolute category rating (ACR) scale
ranging from one to five, with one corresponding to bad speech
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Fig. 1. Block diagram of (a) double-ended and (b) single-ended speech quality
measurement.

quality and five corresponding to excellent speech quality. The
average of the listener scores is the subjective mean opinion
score (MOS) [1]. This has been the most reliable method of
speech quality assessment but it is very expensive and time
consuming, making it unsuitable for “on-the-fly” applications.
Objective measurement methods, which replace the listener
panel with a computational algorithm, have been the focus of
more recent quality measurement research. Objective methods
can be implemented by either software or hardware and can
be embedded into network nodes for real-time monitoring and
control. Objective methods aim to deliver estimated MOSs that
are highly correlated with the MOSs obtained from subjective
listening experiments. Current MOS terminology recommends
the use of the abbreviations MOS-LQS and MOS-LQO to
distinguish between “listening quality” subjective MOS and
“listening quality” objective MOS, respectively [2].

Algorithms for objective quality measurement can be classi-
fied as double- or single-ended [Fig. 1(a) and (b), respectively].
Double-ended algorithms depend on some form of distance
metric between the input (clean) and output (degraded) speech
signals to estimate MOS-LQS. Double-ended schemes often
have two underlying requirements: 1) that the input signal be of
high quality, i.e., clean, and 2) that the output signal be of quality
no better than the input. These requirements prohibit the use of
double-ended algorithms in some scenarios where the input is
degraded and the system being tested is equipped with a speech
enhancement algorithm. On the other hand, single-ended algo-
rithms do not depend on a reference signal and are invaluable
tools for monitoring speech quality of in-service systems and
networks. Moreover, multiple single-ended “probes” can be
distributed throughout the network to pinpoint locations where
quality degradations occur.

Double-ended quality measurement has been studied since
the early 1980s [3]. Earlier methods were implemented to
assess the quality of waveform-preserving speech coders;
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Fig. 2. Architecture of the proposed single-ended measurement algorithm.

representative measures include signal-to-noise ratio (SNR)
and segmental SNR [4]. More sophisticated measures (e.g.,
[5]) were proposed once low-bit-rate speech coders, which may
not preserve the original signal waveform, were introduced.
More recently, quality measurement research has focused on
algorithms that exploit models of human auditory perception.
Representative algorithms include Bark spectral distortion
(BSD) [6], perceptual speech quality measure (PSQM) [7],
measuring normalizing block (MNB) [8], [9], and statis-
tical data mining quality assessment [10]. The International
Telecommunications Union ITU-T P.862 standard, also known
as perceptual evaluation of speech quality (PESQ), represents
the current “state-of-art” double-ended algorithm [11].

On the contrary, single-ended measurement is a more recent
research field. In [12], comparisons between features of the re-
ceived speech signal and vector quantizer codebook representa-
tions of the features of clean speech are used to estimate speech
quality. In [13], the degree of consistency between features of
the received speech signal and Gaussian mixture probability
models (GMMs) of normative clean speech behavior are used
as indicators of speech quality. The works described in [14] and
[15] make use of vocal tract models and modulation-spectral
features derived from the temporal envelope of speech, respec-
tively, as quality cues for single-ended quality measurement.
The ITU-T standard P.563 represents the current “state-of-art”
single-ended algorithm [16].

This paper presents two novel approaches to speech quality
measurement. First, a GMM-based single-ended algorithm
is proposed. The algorithm exploits innovative techniques to
detect and measure the amount of multiplicative noise and to
detect temporal discontinuities in the test signal. Second, the
proposed single-ended algorithm is applied to form a more
flexible double-ended measurement architecture. The proposed
scheme, as opposed to current double-ended algorithms, can be
applied to systems with noisy inputs and/or speech enhance-
ment systems.

The remainder of this paper is organized as follows. In
Section II, a detailed description of the single-ended algo-
rithm is given. Algorithm design considerations are covered
in Section III, and algorithm performance is evaluated in
Section IV. The proposed double-ended measurement archi-
tecture is detailed in Section V, followed by the conclusion in
Section VI.

II. ALGORITHM DESCRIPTION

A. Overview

In the proposed method, single-ended measurement algo-
rithms are designed based on the architecture depicted in Fig. 2.
Perceptual features are first extracted from the test speech
signal every 10 ms. The time segmentation module labels
the feature vector of each frame as belonging to one of three
possible classes: active-voiced, active-unvoiced, or inactive
(background noise). Signals are then processed by a multiplica-
tive noise detector. During design, the detector is optimized
in conjunction with the “noise estimation and MOS mapping”
and the “consistency calculation and MOS mapping” modules.
A preliminary quality score, namely MOS , is computed
from the estimated amount of multiplicative noise present in
the signal. A second preliminary score, MOS , is computed
from six consistency measures, which in turn, are calculated
relative to reference models of speech behavior. We note that
MOS is shown to provide more accurate speech quality
estimates, relative to MOS , for certain degradation condi-
tions. The objective of the multiplicative noise detector is, thus,
to distinguish which conditions can be better represented by
MOS . Lastly, temporal discontinuities are detected
and a final quality rating MOS is computed. The final rating
is a linear combination of the preliminary scores adjusted by
the negative effects temporal discontinuities have on perceived
quality. A detailed description of each block is provided in
the remainder of this section. Experimental optimization of
algorithm parameters is presented in Section III-B

B. Time Segmentation and Feature Extraction

Time segmentation is employed to separate the speech
frames into different classes. It has been shown that each class
exerts different influence on the overall speech quality [13].
Time segmentation is performed using a voice activity detector
(VAD) and a voicing detector. The VAD identifies each 10-ms
speech frame as being active or inactive (background noise).
The voicing detector further labels active frames as voiced or
unvoiced. Here, the VAD from the adaptive multirate (AMR)
speech codec [17] (VAD option 1) and the voicing determina-
tion algorithm described in [18] are used.

Perceptual linear prediction (PLP) cepstral coefficients [19]
serve as primary features and are extracted from the speech
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signal every 10 ms. The coefficients are obtained from an
“auditory spectrum,” constructed to exploit three essential
psychoacoustic precepts. First, the spectrum of the original
signal is warped into the Bark frequency scale and a critical
band masking curve is convolved with the signal. The signal
is then pre-emphasized by a simulated equal-loudness curve
to match the frequency magnitude response of the ear. Lastly,
the amplitude is compressed by the cubic-root to match the
nonlinear relation between intensity of sound and perceived
loudness. The auditory spectrum is then approximated by an
all-pole autoregressive model, whose coefficients are trans-
formed to th order PLP cepstral coefficients . The
zeroth cepstral coefficient is employed as an energy measure
[20] in our scheme. When describing the PLP vector for a given
frame , the notation is used. Moreover, the
PLP vector averaged over frames is given by

(1)

The order of the autoregressive model determines the amount
of detail in the auditory spectrum preserved by the model.
Higher order models tend to preserve more speaker-dependent
information and are more complex to calculate. We experiment
with fifth- and tenth-order PLP coefficients. On our databases,
both models incur similar quality estimation performance; thus,
for the benefit of lower computational complexity, fifth-order
PLP coefficients are chosen. Fifth-order models have been
successfully used in [12] and are shown in [19] to serve well as
speaker-independent speech spectral parameters. Moreover, dy-
namic features in the form of delta and double-delta coefficients
[20] have been shown to indicate the rate of change (speed)
and the acceleration of the spectral components, respectively
[21]. As will be shown in Section II-E, the delta information for
the zeroth cepstral coefficient can be used to detect temporal
discontinuities.

Lastly, the mean cepstral deviation of a test signal is com-
puted. In Section II-C, it will be shown that can be used to de-
tect and estimate the amount of multiplicative noise. The mean
cepstral deviation is the average of all “per-frame” deviations

of the PLP coefficients (excluding the zeroth coefficient).
The per-frame deviation is defined as

(2)

and .

C. Detecting and Estimating Multiplicative Noise

It is known that multiplicative noise (also known as speech-
correlated noise) can be introduced by logarithmically com-
panded PCM (e.g., G.711) or ADPCM (e.g., G.726) systems as
well as by other waveform speech coders [22]. In fact, mod-
ulated noise reference unit (MNRU) [23] was originally de-
vised to reproduce the perceptual distortion of log-PCM wave-
form coding techniques. MNRU systems produce speech that
is corrupted by controlled speech-amplitude-correlated noise.

The speech plus multiplicative noise output of an MNRU
system is given by

(3)

where is the clean speech signal, and is white
Gaussian noise (unit variance). The amount of multiplicative
noise is controlled by the parameter ,
which represents the ratio of input speech power to multi-
plicative noise power, and is expressed in decibels (dB). This
parameter is often termed the “ value.”

Measuring multiplicative noise of the form (3), when both
the clean signal and the degraded speech signals are available,
is fairly straightforward. The task becomes more challenging
when the original clean signal is unavailable. In such instances,

must be estimated. To the best of our knowledge, the scheme
presented in [16] is the only published method of estimating
multiplicative noise using only the degraded speech signal. The
process entails an evaluation of the spectral statistics of the
signal during active speech periods.

Today, MNRU degradations and reference waveform codecs
such as G.711 and G.726 are used extensively as “anchor”
conditions in testing and standardization of emerging codec
technologies and in network planning. Current speech quality
measurement algorithms should handle such degradation
conditions efficiently. In previous work [24], estimating mul-
tiplicative noise is shown to be beneficial for GMM-based
speech quality measurement. A multiplicative noise estimator,
similar to the one described in [16], was deployed and perfor-
mance improvement was reported for MNRU degradations.
This improvement in performance substantiates the need for an
efficient method of estimating multiplicative noise. Here, an
innovative and simple technique is employed.

The technique is based on PLP coefficients and their mean
cepstral deviations. As discussed in [25], the multiplicative
noise term in (3) introduces a fairly flat noise floor in regions
of the spectrum of , where the power of is small. On
the other hand, in regions where the power of the input signal
is sufficiently large, the spectrum of is almost perfectly
preserved (see examples in [25]). The amount of multiplicative
noise is controlled by the parameter . As a result, as
approaches 0 dB (i.e., power of multiplicative noise equals
power of input speech), the flat spectral characteristic of the
multiplicative noise starts to dominate the spectrum of .
In such instances, information about the spectral envelope of
the signal is lost, deteriorating the quality and intelligibility of
the signal. To illustrate this behavior, Fig. 3(a)–(c) shows the
spectrum of a speech frame prior to processing and after MNRU
degradation with dB, and dB, respectively. As
can be clearly seen, the spectrum of becomes flatter as the
amount of multiplicative noise increases.

The use of mean cepstral deviation as a measure of the amount
of multiplicative noise present in a signal is inspired by the
definition of cepstrum—the inverse Fourier transform of the
log-spectrum of a signal [20]. Tests on our databases show that
the cepstral deviation for MNRU speech correlates well with the
flatness of the log-spectrum, i.e., with amount of multiplicative
noise. As an example, a correlation of is attained between
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Fig. 3. Spectrum of a speech frame (a) before processing, and after (b) 25-dB
MNRU and (c) 5-dB MNRU processing. The x-axis represents frequencies in
hertz and the y-axis amplitudes in decibels.

the mean cepstral deviation of active speech frames
and values for MNRU-degraded speech files on our speech
databases. Negative correlation is expected since lower values
result in flatter spectra. In turn, spectrum and cepstrum are re-
lated via a Fourier transformation, thus a flat spectrum translates
into a nonflat cepstrum, i.e., a high . Once is estimated,
MOS can be computed via simple regression. In fact, a
polynomial mapping can be employed directly between
and MOS . As will be shown in Section III-B, MOS
provides accurate estimates of perceived subjective quality for
various different degradation conditions, in addition to corrup-
tion by MNRU multiplicative noise.

In this paper, the detection of the presence of high levels
of multiplicative noise is treated as a supervised classifica-
tion problem. In fact, the detector is trained to detect not
only multiplicative noise, but also all other degradation con-
ditions where MOS is better than MOS as an
estimator of MOS-LQS (some example conditions are given in
Section III-B-3). Detection is performed on a “per-signal” basis
and depends on a 14-dimensional input consisting of the PLP
vector averaged over active frames and over inactive
frames , and the mean cepstral deviation for active
frames and for inactive frames . Inactive
frames are used as they provide cues for discriminating additive
background noise from speech-correlated noise. Experiments
are carried out with support vector classifiers (SVCs) [26],
classification and regression trees (CARTs) [27], and random
forests (RFs) [28] as candidate detectors. Training of the detec-
tors will be described in more detail in Section III-B-3.

D. Consistency Calculation and MOS Mapping

Gaussian mixture models are used to model the PLP
cepstral coefficients of each of the three classes of speech
frames—voiced, unvoiced, and inactive. A Gaussian mix-
ture density is a weighted sum of component densities

, where , are the

mixture weights, with , and are -variate
Gaussian densities with mean vector and covariance matrix

. The parameter list, , defines a particular
Gaussian mixture density, where .

Here, a modification to the GMM-based architecture de-
scribed in [13] is proposed. It is found that accuracy can be
enhanced if the algorithm is also equipped with information
regarding the behavior of speech degraded by different trans-
mission and coding schemes [24]. To this end, clean speech
signals are used to train three different Gaussian mixture
densities, . The subscript “class” represents
either voiced, unvoiced, or inactive frames. For the degradation
model, are trained.

For the benefit of low computational complexity, we make
a simplifying assumption that vectors between frames are in-
dependent. This assumption has been shown in [13] to provide
accurate speech quality estimates. Nonetheless, improved per-
formance is expected from more sophisticated models, such as
hidden Markov models, where statistical dependencies between
frames can be considered. This investigation, however, is left for
future study. Thus, for a given speech signal, the consistency
between the observation and the models is defined as the nor-
malized (log-)likelihood

(4)

where denotes the set of all
PLP vectors that have been classified as belonging to a given
speech . The subscript “model” represents either the clean
or the degradation reference model. Normalization is required
as varies for different test signals.

In total, six consistency measures are calculated per test
signal. For each class, the product of the consistency mea-
sure (4) and the fraction of frames of that class in the speech
signal is computed; this product is referred to as a “feature.”
In the rare case when the fraction of frames of a specific
class is zero (e.g., only voiced speech is detected), a constant

is used as the feature. Lastly, the
six features are mapped to MOS . We experiment with
multivariate polynomial regression and multivariate adaptive
regression spline (MARS) [29] as candidate mapping functions.
With MARS, the mapping is constructed as a weighted sum
of truncated linear functions (see [10] for more detail). On our
databases, MARS is shown to provide superior performance.
MARS models are designed based on the MOS-LQS of de-
graded speech. Simulation results show that a simple MARS
function composed of a linear combination of 18 truncated
linear functions provides accurate quality estimation perfor-
mance. The experimental results presented in Section IV make
use of a MARS model to map the six-dimensional consistency
feature vector, calculated on a per-signal basis, into MOS .

E. Temporal Discontinuity Detection

Motivated by the results reported in [30] and by first- and
second-order methods used for edge detection in images (e.g.,
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Fig. 4. Analysis of a signal’s (a) waveform, (b) x , (c)� , and (d)� . Signal
consists of five vowels uttered in a noisy office environment.

[31]), we employ delta and double-delta coefficients for tem-
poral discontinuity detection. Delta coefficients represent the
local time derivatives (slope) of the cepstral sequence and are
computed according to

(5)

Delta coefficients indicate the rate of change (speed) of spectral
components; in our simulations is used. Double-delta
coefficients are the second-order local time derivatives of the
cepstral sequence and are computed according to

(6)

Double-delta coefficients indicate the acceleration of the spec-
tral components; in our simulations, is used.

As mentioned in Section II-B, the zeroth cepstral coefficient
is used as an energy term. The delta and double-delta features,
calculated from , provide insight into the dynamics of the
signal energy. The main assumption used here is that for natural
speech, abrupt changes in signal energy do not occur. The two
main temporal impairments that should be detected are abrupt
starts and abrupt stops [15]. In abrupt starts, the signal energy, its
rate of change, and acceleration increase abruptly. The opposite
occurs with abrupt stops. This behavior is illustrated with Figs. 4
and 5. In Fig. 4(a)–(d), the waveform of a speech signal, the
energy, and energy rate of change and acceleration
are depicted, respectively. The signal consists of five vowels
uttered by a male speaker in a noisy office environment. Vowels
are chosen as their extremities are often erroneously detected
as abrupt starts or stops. Notice the subtle spikes in and

Fig. 5. Analysis of a “clipped” signal’s (a) waveform, (b) x , (c) � , and
(d) � . Abrupt starts and stops are indicated with arrows.

at each vowel extremity. In Fig. 5, temporal discontinuities, or
“clippings,” have been introduced at the beginning or at the end
of each vowel. The abrupt starts and stops are indicated with
arrows. Notice that the unnatural changes cause abnormal spikes
in and .

To detect abrupt starts or stops, two steps are required. First,
the energy of frame at time is compared to the energy of frame

. If the energy increase (or decrease) surpasses a certain
threshold , then a candidate abrupt start (or stop) is detected.
The parameters and are optimized on our training data-
base, as described in Section III-B-4. Once a candidate discon-
tinuity is detected, a support vector classifier is used to decide
whether in fact a temporal discontinuity has occurred. The SVC
is only invoked at candidate discontinuities in order to reduce
the computational complexity of the algorithm. Here, two SVCs
are used: one tests for abrupt starts (given a sudden increase in

) and the other for abrupt stops (given a sudden decrease in
). Input features to the SVC are and for the

frames preceding and the frames succeeding . The pa-
rameter is empirically set to 2, resulting in a ten-dimensional
input feature vector. The output of each classifier is one of two
possible classes, namely, “discontinuity” or “nondiscontinuity.”
We experiment with linear, polynomial and radial basis function
(RBF) support vector classifiers; on our databases, an RBF SVC
attained superior performance.

The output of the temporal discontinuity detection block,
as depicted in Fig. 2, is a -dimensional vector com-
prised of the number of detected abrupt starts and abrupt
stops and the approximate time at which each discontinuity
occurs. As an example, suppose for a given speech file three
abrupt starts are detected at times and two
abrupt stops at times .The resulting parameter

is represented by .
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F. Final MOS Calculation

The final MOS-LQO calculation is based on a linear combi-
nation of the intermediate MOSs, adjusted by the negative ef-
fects temporal discontinuities have on perceived quality, i.e.,

MOS MOS MOS (7)

Here, is the probability that MOS is better than
MOS as an estimator of MOS-LQS. This statistic is
calculated by the detector on a “per-signal” basis. More detail
regarding the computation of is given in Section III-B-5.

The term resembles the effects temporal discontinu-
ities have on perceived quality. Experiments, such as [32], sug-
gest that humans can perform continuous assessment of time-
varying speech quality. It is also noted that the location of a dis-
continuity within a signal can affect the listener’s perception of
quality; this short-term memory effect is termed “the recency
effect.” Impairments detected at the end of the signal have more
negative effect on the perceived quality than impairments de-
tected at the beginning. In [15], a decay model is used to emulate
the recency effect. More recently, however, experiments carried
out in [33] suggest that the recency effect is harder to observe in
speech signals of short time duration. Instead, a “subconscious
integration” is performed where unconsciously, multiple degra-
dations are combined and reported as a single level of speech
quality.

Since the files in our databases are of short time durations (an
average 6 s), we do not consider the recency effect and model

as

(8)

where and are penalty terms for the detected abrupt starts
and stops, respectively. These constants are optimized on the
training databases, as will be discussed in Section III-B5. In
this paper, since the recency effect is not considered, and

are not computed. Nevertheless, for longer speech files, (8)
can be modified to incorporate such temporal information; in
particular, a decay model can be employed.

III. ALGORITHM DESIGN CONSIDERATIONS

A. Database Description

In total, 20 MOS-LQS-labeled databases are used in our ex-
periments. The speech databases are described in Table I. We
separate 14 databases for training (databases 1–14) and the re-
maining six are used for testing (databases 15–20). In addition,
during training several algorithm parameters need to be opti-
mized. To this end, 20% of the training set is randomly chosen
to be used for parameter validation; henceforth, this subset will
be referred to as the “validation set.” Parameter calibration is
discussed in further detail in Section III-B. The content of each
database is described next.

Databases 1–7 are the ITU-T P-series Supplement 23 (Ex-
periments 1 and 3) multilingual databases [34]. The three
databases in Experiment 1 have speech processed by various

TABLE I
PROPERTIES OF SPEECH DATABASES USED IN OUR EXPERIMENTS

codecs (G.726, G.728, G.729, GSM-FR, IS-54 and JDC-HR),
singly or in different cross tandem configurations (e.g.,
G.729–G.728–GSM-FR). The four databases in Experiment 3
contain single- and multiple-encoded G.729 speech under
various channel error conditions (BER 0–10%; random and
burst FER 0–5%) and input noise conditions (clean, vehicle,
street, and hoth noises).

Databases 8 and 9 are two wireless databases with speech
processed, respectively, by the IS-96A and IS-127 EVRC
(Enhanced Variable Rate Codec) codecs under various channel
error conditions (forward and reverse 3% FER) with or
without the G.728 codec in tandem. Database 10 is a mixed
wireless–wireline database with speech under a wide range of
degradation conditions—tandemings, channel errors, temporal
clippings, and amplitude variations. A more detailed description
of the conditions in database 10 can be found in [35]. Databases
11–13 comprise speech coded using the G.711, G.726 and the
G.728 speech coders, alone and in various different tandem
configurations. Database 14 has speech from standard speech
coders (G.711, G.726, G.728, G.729, and G.723.1), under
various channel degradation conditions (clean, 0.01% BER,
1–3% FER).

Databases 15–17 comprise speech coded with the 3GPP2
Selectable Mode Vocoder (SMV) under different tandeming,
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channel impairments, and environment noise degradation con-
ditions. Database 18 has speech from standard speech coders
(G.711, G.726, G.728, G.729E, and GSM-EFR) and speech
processed by a cable VoIP speech coder, under various channel
degradation conditions. Lastly, databases 19 and 20 have
speech recorded from an actual telephone connection in the
San Francisco area and live network speech samples collected
from AMPS, TDMA, CDMA, and IS-136 forward and reverse
links. In all databases described above, speech degraded by
different levels of MNRU are also included.

Speech files from databases 15–20 are used solely for testing
and are unseen to the algorithm. Database 15–18 are kept for
testing as they provide speech files coded using newer codecs
than the codecs represented in the training datasets. Evaluation
using these databases demonstrates the applicability of the pro-
posed algorithm to emerging codec technologies. Database 19
has speech files that are composed of two spoken utterances, one
by a male speaker and the other by a female speaker, and thus
are regarded as being composite male–female signals. Although
this is not common in listening tests, we are interested in seeing
how robust the proposed algorithm is to speaker and gender
changes. Furthermore, database 20 is composed of speech files
that have been processed by older wireless codecs. Many of the
files in this database are of poor speech quality MOS-LQS

and comprise degradation conditions not represented in the
training datasets.

B. Algorithm Parameter Calibration

In order to optimize algorithm parameters, preliminary “cali-
bration” experiments are carried out. In the sequel, we describe
the steps taken to calibrate each of the processing blocks de-
picted in Fig. 2.

1) Multiplicative Noise Estimation and MOS Mapping: For
optimization of the multiplicative noise estimator, MNRU-de-
graded training files are used. Experiments are carried out with
second- and third-order polynomial mappings between
and the value. On the validation set, the latter presented
better performance. The estimated amount of multiplicative
noise achieved a 0.92 correlation with the true value. The
multiplicative noise estimator described in [16] resulted in a
correlation of 0.66. For the noise-to-MOS mapping, it is found
that a simple linear regression between the estimated amount of
multiplicative noise and MOS suffices. The two mappings
are replaced by one single third-order polynomial mapping
between and MOS . A 0.95 correlation between
MOS and the true MOS-LQS is attained for MNRU
validation files.

2) Consistency Calculation: To calibrate the consistency cal-
culation block, an effective combination of GMM configuration
parameters ( and covariance matrix type) needs to be found.
For voiced and unvoiced frames, we experiment with diagonal
matrices and 8, 16, or 32, and 2, 3, or 5 for full co-
variance matrices. For inactive frames, we only experiment with
diagonal matrices and 2, 3, or 6. The calibration experi-
ment suggests the use of three full GMM components for voiced
frames and 32 diagonal components for unvoiced frames, for
both the clean and the degradation model. For inactive frames,
six diagonal components are needed for the degradation model

and three for the clean model. This is consistent with the fact
that for clean speech, inactive frames have virtually no signal
energy and fewer Gaussian components are required.

The consistency-to-MOS mapping is designed using a MARS
regression function with parameters optimized using degraded
MOS-LQS labeled training files. The function maps the six
consistency measures into MOS . As mentioned previ-
ously, the designed MARS regression function is composed
of a simple weighted sum of 18 truncated linear functions.
The mapping is performed once per speech signal and incurs
negligible computational complexity (approximately 18 scalar
multiplications and 54 scalar additions). For files in the valida-
tion set, a 0.82 correlation is attained between MOS and
the actual MOS-LQS; if MNRU degraded files are removed,
the correlation increases to 0.86. This result suggests that a
combination of MOS and MOS may lead to better
performance when compared to using MOS alone.

3) Multiplicative Noise Detection: The multiplicative noise
detector is optimized to select the best preliminary quality score,
MOS or MOS , for a given test signal. To gain a sense of
which conditions are best represented by each preliminary score,
tests are performed on the training set where the true MOS-LQS
is known. As expected, of 288 files processed by the G.711 and
G.726 codecs, 252 are better represented by MOS . Simi-
larly, of 252 MNRU-degraded files with dB dB,
209 are better represented by MOS . If only files with

dB are considered, 103 (out of 108) are better estimated
by MOS . The primary objective of the detector, thus, is to
detect signals corrupted by high levels of multiplicative noise.

Nonetheless, for some degradation conditions other than mul-
tiplicative noise conditions, MOS is also shown to be a
better estimator of MOS-LQS than MOS . Some examples
include speech signals processed by low bit-rate vocoders (e.g.,
G.723.1 at 5.3 kbit/s), where the quality of five (out of 32) of
the signals are better represented by MOS . Moreover, of
112 samples processed by medium bitrate codecs (e.g., G.729E
at 11.8 kbit/s), the quality of 22 signals are better estimated by
MOS than by MOS . As a consequence, in instances
where high levels of multiplicative noise is not detected, the
classifier learns which temporary score results in best estima-
tion performance.

To calibrate the detector, first, all training samples are pro-
cessed by the top and middle branches depicted in the block
diagram in Fig. 2. The estimated preliminary MOSs are com-
pared to the true MOS-LQS and all samples in which the top
branch achieved smallest estimation error receive a label “TOP”;
otherwise, a label “MID” is assigned. This new labeled training
set discriminates which preliminary score best estimates the
true MOS-LQS for a given speech signal and is used to train the
detector. The detector can be designed to operate in two different
modes: hard-decision or soft-decision. In hard-decision mode,
the detector selects the single best preliminary quality score and

is used in (7). With this mode, only one preliminary
score needs to be computed. On the contrary, soft-decision de-
tection requires that both preliminary scores be estimated, and a
“weight” is assigned to each score. The weight is
computed by the detector on a “per-signal” basis and reflects the
probability of MOS more accurately predicting MOS-LQS
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than MOS . The term resembles the likelihood of the
presence of high levels of multiplicative noise in the signal. After
detector optimization, signals in the validation set with high
levels of multiplicative noise have that approach unity.

We experiment with three different candidate classifiers:
CART, SVC, and RF. The classifiers are trained using the
aforementioned labeled training set. An RF classifier is an
ensemble of unpruned decision trees induced from bootstrap
samples of the training data. The final class decision is based
on a majority vote from all individual trees (see [28] for more
details regarding random forest classifiers). On our validation
set, an RF classifier with 500 trees (and three inputs considered
per tree node) achieved the best classification performance; all
files with high levels of multiplicative noise (e.g., MNRU with

dB) were correctly detected.
4) Temporal Discontinuity Detection: Calibrating the tem-

poral discontinuity detector encompasses the determination of
parameters and , and training of the support vector classifiers.
On our data it was found that if the values of doubled (or
halved) within 20–50 ms, a candidate discontinuity could be
detected. With these possible values of , the SVCs correctly
identified all abrupt stops and starts on the validation dataset. In
an attempt to reduce the number of times the SVCs are executed,
a more stringent threshold, (equivalent to 2 ms), is used.

5) Final MOS Calculation: Lastly, the parameters in (7) are
optimized. Initially, is assumed and we experiment
with hard-decision detection and soft-decision detection. On the
validation set, soft-decision detection resulted in superior per-
formance. With soft-decision detection, is computed by the
RF classifier and represents the fraction of the 500 individual de-
cision trees that have selected MOS as the best estimator
of subjective quality. Once the soft-decision mode is set, the
parameters and in (8) are estimated by minimizing the
squared error between (7) and the true MOS-LQS for “clipped”
training signals. On our data, and were
found. These parameters are consistent with [15], where it is ar-
gued that the abrupt stops have, intuitively, a more significant
impact on perceived speech quality relative to abrupt starts.

IV. TEST RESULTS

In this section, we compare the proposed algorithm to P.563
using the test databases described in Section III-A. The per-
formance of the algorithms is assessed by the correlation
between the MOS-LQS and MOS-LQO samples,
using Pearson’s formula

(9)

where is the average of , and is the average of . MOS
measurement accuracy is assessed using the root-mean-square
error RMSE

RMSE (10)

TABLE II
PERFORMANCE COMPARISON ON UNSEEN TEST DATASETS. RESULTS ARE PER

CONDITION AFTER THIRD-ORDER POLYNOMIAL REGRESSION

Table II presents “per-condition” and RMSE between condi-
tion-averaged MOS-LQS and condition-averaged MOS-LQO,
for each of the test datasets. The results are obtained after an in-
dividual third-order monotonic polynomial regression for each
dataset, as recommended in [16]. The column labeled “ ”
lists the percentage “ -improvement” obtained by using the
proposed GMM-based method over P.563. The -improvement
is given by

(11)

and indicates percentage reduction of P.563’s performance
gap to perfect correlation. The column labeled “ ” lists
percentage reduction in RMSE, relative to P.563, by using
the proposed scheme. As can be seen, the proposed algorithm
outperforms P.563 on all test databases. An average -im-
provement of 44% and an average reduction in RMSE of 17%
is attained.

An interesting result is obtained with database 19. Recall that
this database had MOS-LQS-labeled speech signals composed
of two utterances, one spoken by a male speaker and the other
by a female speaker. On this database, P.563 achieves a poor
correlation of 0.421. In fact, before applying the third-order
monotonic polynomial mapping, P.563 achieves a very poor

. This may be due to the fact that P.563 depends
on vocal tract analysis to test for unnaturalness of speech. By
rating the unnaturalness of speech separately for male and fe-
male voices, P.563 is compromised for composite male–female
signals. As a sanity check, we test the performance of PESQ
(with the mapping described in [36]) and an and
RMSE is attained.

The plots in Fig. 6 show MOS-LQO versus MOS-LQS for
the proposed algorithm and for P.563. Each data point repre-
sents one of the 332 different degradation conditions available
in the test databases. In these plots and in the performance fig-
ures described below, the composite male–female quality esti-
mates are left out. Plots (a) and (b) illustrate the relationship be-
tween GMM MOS-LQO and MOS-LQS, before and after third-
order monotonic polynomial regression (optimized on each test
dataset), respectively. Prior to polynomial mapping, an overall
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Fig. 6. Per-condition MOS-LQO versus MOS-LQS for (a) proposed algo-
rithm prior to and (b) after third-order monotonic polynomial mapping, and for
(c) P.563 before and (d) after the polynomial mapping.

and RMSE is attained; after the map-
ping, and RMSE . Similarly, plots (c)
and (d) illustrate the relationship between P.563 MOS-LQO and
MOS-LQS, before and after the monotonic mapping. An overall

and RMSE is attained prior to regression;
after regression and RMSE .

The third-order monotonic polynomial regression is sug-
gested in [16] in order to map the objective score onto the
subjective scale. This mapping is used to compensate for vari-
ations of the MOS-LQS scale across different subjective tests,
variations due to different voter groups, languages, contexts,
among other factors. Monotonic mappings perform scale ad-
justments but do not alter the ranking of the objective scores.
Ultimately, the goal in objective quality estimation is to design
algorithms whose quality scores rank similarly to subjective
quality scores. This is due to the fact that objective scores that
offer good ranking performance produce accurate MOS-LQS
estimates, given a suitable monotonic mapping is used for scale
adjustment. To this end, we use rank-order correlations as an ad-
ditional figure of merit of algorithm performance. Rank-order
correlations are calculated using (9), with the original data
values replaced by the ranks of the data values; this measure
is often termed Spearman’s rank correlation coefficient .
For P.563, a “per-condition” is attained on the
test data. The proposed algorithm achieves , a
30% -improvement. The results presented above, for all three
performance measures, suggest that the proposed algorithm
provides more accurate estimates of subjective quality relative
to the current “state-of-art” P.563 algorithm.

In the sequel, a novel and more flexible architecture for
double-ended measurement is presented. The scheme makes
use of the proposed single-ended algorithm. It will be shown
that the scheme is applicable to noise suppression systems and
outperforms current state-of-art double-ended algorithms.

Fig. 7. Block diagram of a speech enhancement system.

V. VERSATILE DOUBLE-ENDED MEASUREMENT

ARCHITECTURE

A. Background

Current single- and double-ended algorithms are only capable
of estimating the quality of the received signal per se. If we are
interested in analyzing the quality of a transmission system, as-
sumptions on the input signal are needed. As mentioned pre-
viously, double-ended algorithms presuppose that the input is
undistorted. Moreover, it is assumed that the output is of quality
no better than the input. Current double-ended algorithms would
fail if any of these assumptions were to fail. A scenario where
both assumptions are not met can be seen in Fig. 7. Here, a clean
signal suffers impairments that degrade speech quality.
Common impairments may include interference on an analog
access network, environment noise, noise introduced by equip-
ment within the network, and lost packets in a VoIP network.
The noisy signal is then input to a speech enhancement
system and the enhanced output is of quality better than
the input. Such system configuration commonly occurs when
using a noise reduction algorithm to enhance speech. As will
be shown next, performance of current double-ended schemes
may be compromised when only and are made
available to the algorithm.

B. Measurement Configuration

The objective here is to devise a measurement scheme that
overcomes the above limitations. Our approach subsumes
current single- and double-ended measurement architectures.
The approach allows for double-ended measurement without
the underlying assumptions mentioned above, i.e., the input
signal does not need to be clean and the output can be of
quality better than the input. With the proposed architecture,
it is possible to analyze the quality of the system under test
and both quality degradations and quality enhancements can
be detected and handled. This section will give emphasis to
quality enhancements.

The proposed architecture is depicted in Fig. 8. The conven-
tional double-ended algorithm is replaced by two single-ended
schemes, one at the input and another at the output of the system
being tested, and a system diagnosis tool. This configuration
requires information of both the input and the output signals,
hence, is regarded as double-ended. In analogy to Fig. 7, if the
input single-ended algorithm is placed at the point labeled “A”
and the output single-ended algorithm is placed at point labeled
“B,” then quality degradations are handled. On the other hand,
if the input single-ended algorithm is placed at the point labeled
“B” and the output single-ended algorithm is placed at point
labeled “C,” then quality enhancements are handled. Here, we
will focus on the latter scenario as it represents the case where
the input signal is not clean and the output is of quality better
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Fig. 8. Architecture of the proposed double-ended algorithm.

than the input. As mentioned previously, performance of current
double-ended schemes may be compromised in this scenario.

To allow for accurate speech quality measurement of noise
suppressed signals, the proposed GMM-based algorithm is
updated to incorporate reference models of noise suppressed
speech signals. Similar to the clean and the degradation models,
the “noise-suppressed” model is designed for voiced, unvoiced,
and inactive frames. If noise suppression is detected, consis-
tency measures relative to all three reference models (clean,
degraded, and noise suppressed) are computed; otherwise,
consistency measures are computed only for the clean and
degradation models. In the latter case, the MARS mapping
described in Section III-B-2 is used; in the former, a separate
MARS mapping is trained on a subjectively scored noise-sup-
pressed speech database. Details regarding the database will
be given in Section V-C. Noise-suppressed reference model
and MARS mapping design considerations will be given in
Section V-D.

With the proposed architecture, the transmission of input
measurements (this is illustrated with the dashed arrow in
Fig. 8) and a system diagnosis module are necessary in order
to detect if noise suppression has occurred. We have investi-
gated the effectiveness of transmitting the input SNR SNR ,
computed by the VAD algorithm, and the input MOS-LQO
MOS , estimated based on the consistency measures calcu-

lated relative to the clean and the degradation reference models.
The amount of side information is negligible; thus, this scheme
is much more economical than existing double-ended schemes
which require access to the input signal.

At the output end, SNR is computed and a preliminary
MOS-LQO MOS is estimated based on the clean and
the degradation model-based consistency measures. These two
measures are sent to the system diagnosis module. The diagnosis
module, in turn, sends a flag back to the output single-ended
algorithm indicating whether noise suppression has been de-
tected. Detection occurs if SNR SNR and MOS

MOS , where is the standard deviation of the esti-
mated input MOS-LQO ( on the noise suppressed data-
base). With this detection rule, all of the noise suppressed speech
files were correctly detected. If noise suppression is detected,
the output single-ended algorithm calculates a final MOS-LQO
MOS based on consistency measures calculated relative to

the three reference models, otherwise MOS MOS .
Other diagnostic tests, such as measuring (in terms of MOS)
the amount of quality degradation (or enhancement) imparted

by the transmission system, or measuring SNR improvement,
are also possible. Further characterization of the noise suppres-
sion algorithm may be aided with the transmission of other input
measurements (e.g., see measures described in [37]).

C. Database Description

The proposed architecture is tested using the subjectively
scored NOIZEUS database [38]. The database comprises
speech corrupted by four types of noise (babble, car, street,
and train) at two SNR levels (5 and 10 dB) and processed
by 13 different noise suppression algorithms; a total of 1792
speech files are available. The noise suppression algorithms
fall under four different classes: spectral subtractive, subspace,
statistical-model based, and Wiener algorithms. A complete
description of the algorithms can be found in [38], [39].

The subjective evaluation of the NOIZEUS database was per-
formed according to ITU-T Recommendation P.835 [40]. With
the P.835 methodology, listeners are instructed to successively
attend to and rate three different signal components of the noise
suppressed speech signal: 1) the speech signal alone using a
five-point scale of signal distortion very distorted
not distorted , 2) the background noise alone using a five-point
scale of background intrusiveness very intrusive
not noticeable , and 3) the overall effect using the five-point
ACR scale bad excellent . Here, the average scores
over all listeners are termed SIG-LQS, BCK-LQS, and OVRL-
LQS, respectively. Note that OVRL is equivalent to the MOS
described in [1].

D. Design Considerations

In order to train reference models of noise suppressed speech
signals and to design the updated MARS mapping function, the
NOIZEUS database has to be separated into a training and a
test set. We perform this separation in three different ways to
test the robustness of the proposed architecture to different un-
seen test conditions. First, speech files are separated according
to noise levels; files with SNR dB are used for training
and files with SNR dB are left for testing. Second, speech
signals are separated according to noise sources. Signals cor-
rupted by street and train noise are used for training and signals
corrupted by babble and car noise are left for testing. Lastly,
speech files are separated according to noise suppression algo-
rithms. For training, noisy signals processed by spectral subtrac-
tive and subspace algorithms are used; noisy signals processed
by statistical-model based and Wiener algorithms are left for
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TABLE III
PERFORMANCE COMPARISON WITH PESQ AND P.563 ON THE THREE TEST SETS. CONFIGURATION 1 MAKES USE OF THE ORIGINAL CLEAN SIGNAL

AND THE NOISE-SUPPRESSED SIGNAL, AND CONFIGURATION 2 OF THE NOISY SIGNAL AND THE NOISE-SUPPRESSED SIGNAL

testing. The number of conditions for each of the three test sets
described above are 52, 52, and 64, respectively, out of a total
of 104 degradation conditions for the entire database.

To design the reference models for noise suppressed speech
signals we experiment with different combinations of GMM pa-
rameters. It is observed that for all three tests, 32 diagonal com-
ponents for voiced and unvoiced frames and six diagonal com-
ponents for inactive frames strike a balance between accuracy
and complexity. Moreover, a separate MARS mapping function
is designed for each of the three tests. Each MARS function
maps a nine-dimensional feature vector into MOS .

E. Test Results

In this section, we compare the performance of the proposed
architecture to that of PESQ. Two different PESQ configura-
tions are tested: 1) a hypothetical configuration where the orig-
inal clean signal is available, and 2) a more realistic scenario
where only the noisy and the noise-suppressed signals are avail-
able. Configuration 1 makes use of the clean signal as reference
input and although evaluation of noise reduction systems is not
recommended in [41], the results to follow suggest accurate es-
timation performance. On the other hand, Configuration 2 ex-
emplifies the case where the reference input signal is not clean,
and the quality of the output is better than that of the input.
As will be shown in the sequel, this configuration compromises
PESQ performance. Moreover, swapping the input signals (i.e.,
noise-suppressed signal to reference input and noisy signal to
degraded input) brought no improvement.

Table III presents “per-condition” and RMSE between
condition-averaged OVRL-LQS and condition-averaged
OVRL-LQO, for the three test sets. Results are reported after
third-order monotonic polynomial regression (for PESQ the
mapping proposed in [36] is not used as it degrades perfor-
mance substantially). As can be seen, when the original clean
speech signal is available, PESQ achieves accurate estimation
performance. However, when only the noisy signal is available
as reference, substantial improvement is attained with the
proposed architecture. For comparison purposes, Table III also
shows the performance of P.563 on the three tests.

F. Component Quality Estimation

It is known that certain noise suppression algorithms can in-
troduce unwanted artifacts such as “musical noise.” With rec-
ommendation P.835, noise suppressed signals are rated based
on the speech content alone (SIG), on the background noise

TABLE IV
PERFORMANCE OF SIG-LQO AND BCK-LQO ESTIMATED

BY THE PROPOSED ALGORITHM

alone (BCK), and on the speech plus noise content (OVRL).
Currently, objective measurement algorithms (both single- and
double-ended) can only attempt to estimate OVRL-LQS. How-
ever, it is unknown how humans integrate the individual contri-
butions of speech and noise distortions when judging the overall
quality of a noise-suppressed signal. To this end, devising an
algorithm capable of also estimating SIG-LQS and BCK-LQS
would be invaluable. The estimates can be used to test newer
generations of noise reduction algorithms and to assess the al-
gorithms’ capability of maintaining speech signal naturalness
while reducing background noise to nonintrusive levels. In [42],
the NOIZEUS database is used to evaluate six double-ended ob-
jective estimates of SIG-LQS and BCK-LQS. The study makes
use of the original clean signal as a reference and low correla-
tions with subjective quality are reported .

Due to the modular architecture of the proposed GMM-based
algorithm, a simple extension can be implemented to allow
for single-ended SIG-LQS and BCK-LQS estimation. In par-
ticular, two new MARS mapping functions are optimized
on the training datasets. To estimate SIG-LQS, a six-di-
mensional MARS function is devised to map consistency
measures of voiced and unvoiced frames (for all three ref-
erence models—clean, degraded, and noise suppressed) into
SIG-LQO. To estimate BCK-LQS, a simple four-dimensional
MARS function is designed to map consistency measures of
inactive frames (for all three models) and the estimated SNR
into BCK-LQO. Table IV presents “per-condition” and
RMSE between condition-averaged SIG-LQS (BCK-LQS)
and condition-averaged SIG-LQO (BCK-LQO), for the three
aforementioned test sets. Results are reported after third-order
monotonic polynomial regression optimized on each test set.
The results are encouraging given that the original clean signal
is not available as a reference.
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The results described in this section are “preliminary,” as
only one noise-suppressed speech dataset is used for training
and testing. The results, however, are promising and suggest
that the GMM-based single-ended algorithm, deployed in the
proposed double-ended architecture, can be effectively used
in scenarios where a noisy input is enhanced using a noise
suppression algorithm. Moreover, the proposed architecture
has the added benefit of estimating SIG-LQS and BCK-LQS,
invaluable information for assessing the performance of noise
suppression algorithms.

VI. CONCLUSION

The purpose of this paper has been two fold. First, a novel
single-ended speech quality estimation algorithm employing
speech signal models designed using machine learning methods
is presented. Comparisons with the current state-of-art P.563
algorithm demonstrate the efficacy of the algorithm and its
potential for providing more accurate measurements. Second,
the proposed algorithm is extended and applied to a dis-
tributed double-ended measurement architecture. The results
demonstrate that, besides offering the conventional function
of measuring the quality of systems that degrade speech,
the algorithm is capable of measuring the quality of speech
enhancement systems. In this role, the proposed algorithm
performs better than P.563 and provides a functionality not
available with the current double-ended standard P.862 PESQ.
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